

Edition 12

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Database
Processing
Fundamentals, Design, and Implementation

David M. Kroenke

David J. Auer
Western Washington University

Editorial Director: Sally Yagan
Editor in Chief: Eric Svendsen
Executive Editor: Bob Horan
Editorial Project Manager: Kelly Loftus
Editorial Assistant: Ashlee Bradbury
VP, Director of Marketing: Patrice

Lumumba Jones
Senior Marketing Manager: Anne Fahlgren
Senior Managing Editor: Judy Leale
Production Project Manager:

Jacqueline A. Martin
Senior Operations Supervisor: Arnold Vila

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in
this textbook appear on the appropriate page within text.

Microsoftfi and Windowsfi are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation.
This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright ' 2012, 2010, 2006, 2004, 2000 by Pearson Education, Inc., publishing as Prentice Hall.
All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduc-
tion, storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Operations Specialist: Cathleen Petersen
Creative Director: Blair Brown
Sr. Art Director/Supervisor: Janet Slowik
Interior and Cover Designer: Karen Quigley
Cover Photo: VolsKinvois/Shutterstock
Media Project Manager: Lisa Rinaldi
Media Project Manager, Editorial: Allison Longley
Full-Service Project Management: Jennifer Welsch/BookMasters, Inc.
Composition: Integra Software Services
Printer/Binder: R.R. Donnelley/Willard
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: 10/12 Kepler MM

Library of Congress Cataloging-in-Publication Data
Kroenke, David.

Database processing : fundamentals, design, and implementation.�Ed. 12. / David M. Kroenke,
David J. Auer.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-13-214537-4 (hardcover : alk. paper)

1. Database management. I. Auer, David J. II. Title.
QA76.9.D3K76 2012
005.74�dc22

2011011004

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-214537-5
ISBN 13: 978-0-13-214537-4

MySQLfi, the MySQL GUI Toolsfi (MySQL Query Browerfi and MySQL Administratorfi), the MySQL
Command Line Clientfi, and MySQL Workbenchfi are registered trademarks of Sun Microsystems,
Inc. in the U.S.A and other countries. Screenshots and icons reprinted with permission of Sun
Microsystems, Inc. This book is not sponsored or endorsed by or affiliated with Sun Microsystems.

Eclipsefi and The Eclipse PHP Development Tools (PDT) Projectfi are trademarks of the Eclipse Foun-
dation, Inc. The Eclipse platform is copyright Eclipse copyright holders and others, 2000, 2007. Screen-
shots reprinted under the terms of the Eclipse Public License v1.0 available at www.eclipse.org/legal/
epl-v10.html. This book is not sponsored or endorsed by or affiliated with the Eclipse Foundation, Inc.

PHP is copyright The PHP Group 1999�2008, and is used under the terms of the PHP Public License
v3.01 available at http://www.php.net/license/3_01.txt. This book is not sponsored or endorsed by or
affiliated with The PHP Group.

iii

Preface xv

PART 1 � GETTING STARTED 1

Chapter 1 Introduction 2
Chapter 2 Introduction to Structured Query Language 31

PART 2 � DATABASE DESIGN 99

Chapter 3 The Relational Model and Normalization 100
Chapter 4 Database Design Using Normalization 137
Chapter 5 Data Modeling with the Entity-Relationship Model 155
Chapter 6 Transforming Data Models into Database Designs 203

PART 3 � DATABASE IMPLEMENTATION 245

Chapter 7 SQL for Database Construction and Application Processing 246
Chapter 8 Database Redesign 313

PART 4 � MULTIUSER DATABASE PROCESSING 337

Chapter 9 Managing Multiuser Databases 338
Chapter 10 Managing Databases with SQL Server 2008 R2 373

ONLINE CHAPTER: SEE PAGE 447 FOR INSTRUCTIONS
Chapter 10A Managing Databases with Oracle Database 11g 10A-1

ONLINE CHAPTER : SEE PAGE 448 FOR INSTRUCTIONS
Chapter 10B Managing Databases with MySQL 5.1 10B-1

PART 5 � DATABASE ACCESS STANDARDS 449

Chapter 11 The Web Server Environment 449
Chapter 12 Database Processing with XML 509
Chapter 13 Database Processing for Business Intelligence Systems 549

ONLINE APPENDICES: SEE PAGE 590 FOR INSTRUCTIONS
Appendix A Getting Started with Microsoft Access 2010 A-1
Appendix B Getting Started with Systems Analysis and Design B-1
Appendix C E-R Diagrams and the IDEF1X Standard C-1
Appendix D E-R Diagrams and the UML Standard D-1
Appendix E Getting Started with the MySQL Workbench Database Design Tools E-1
Appendix F Getting Started with the Microsoft Visio 2010 F-1
Appendix G The Semantic Object Model G-1
Appendix H Data Structures for Database Processing H-1
Appendix I Getting Started with Web Servers, PHP and the Eclipse PDT I-1

B rief Contents

v

Preface xv

PART 1 � GETTING STARTED 1

Chapter 1: Introduction 2

Chapter Objectives 2
The Characteristics of Databases 3

A Note on Naming Conventions 3 � A Database Has Data and Relationships 4 �
Databases Create Information 5

Database Examples 6
Single-User Database Applications 6 � Multiuser Database Applications 6
E-Commerce Database Applications 7 � Reporting and Data Mining Database
Applications 7

The Components of a Database System 8
Database Applications and SQL 9 � The DBMS 11 � The Database 12

Personal Versus Enterprise-Class Database Systems 13
What Is Microsoft Access? 13 � What Is an Enterprise-Class Database System? 15

Database Design 16
Database Design from Existing Data 17 � Database Design for New Systems
Development 17 � Database Redesign 18

What You Need to Learn 19
A Brief History of Database Processing 20

The Early Years 20 � The Emergence and Dominance of the Relational
Model 22 � Post-Relational Developments 23

Summary 25 � Key Terms 26 � Review Questions 26 � Project
Questions 28

Chapter 2: Introduction to Structured Query Language 31

Chapter Objectives 31
Components of a Data Warehouse 32
Cape Codd Outdoor Sports 33

The Extracted Retail Sales Data 33 � RETAIL_ORDER Data 35 � ORDER_ITEM
Data 35 � SKU_DATA Table 36 � The Complete Cape Codd Data Extract
Schema 36 � Data Extracts Are Common 37

SQL Background 37
The SQL SELECT/FROM/WHERE Framework 38

Reading Specified Columns from a Single Table 38 � Specifying Column Order in
SQL Queries from a Single Table 39 � Reading Specified Rows from a Single
Table 41 � Reading Specified Columns and Rows from a Single Table 42

Submitting SQL Statements to the DBMS 43
Using SQL in Microsoft Access 2010 43 � Using SQL in Microsoft SQL Server
2008 R2 48 � Using SQL in Oracle Database 11g 51 � Using SQL in Oracle
MySQL 5.5 54

C ontents

vi Contents

SQL Enhancements for Querying a Single Table 56
Sorting the SQL Query Results 56 � SQL WHERE Clause Options 58
� Combining the SQL WHERE Clause and the SQL ORDER BY Clause 63

Performing Calculations in SQL Queries 63
Using SQL Built-in Functions 63 � SQL Expressions in SQL SELECT
Statements 66

Grouping in SQL SELECT Statements 68
Looking for Patterns in NASDAQ Trading 72

Investigating the Characteristics of the Data 72 � Searching for Patterns in
Trading by Day of Week 73

Querying Two or More Tables with SQL 75
Querying Multiple Tables with Subqueries 75 � Querying Multiple Tables
with Joins 78 � Comparing Subqueries and Joins 82

Summary 82 � Key Terms 82 � Review Questions 83 � Project
Questions 88 � Marcia�s Dry Cleaning 92 � Morgan Importing 94

PART 2 � DATABASE DESIGN 99

Chapter 3: The Relational Model and Normalization 100

Chapter Objectives 99
Relational Model Terminology 102

Relations 103 � Characteristics of Relations 103 � Alternative
Terminology 105 � Functional Dependencies 106 � Finding Functional
Dependencies 107 � Keys 110

Normal Forms 112
Modification Anomalies 112 � A Short History of Normal Forms 113
� Normalization Categories 113 � From First Normal Form to Boyce-Codd
Normal Form Step-By-Step 114 � Eliminating Anomalies from Functional
Dependencies with BCNF 118 � Eliminating Anomalies from Multivalued
Dependencies 126 � Fifth Normal Form 130 � Domain/Key Normal
Form 130

Summary 131 � Key Terms 131 � Review Questions 132 � Project
Questions 134 � Marcia�s Dry Cleaning 135 � Morgan Importing 136

Chapter 4: Database Design Using Normalization 137

Chapter Objectives 137
Assess Table Structure 138
Designing Updatable Databases 139

Advantages and Disadvantages of Normalization 139 � Functional
Dependencies 139 � Normalizing with SQL 140 � Choosing Not to Use
BCNF 141 � Multivalued Dependencies 142

Designing Read-Only Databases 142
Denormalization 142 � Customized Duplicated Tables 144

Common Design Problems 145
The Multivalue, Multicolumn Problem 145 � Inconsistent Values 147
� Missing Values 148 � The General-Purpose Remarks Column 148

Summary 149 � Key Terms 150 � Review Questions 150 � Project
Questions 152 � Marcia�s Dry Cleaning 152 � Morgan Importing 153

Chapter 5: Data Modeling with the Entity-Relationship Model 155

Chapter Objectives 155
The Purpose of a Data Model 156

Contents vii

The Entity-Relationship Model 156
Entities 156 � Attributes 157 � Identifiers 158 � Relationships 158
� Maximum Cardinality 160 � Minimum Cardinality 161 � Entity-
Relationship Diagrams and Their Versions 162 � Variations of the E-R Model 162
� E-R Diagrams Using the IE Crow�s Foot Model 163 � Strong Entities and Weak
Entities 164 � ID-Dependent Entities 164 � Non-ID-Dependent Weak
Entities 165 � The Ambiguity of the Weak Entity 166 � Subtype Entities 167

Patterns in Forms, Reports, and E-R Models 168
Strong Entity Patterns 169 � ID-Dependent Relationships 173 � Mixed
Identifying and Nonidentifying Patterns 179 � The For-Use-By Pattern 182
� Recursive Patterns 183

The Data Modeling Process 185
The College Report 186 � The Department Report 187 � The
Department/Major Report 189 � The Student Acceptance Letter 189

Summary 191 � Key Terms 192 � Review Questions 193 � Project
Questions 195 � Marcia�s Dry Cleaning 201 � Morgan Importing 202

Chapter 6: Transforming Data Models into Database Designs 203

Chapter Objectives 203
Create a Table for Each Entity 204

Selecting the Primary Key 204 � Specifying Candidate (Alternate) Keys 206 �
Specify Column Properties 206 � Verify Normalization 208

Create Relationships 209
Relationships Between Strong Entities 209 � Relationships Using ID-Dependent
Entities 212 � Relationships with a Weak Non-ID-Dependent Entity 217 �
Relationships in Mixed Entity Designs 217 � Relationships Between Supertype and
Subtype Entities 219 � Recursive Relationships 219 � Representing Ternary
and Higher-Order Relationships 221 � Relational Representation of the Highline
University Data Model 224

Design for Minimum Cardinality 225
Actions When the Parent Is Required 227 � Actions When the Child Is Required 228
� Implementing Actions for M-O Relationships 228 � Implementing Actions for O-M
Relationships 228 � Implementing Actions for O-M Relationships 229 �
Implementing Actions for M-M Relationships 230 � Designing Special Case M-M
Relationships 230 � Documenting the Minimum Cardinality Design 231 � An
Additional Complication 233 � Summary of Minimum Cardinality Design 233

The View Ridge Gallery Database 233
Summary of Requirements 233 � The View Ridge Data Model 234 � Database
Design with Data Keys 235 � Minimum Cardinality Enforcement for Required
Parents 236 � Minimum Cardinality Enforcement for the Required Child 238
� Column Properties for the View Ridge Database Design Tables 238

Summary 240 � Key Terms 241 � Review Questions 242 � Project
Questions 243 � Marcia�s Dry Cleaning 244 � Morgan Importing 244

PART 3 � DATABASE IMPLEMENTATION 245

Chapter 7: SQL for Database Construction and Application
Processing 246

Chapter Objectives 246
The View Ridge Gallery Database 247
SQL DDL, DML, and a New Type of Join 247
Managing Table Structure with SQL DDL 248

Creating the View Ridge Database 248 � Using the SQL CREATE TABLE
Statement 249 � Variations in SQL Data Types 250 � Creating the ARTIST

viii Contents

Table 252 � Creating the WORK Table and the 1:N ARTIST-to-WORK
Relationship 254 � Implementing Required Parent Rows 255 � Implementing
1:1 Relationships 256 � Casual Relationships 256 � Creating Default Values
and Data Constraints with SQL 256 � Creating the View Ridge Database
Tables 258 � The SQL ALTER TABLE Statement 261 � The SQL DROP TABLE
Statement 262 � The SQL TRUNCATE TABLE Statement 263

SQL DML Statements 263
The SQL INSERT Statement 263 � Populating the View Ridge Database Tables 264
� The SQL UPDATE Statement 270 � The SQL MERGE Statement 271 �
The SQL DELETE Statement 272

New Forms of Join 272
The SQL JOIN ON Syntax 272 � Outer Joins 274

Using SQL Views 277
Using SQL Views to Hide Columns and Rows 280 � Using SQL Views to Display
Results of Computed Columns 281 � Using SQL Views to Hide Complicated SQL
Syntax 282 � Layering Built-in Functions 284 � Using SQL Views for
Isolation, Multiple Permissions, and Multiple Triggers 285 � Updating SQL Views 286

Embedding SQL in Program Code 287
SQL/Persistent Stored Modules (SQL/PSM) 288 � Using SQL Triggers 289 �
Using Stored Procedures 295

Summary 298 � Key Terms 299 � Review Questions 299 � Project
Questions 303 � Marcia�s Dry Cleaning 306 � Morgan Importing 309

Chapter 8: Database Redesign 313

Chapter Objectives 313
The Need for Database Redesign 314
SQL Statements for Checking Functional Dependencies 314

What Is a Correlated Subquery? 315
How Do I Analyze an Existing Database? 320

Reverse Engineering 320 � Dependency Graphs 322 � Database Backup and
Test Databases 322

Changing Table Names and Table Columns 323
Changing Table Names 323 � Adding and Dropping Columns 325 � Changing
a Column Data Type or Column Constraints 326 � Adding and Dropping
Constraints 326

Changing Relationship Cardinalities and Properties 326
Changing Minimum Cardinalities 327 � Changing Maximum Cardinalities 328

Adding and Deleting Tables and Relationships 331
Forward Engineering(?) 331
Summary 331 � Key Terms 333 � Review Questions 333 � Project
Questions 335 � Marcia�s Dry Cleaning 335 � Morgan Importing 336

PART 4 � MULTIUSER DATABASE PROCESSING 337

Chapter 9: Managing Multiuser Databases 338

Chapter Objectives 338
Database Administration 339

Managing the Database Structure 340
Concurrency Control 341

The Need for Atomic Transactions 342 � Resource Locking 346 � Optimistic
Versus Pessimistic Locking 348 � Declaring Lock Characteristics 349 � Implicit and
Explicit Commit Transaction 350 � Consistent Transactions 351 � Transaction
Isolation Level 352 � Cursor Type 353

Contents ix

Database Security 354
Processing Rights and Responsibilities 354 � DBMS Security 355 � DBMS Security
Guidelines 356 � Application Security 358 � The SQL Injection Attack 359

Database Backup and Recovery 359
Recovery via Reprocessing 360 � Recovery via Rollback/Rollforward 360

Managing the DMBS 362
Maintaining the Data Repository 363

Distributed Database Processing 364
Types of Distributed Databases 364 � Challenges of Distributed Databases 365

Object-Relational Databases 366
Summary 367 � Key Terms 368 � Review Questions 369 � Project
Questions 371 � Marcia�s Dry Cleaning 371 � Morgan Importing 372

Chapter 10: Managing Databases with SQL Server 2008 R2 373

Chapter Objectives 373
Installing SQL Server 2008 R2 374
The Microsoft SQL Server 2008 R2 Management Studio 376
Creating an SQL Server 2008 R2 Database 376
SQL Server 2008 R2 Utilities 378

SQL CMD and Microsoft PowerShell 379 � Microsoft SQL CLR 379 � SQL Server
2008 R2 GUI Displays 380 � SQL Server 2008 R2 SQL Statements and SQL Scripts 381

Creating and Populating the View Ridge Database Tables 383
Creating the View Ridge Database Table Structure 383 � Reviewing Database
Structures in the SQL Server GUI Display 387 � Indexes 391 � Populating the
VRG Tables with Data 393 � Creating Views 396

SQL Server Application Logic 404
Transact-SQL 405 � Transact-SQL Cursor Statements 406 � Stored
Procedures 408 � Triggers 416

Concurrency Control 431
Transaction Isolation Level 432 � Cursor Concurrency 432 � Locking Hints 432

SQL Server 2008 R2 Security 433
SQL Server Database Security Settings 436

SQL Server 2008 R2 Backup and Recovery 437
Backing Up a Database 438 � SQL Server Recovery Models 439 � Restoring
a Database 439 � Database Maintenance Plans 440

Topics Not Discussed in This Chapter 440
Summary 440 � Key Terms 441 � Review Questions 441 � Project
Questions 443 � Marcia�s Dry Cleaning 445 � Morgan Importing 445

ONLINE CHAPTER: SEE PAGE 447 FOR INSTRUCTIONS

Chapter 10A: Managing Databases with Oracle Database 11g 10A-1

Chapter Objectives 10A-1
Installing Oracle Database 11g 10A-2

Installing a Loopback Adapter 10A-3 � Oracle and Java 10A-4 � Oracle
Database 11g Documentation 10A-4 � The Oracle Universal Installer (OUI) 10A-5

Oracle Database 11g Administration and Development Tools 10A-7
The Oracle Database 11g Configuration Assistant 10A-7 � The Oracle Enterprise
Manager 11g Database Control 10A-8

Oracle Tablespaces 10A-10
Oracle Security 10A-13

User Privileges 10A-14 � Creating a User Account 10A-14 � Creating a Role 10A-17
Oracle Application Development Tools 10A-19

Oracle SQL*Plus 10A-19 � Oracle SQL Developer 10A-20 � Oracle
Schemas 10A-22

Oracle Database 11g SQL Statements and SQL Scripts 10A-22

x Contents

Creating and Populating the View Ridge Database Tables 10A-24
Creating the View Ridge Database Table Structure 10A-24 � Transaction COMMIT in
Oracle Database 10A-27 � Reviewing Database Structures in the SQL Developer GUI
Display 10A-28 � Indexes 10A-31 � Populating the VRG Tables 10A-32 �
Creating Views 10A-38

Application Logic 10A-44
Oracle PL/SQL 10A-45 � Stored Procedures 10A-47 � Triggers 10A-54

Concurrency Control 10A-68
Read-Committed Transaction Isolation Level 10A-69 � Serializable Transaction
Isolation Level 10A-69 � Read-Only Transaction Isolation 10A-70 �
Additional Locking Comments 10A-70

Oracle Backup and Recovery 10A-70
Oracle Recovery Facilities 10A-70 � Types of Failure 10A-71

Topics Not Discussed in This Chapter 10A-72
Summary 10A-72 � Key Terms 10A-73 � Review Questions 10A-73 � Project
Questions 10A-75 � Marcia�s Dry Cleaning 10A-76 � Morgan Importing 10A-76

ONLINE CHAPTER: SEE PAGE 448 FOR INSTRUCTIONS

Chapter 10B: Managing Databases with MySQL 5.5 10B-1

Chapter Objectives 10B-1
The MySQL 5.5 DBMS 10B-2
Installing and Updating MySQL 10B-3

Configuring MySQL 10B-4 � MySQL Storage Engines 10B-6
The MySQL GUI Utilities 10B-6

Creating a Workspace for the MySQL Workbench Files 10B-8
Creating and Using a MySQL Database 10B-8

Creating a Database in MySQL 10B-8 � Setting the Active Database in MySQL 10B-12
MySQL Utilities 10B-13

MySQL Command-Line Client 10B-13 � MySQL GUI Displays 10B-14 �
MySQL SQL Statements and SQL Scripts 10B-14

Creating and Populating the View Ridge Database Tables 10B-17
Creating the View Ridge Database Table Structure 10B-17 � Reviewing Database
Structures in the MySQL GUI Display 10B-20 � Indexes 10B-21 � Populating
the VRG Tables with Data 10B-26 � Transaction COMMIT in MySQL 10B-27 �
Creating Views 10B-27

MySQL Application Logic 10B-38
MySQL Procedural Statements 10B-38 � Stored Procedures 10B-41 �
Triggers 10B-47 � A Last Word on MySQL Stored Procedures and Triggers 10B-61

Concurrency Control 10B-61
MySQL 5.5 Security 10B-62

MySQL Database Security Settings 10B-64
MySQL 5.5 DBMS Backup and Recovery 10B-68

Backing Up a MySQL Database 10B-68 � Restoring a MySQL Database 10B-71
Topics Not Discussed in This Chapter 10B-72
Summary 10B-71 � Key Terms 10B-72 � Review Questions 10B-73 � Project
Questions 10B-74 � Marcia�s Dry Cleaning 10B-75 � Morgan Importing 10B-76

PART 5 � DATABASE ACCESS STANDARDS 449

Chapter 11: The Web Server Environment 449

Chapter Objectives 450
The Web Database Processing Environment 451
The ODBC Standard 453

ODBC Architecture 453 � Conformance Levels 454 � Creating an ODBC Data
Source Name 456

Contents xi

The Microsoft .NET Framework and ADO.NET 462
OLE DB 463 � ADO and ADO.NET 466 � The ADO.NET Object
Model 467

The JAVA Platform 471
JDBC 471 � JavaServer Pages (JSP) and Servlets 473 � Apache Tomcat 473

Web Database Processing with PHP 474
Web Database Processing with PHP and Eclipse 475 � Getting Started with
HTML Web Pages 477 � The index.html Web Page 478 � Creating the
index.html Web Page 478 � Using PHP 480 � Challenges for Web Database
Processing 487

Web Page Examples with PHP 487
Example 1: Updating a Table 489 � Example 2: Using PHP Data Objects (PDO) 493
� Example 3: Invoking a Stored Procedure 495

Summary 500 � Key Terms 501 � Review Questions 502 � Project
Questions 505 � Marcia�s Dry Cleaning 507 � Morgan Importing 508

Chapter 12: Database Processing with XML 509

Chapter Objectives 509
The Importance of XML 510
XML as a Markup Language 511

XML Document Type Declarations 511 � Materializing XML Documents with
XSLT 512

XML Schema 516
XML Schema Validation 517 � Elements and Attributes 517 � Flat Versus
Structured Schemas 519 � Global Elements 521

Creating XML Documents from Database Data 525
Using the SQL SELECT . . . FOR XML Statement 525 � Multitable SELECT with
FOR XML 530 � An XML Schema for All CUSTOMER Purchases 534 �
A Schema with Two Multivalued Paths 537

Why Is XML Important? 537
Additional XML Standards 543
The NoSQL Movement 545
Summary 545 � Key Terms 546 � Review Questions 547 � Project
Questions 548 � Marcia�s Dry Cleaning 548 � Morgan Importing 548

Chapter 13: Database Processing for Business Intelligence
Systems 549

Chapter Objectives 549
Business Intelligence Systems 549
The Relationship Between Operational and BI Systems 550
Reporting Systems and Data Mining Applications 550

Reporting Systems 550 � Data Mining Applications 550
Data Warehouses and Data Marts 551

Components of a Data Warehouse 551 � Data Warehouses Versus Data Marts 554
� Dimensional Databases 555

Reporting Systems 563
RFM Analysis 563 � Producing the RFM Report 564 � Reporting System
Components 567 � Report Types 568 � Report Media 568 � Report
Modes 569 � Report System Functions 569 � OLAP 572

Data Mining 577
Unsupervised Data Mining 578 � Supervised Data Mining 580 � Three
Popular Data Mining Techniques 580 � Market Basket Analysis 580 � Using
SQL for Market Basket Analysis 582

Summary 582 � Key Terms 583 � Review Questions 584 � Project
Questions 586 � Marcia�s Dry Cleaning 588 � Morgan Importing 589

xii Contents

APPENDICES

ONLINE APPENDICES: SEE PAGE 590 FOR INSTRUCTIONS

Appendix A: Getting Started with Microsoft Access 2010 A-1

Chapter Objectives A-3
What Is the Purpose of This Appendix? A-3
Why Should I Learn to Use Microsoft Access 2010? A-3
What Will This Appendix Teach Me? A-4
What Is a Table Key? A-5
What Are Relationships? A-5
Creating a Microsoft Access Database A-5
The Microsoft Office Fluent User Interface A-8

The Ribbon and Command Tabs A-8 � Contextual Command Tabs A-9 �
Modifying the Quick Access Toolbar A-9 � Database Objects and the Navigation
Pane A-9

Closing a Database and Exiting Microsoft Access A-10
Opening an Existing Microsoft Access Database A-11
Creating Microsoft Access Database Tables A-13
Inserting Data into Tables�The Datasheet View A-22

Modifying and Deleting Data in Tables in the Datasheet View A-25
Creating Relationships Between Tables A-26
Working with Microsoft Access Queries A-30
Microsoft Access Forms and Reports A-35
Closing a Database and Exiting Microsoft Access 2010 A-36
Key Terms A-37 � Review Questions A-38

Appendix B: Getting Started with Systems Analysis and Design B-1

Chapter Objectives B-3
What Is the Purpose of This Appendix? B-3
What Is Information? B-4
What Is an Information System? B-5
What Is a Competitive Strategy? B-5
How Does a Company Organize Itself Based on Its Competitive Strategy? B-5
What Is a Business Process? B-6
How Do Information Systems Support Business Processes? B-7
Do Information Systems Include Processes? B-7
Do We Have to Understand Business Processes in Order to Create Information Systems? B-8
What Is Systems Analysis and Design? B-8
What Are the Steps in the SDLC? B-9

The System Definition Step B-9 � The Requirements Analysis
Step B-10 � The Component Design Step B-11 � The Implementation
Step B-11 � The System Maintenance Step B-12

What SDLC Details Do We Need to Know? B-12
What Is Business Process Modeling Notation? B-13
What Is Project Scope? B-14
How Do I Gather Data and Information About System Requirements? B-14
How Do Use Cases Provide Data and Information About System Requirements? B-14
The Highline University Database B-15

The College Report B-17 � The Department Report B-19 � The
Department/Major Report B-21 � The Student Acceptance Letter B-22

What Are Business Rules? B-24
What Is a User Requirements Document (URD)? B-25
What Is a Statement of Work (SOW)? B-26
Key Terms B-27 � Review Questions B-28 � Project Questions B-29

Contents xiii

Appendix C: E-R Diagrams and the IDEF1X Standard C-1
Chapter Objectives C-3
What Is the Purpose of This Appendix? C-3
Why Should I Learn to Use IDEF1X? C-3
What Will This Appendix Teach Me? C-4
What Are IDEF1X Entities? C-4
What Are IDEF1X Relationships? C-5

Nonidentifying Connection Relationships C-5 � Identifying Connection
Relationships C-6 � Nonspecific Relationships C-7

What Are Categorization Relationships? C-7
What Are Domains? C-10

Domains Reduce Ambiguity C-10 � Domains Are Useful C-11 � Base
Domains and Typed Domains C-11

Key Terms C-12 � Review Questions C-13

Appendix D: E-R Diagrams and the UML Standard D-1

Chapter Objectives D-3
What Is the Purpose of This Appendix? D-3
Why Should I Learn to Use UML? D-3
What Will This Appendix Teach Me? D-3
How Does UML Represent Entities and Relationships? D-4
UML Entities and Relationships D-5

Representation of Weak Entities D-5 � Representation of Subtypes D-5
What OOP Constructs Are Introduced by UML? D-6
What Is the Role of UML in Database Processing Today? D-7
Key Terms D-8 � Review Questions D-8

Appendix E: Getting Started with the MySQL Workbench Database
Design Tools E-1

Chapter Objectives E-3
What Is the Purpose of This Appendix? E-3
Why Should I Learn to Use the MySQL Workbench for Database Design? E-4
What Will This Appendix Teach Me? E-4
What Won�t This Appendix Teach Me? E-4
How Do I Install the MySQL Workbench and the MySQL Connector/OBDC? E-4
How Do I Start the MySQL Workbench? E-5
How Do I Create a Workspace for the MySQL Workbench Files? E-6
How Do I Create Database Designs in the MySQL Workbench? E-6

How Do I Create a Database Model and E-R Diagram in the MySQL Workbench? E-7
Key Terms E-22 � Review Questions E-22 � Exercises E-22

Appendix F: Getting Started with Microsoft Visio 2010 F-1

Chapter Objectives F-3
What Is the Purpose of This Appendix? F-3
Why Should I Learn to Use Microsoft Visio 2010? F-3
What Will This Appendix Teach Me? F-4
What Won�t This Appendix Teach Me? F-4
How Do I Start the Microsoft Visio 2010? F-4
How Do I Create a Database Model Diagram in Microsoft Visio 2010? F-4
How Do I Name and Save a Database Model Diagram in Microsoft Visio 2010? F-9
How Do I Create Entities/Tables in a Database Model Diagram in Microsoft Visio 2010? F-11
How Do I Create Relationships Between Tables in a Database Model Diagram in Microsoft
Visio 2010? F-16
How Do I Create Diagrams Using Business Process Modeling Notation (BPMN) in Microsoft
Visio 2010? F-33
Key Terms F-35 � Review Questions F-35 � Exercises F-36

xiv Contents

Appendix H: Data Structures for Database Processing H-1
Chapter Objectives H-3
What Is the Purpose of This Appendix? H-3
What Will This Appendix Teach Me? H-3
What Is a Flat File? H-3

Processing Flat Files in Multiple Orders H-4 � A Note on Record Addressing H-5
� How Can Linked Lists Be Used to Maintain Logical Record Order? H-5 � How
Are Indexes Used to Maintain a Logical Record Order? H-8 � B-Trees H-9 �
Summary of Data Structures H-11

How Can We Represent Binary Relationships? H-12
A Review of Record Relationships H-12 � How Can We Represent Trees? H-14 �
How Can We Represent Simple Networks? H-17 � How Can We Represent Complex
Networks? H-19 � Summary of Relationship Representations H-20

How Can We Represent Secondary Keys? H-22
How Can We Represent Secondary Keys with Linked Lists? H-22 � How Can We
Represent Secondary Keys with Indexes? H-23

Key Terms H-26 � Review Questions H-27

Appendix G: The Semantic Object Model G-1
Chapter Objectives G-3
What Is the Purpose of This Appendix? G-3
Why Should I Learn to Use the Semantic Object Model? G-4
What Will This Appendix Teach Me? G-4
What Are Semantic Objects? G-4
What Semantic Objects Are Used in the Semantic Object Model? G-5

What Are Semantic Object Attributes? G-6 � What Are Object Identifiers? G-9 �
What Are Attribute Domains? G-10 � What Are Semantic Object Views? G-10

What Types of Objects Are Used in the Semantic Object Model? G-11
What Are Simple Objects? G-12 � What Are Composite Objects? G-13
� What Are Compound Objects? G-16 � How Do We Represent One-to-One
Compound Objects as Relational Structures? G-19 � How Do We Represent One-to-
Many and Many-to-One Relationships as Relational Structures? G-21 � How Do We
Represent Many-to-Many Relationships as Relational Structures? G-22 � What Are
Hybrid Objects? G-24 � How Do We Represent Hybrid Relationships in Relational
Structures? G-27 � What Are Association Objects? G-30 � What Are
Parent/Subtype Objects? G-34 � What Are Archetype/Version Objects? G-37

Comparing the Semantic Object and the E-R Models G-39
Key Terms G-42 � Review Questions G-43

Appendix I: Getting Started with Web Servers, PHP, and the Eclipse PDT I-1
Chapter Objectives I-3
What Is the Purpose of This Appendix? I-3
Which Operating Systems Are We Discussing? I-3
How Do I Install a Web Server? I-4
How Do I Set Up IIS in Windows 7? I-4
How Do I Manage IIS in Windows 7? I-7
How Is a Web Site Structured? I-11
How Do I View a Web Page from the IIS Web Server? I-12
How Is Web Site Security Managed? I-13
What Is the Eclipse PDT? I-19
How Do I Install the Eclipse PDT? I-22
What Is PHP? I-32
How Do I Install PHP? I-32
How Do I Create a Web Page Using the Eclipse PDT? I-39
How Do I Manage the PHP Configuration? I-50
Key Terms I-59 � Review Questions I-59 � Review Exercises I-60

Bibliography 591
Glossary 592
Index 604

xv

The 12th edition of Database Processing: Fundamentals, Design, and Implementation refines
the organization and content of this classic textbook to reflect a new teaching and profes-
sional workplace environment. Students and other readers of this book will benefit from new
content and features in this edition.

New to This Edition

Content and features new to the 12th edition of Database Processing: Fundamentals, Design,
and Implementation include:

� The use of Microsoft Access 2010 to demonstrate and reinforce basic principles of
database creation and use. This book has been revised to update all references to
Microsoft Access and other Microsoft Office products (e.g., Microsoft Excel) to the
recently released Microsoft Office 2010 versions.

� The updating of book to reflect the use of Microsoft SQL Server 2008 R2, the current
version of Microsoft SQL Server. Although most of the topics covered are backward
compatible with Microsoft SQL Server 2008 and Microsoft SQL Server 2008 Express
edition, all material in the book now uses SQL Server 2008 R2 in conjunction with
Office 2010, exclusively. In addition, although we cannot present screenshots, we have
tested the SQL Server SQL statements against a Microsoft Community Technology
Preview (CTP) version of the forthcoming SQL Server 2011 (code name Denali), so
our text material should be compatible when that version is released in the near
future.

� The updating of the book to use Oracle MySQL 5.5, which is the current generally
available (GA) release of MySQL. Further, we also now use the MySQL Workbench
GUI as the main database development tool for MySQL 5.5. The MySQL GUI Tools
utilities used in Database Processing: Fundamentals, Design, and Implementation,
11th edition, were declared �end of life� by MySQL on December 18, 2009. The MySQL
Workbench 5.2.x now integrates the functionality of the MySQL GUI Tools bundle
and is, with a few exceptions, used throughout Database Processing: Fundamentals,
Design, and Implementation, 12th edition.

� The use of the Microsoft Windows Server 2008 R2 as the server operating system
and Windows 7 as the workstation operating system discussed and illustrated
in text. These are the current Microsoft server and workstation operating
systems.

� More material in Chapter 3 on normalization is presented in the traditional step-by-step
approach (1NF � 2NF � 3NF � BCNF) in response to comments and requests from
professors and instructors who prefer to teach normalization using that approach.

� Additional SQL topics in Chapter 7 including the SQL TRUCATE TABLE statement,
the SQL MERGE statement, and a discussion of SQL Persistent Stored Modules
(SQL/PSM) as the context for SQL triggers and stored procedures.

� Datasets for example databases such as Marcia�s Dry Cleaning and Morgan Importing
have been clearly defined in all chapters for consistency in student responses to

P reface

xvi Preface

Review Questions, Review Projects, and the Marcia�s Dry Cleaning and Morgan
Importing projects.

� The addition of online Appendix B, �Getting Started with Systems Analysis and
Design.� This new material provides an introduction to systems analysis and design
concepts for students or readers who have not had a course on this material. It
presents basic methods used to gather the input material needed for data modeling,
which is discussed in Chapter 5. This material can also be used as a review for
students or readers who are familiar with systems analysis and design concepts and
helps put data modeling, database design and database implementation in the
context of systems development life cycle (SDLC).

� The addition of online Appendix F, �Getting Started with Microsoft Visio 2010.� This
new material provides an introduction to the use of Microsoft Visio 2010 for data
modeling, which is discussed in Chapter 5, and database design, which is discussed
in Chapter 5.

� The addition of online Appendix E, �Getting Started with MySQL Workbench
Database Design Tools.� Although the use of MySQL 5.5 as a DBMS is covered in
Chapter 10B and referenced throughout the text, this new appendix provides the
introduction needed to use the MySQL Workbench data modeling tools for database
design, which is discussed in Chapter 6.

� The addition of online Appendix I, �Getting Started with Web Servers, PHP, and the
Eclipse PDT.� This new material provides a detailed introduction to the installation
and use of the Microsoft IIS Web server, PHP and the Eclipse IDE used for Web
database application development as discussed in Chapter 11.

� Although Oracle Database 11g remains the version of Oracle Database discussed in
the book, the current release is Oracle Database 11g Release 2, and all Oracle
Database 11g material has been updated to reflect use of Release 2 and the current
version of the Oracle SQL Developer GUI tool.

Fundamentals, Design, and Implementation

With today�s technology, it is impossible to utilize a DBMS successfully without first learning
fundamental concepts. After years of developing databases with business users, we have
developed what we believe to be a set of essential database concepts. These are augmented
by the concepts necessitated by the increasing use of the Internet, the World Wide Web,
and commonly available analysis tools. Thus, the organization and topic selection of the
12th edition is designed to:

� Present an early introduction to SQL queries.
� Use a �spiral approach� (as discussed below) to database design.
� Use a consistent, generic Information Engineering (IE) Crow�s Foot E-R diagram

notation for data modeling and database design.
� Provide a detailed discussion of specific normal forms within a discussion of

normalization that focuses on pragmatic normalization techniques.
� Use current DBMS technology: Microsoft Access 2010, Microsoft SQL Server 2008 R2,

Oracle Database 11g Release 2, and MySQL 5.5.
� Create Web database applications based on widely used Web development

technology.
� Provide an introduction to business intelligence (BI) systems.
� Discuss the dimensional database concepts used in database designs for data

warehouses and OnLine Analytical Processing (OLAP).

These changes have been made because it has become obvious that the basic structure of
the earlier editions (up to and including the 9th edition�the 10th edition introduced many of
the changes we used in the 11th edition and retain in the 12th edition) was designed for a

Preface xvii

The presentation and discussion of SQL is spread over three chapters so
that students can learn about this important topic in small bites. SQL

SELECT statements are taught in Chapter 2. SQL DDL and SQL DML statements are
presented in Chapter 7. Correlated subqueries and EXISTS/NOT EXISTS statements
are described in Chapter 8. Each topic appears in the context of accomplishing
practical tasks. Correlated subqueries, for example, are used to verify functional
dependency assumptions, a necessary task for database redesign.

This box illustrates another feature used in this book: BTW boxes are used to
separate comments from the text discussion. Sometimes they present ancillary material;
other times they reinforce important concepts.

teaching environment that no longer existed. The structural changes to the book were made
for several reasons:

� Unlike the early years of database processing, today�s students have ready access to
data modeling and DBMS products.

� Today�s students are too impatient to start a class with lengthy conceptual discus-
sions on data modeling and database design. They want to do something, see a
result, and obtain feedback.

� In the current economy, students need to reassure themselves that they are learning
marketable skills.

Early Introduction of SQL DML

Given these changes in the classroom environment, this book provides an early introduction to
SQL data manipulation language (DML) SELECT statements. The discussion of SQL data
definition language (DDL) and additional DML statements occurs in Chapters 7 and 8. By
presenting SQL SELECT statements in Chapter 2, students learn early in the class how to
query data and obtain results, seeing firsthand some of the ways that database technology will
be useful to them.

The text assumes that students will work through the SQL statements and examples with
a DBMS product. This is practical today, because nearly every student has access to Microsoft
Access. Therefore, Chapters 1 and 2 and Appendix A, �Getting Started with Microsoft Access
2010,� are written to support an early introduction of Microsoft Access 2010 and the use of
Microsoft Access 2010 for SQL queries (Microsoft Access 2010 QBE query techniques are also
covered).

If a non�Microsoft Access-based approach is desired, versions of SQL Server 2008 R2,
Oracle Database 11g, and MySQL 5.5 are readily available for use. Free versions of the three
major DBMS products covered in this book (SQL Server 2008 R2 Express, Oracle Express 10g,
and MySQL 5.5 Community Edition) are available for download. Further, the text can be pur-
chased with a licensed educational version of Oracle Database 11g Release 1 Personal Edition
(this is a developer license) as well. Alternatively, a trial copy of MySQL 5.5 Enterprise Edition
also is available as a download. Thus, students can actively use a DBMS product by the end of
the first week of class.

A Spiral Approach to Database Design

Today, databases arise from three sources: (1) from the integration of existing data from
spreadsheets, data files, and database extracts; (2) from the development of new information
systems projects; and (3) from the need to redesign an existing database to adapt to changing
requirements. We believe that the fact that these three sources exist present instructors with a
significant pedagogical opportunity. Rather than teach database design just once from data

xviii Preface

The choice of a data modeling tool is somewhat problematic. The two
most readily available tools, Microsoft Visio and Sun Microsystems

MySQL Workbench, are database design tools, not data modeling tools. Neither can
produce an N:M relationship as such (as a data model requires), but have to immediately
break it into two 1:N relationships (as database design does). Therefore, the intersection
table must be constructed and modeled. This confounds data modeling with database
design in just the way that we are attempting to teach students to avoid.

To be fair to Visio, it is true that data models with N:M relationships can be drawn
using either the standard Visio drawing tools or the Entity Relationship shapes dynamic

models, why not teach database design three times, once for each of these sources? In practice,
this idea has turned out to be even more successful than expected.

Design Iteration 1: Databases from Existing Data
Considering the design of databases from existing data, if someone were to e-mail us a set of
tables and say, �Create a database from them,� how would we proceed? We would examine the
tables in light of normalization criteria and then determine whether the new database was for
query only or whether it was for query and update. Depending on the answer, we would denor-
malize the data, joining them together, or we would normalize the data, pulling them apart. All
of which is important for students to know and understand.

Therefore, the first iteration of database design gives instructors a rich opportunity to
teach normalization, not as a set of theoretical concepts, but rather as a useful toolkit for mak-
ing design decisions for databases created from existing data. Additionally, the construction of
databases from existing data is an increasingly common task that is often assigned to junior
staff members. Learning how to apply normalization to the design of databases from existing
data not only provides an interesting way of teaching normalization, it is also common and
useful!

We prefer to teach and use a pragmatic approach to normalization, and present this
approach in Chapter 3. However, we are aware that many instructors like to teach normal-
ization in the context of a step-by-step normal form presentation (1NF, 2NF, 3NF, then
BCNF), and Chapter 3 now includes additional material to provide more support this
approach as well.

In today�s workplace, large organizations are increasingly licensing standardized software
from vendors such as SAP, Oracle, and Siebel. Such software already has a database design. But
with every organization running the same software, many are learning that they can only gain
a competitive advantage if they make better use of the data in those predesigned databases.
Hence, students who know how to extract data and create read-only databases for reporting
and data mining have obtained marketable skills in the world of ERP and other packaged
software solutions.

Design Iteration 2: Data Modeling and Database Design
The second source of databases is from new systems development. Although not as common
as in the past, many databases are still created from scratch. Thus, students still need to learn
data modeling, and they still need to learn how to transform data models into database
designs.

The IE Crow�s Foot Model as a Design Standard
This edition uses a generic, standard IE Crow�s Foot notation. Your students should have no
trouble understanding the symbols and using the data modeling or database design tool of
your choice.

IDEF1X (which was used as the preferred E-R diagram notation in the 9th edition of this
text) is explained in Appendix C, �The IDEF1X Standard,� in case your students graduate into
an environment where it is used, or if you prefer to use it in your classes. UML is explained in
Appendix D, �UML-Style Entity-Relationship Diagrams,� in case you prefer to use UML in your
classes.

Preface xix

connector. For a full discussion of these tools, see Appendix E, �Getting Started with
the MySQL Workbench Database Design Tools,� and Appendix F, �Getting Started with
Microsoft Visio 2010.�

Good data modeling tools are available, but they tend to be more complex and
expensive. Two examples are Visible Systems� Visible Analyst and Computer Associates�
ERwin Data Modeler. Visible Analyst is available in a student edition (at a modest price).
A 1-year time-limited CA ERwin Data Modeler Community Edition suitable for class use
can be downloaded from http://erwin.com/products/detail/ca_erwin_data_modeler_
community_edition/. This version has limited the number of objects that can be created by
this edition to 25 entities per model, and disabled some other features (see http://
erwin.com/uploads/erwin-data-modeler-r8-community-edition-matrix.pdf), but there is
still enough functionality to make this product a possible choice for class use.

Database Design from E-R Data Models
As we discuss in Chapter 6, designing a database from data models consists of three tasks:
representing entities and attributes with tables and columns; representing maximum
cardinality by creating and placing foreign keys; and representing minimum cardinality via
constraints, triggers, and application logic.

The first two tasks are straightforward. However, designs for minimum cardinality are
more difficult. Required parents are easily enforced using NOT NULL foreign keys and refer-
ential integrity constraints. Required children are more problematic. In this book, however,
we simplify the discussion of this topic by limiting the use of referential integrity actions
and by supplementing those actions with design documentation. See the discussion around
Figure 6-28.

Although the design for required children is complicated, it is important for students to
learn. It also provides a reason for students to learn about triggers as well. In any case, the dis-
cussion of these topics is much simpler than it was in prior editions because of the use of the
IE Crow�s Foot model and the use of ancillary design documentation.

David Kroenke is the creator of the semantic object model (SOM). The
SOM is presented in Appendix G, �The Semantic Object Model.� The E-R

data model is used everywhere else in the text.

Design Iteration 3: Database Redesign
Database redesign, the third iteration of database design, is both common and difficult. As
stated in Chapter 8, information systems cause organizational change. New information
systems give users new behaviors, and as users behave in new ways, they require changes in
their information systems.

Database redesign is by nature complex. Depending on your students, you may wish to skip
it, and you can do so without loss of continuity. Database redesign is presented after the dis-
cussion of SQL DDL and DML in Chapter 7, because it requires the use of advanced SQL. It also
provides a practical reason to teach correlated subqueries and EXISTS/NOT EXISTS statements.

Active Use of a DBMS Product

We assume that the students will actively use a DBMS product. The only real question
becomes �which one?� Realistically, most of us have four alternatives to consider: Microsoft
Access, Microsoft SQL Server, Oracle Database, or MySQL. You can use any of those products
with this text, and tutorials for each of them are presented for Microsoft Access 2010
(Appendix A), SQL Server 2008 R2 (Chapter 10), Oracle Database 11g (Chapter 10A), and

xx Preface

MySQL 5.5 (Chapter 10B). Given the limitations of class time, it is probably necessary to pick
and use just one of these products. You can often devote a portion of a lecture to discussing
the characteristics of each, but it is usually best to limit student work to one of them. The pos-
sible exception to this is starting the course with Microsoft Access, and then switching to a
more robust DBMS product later in the course.

Using Microsoft Access 2010
The primary advantage of Microsoft Access is accessibility. Most students already have a copy, and,
if not, copies are easily obtained. Many students will have used Microsoft Access in their introduc-
tory or other classes. Appendix A, �Getting Started with Microsoft Access 2010,� is a tutorial on
Microsoft Access 2010 for students who have not used it but who wish to use it with this book.

However, Microsoft Access has several disadvantages. First, as explained in Chapter 1,
Microsoft Access is a combination application generator and DBMS. Microsoft Access con-
fuses students because it confounds database processing with application development. Also,
Microsoft Access 2010 hides SQL behind its query processor and makes SQL appear as an
afterthought rather than a foundation. Furthermore, as discussed in Chapter 2, Microsoft
Access 2010 does not correctly process some of the basic SQL-92 standard statements in its
default setup. Finally, Microsoft Access 2010 does not support triggers. You can simulate trig-
gers by trapping Windows events, but that technique is nonstandard and does not effectively
communicate the nature of trigger processing.

Using SQL Server, Oracle Database, or MySQL
Choosing which of these products to use depends on your local situation. Oracle Database 11g,
a superb enterprise-class DBMS product, is difficult to install and administer. However, if you
have local staff to support your students, it can be an excellent choice. As shown in Chapter 10A,
Oracle�s SQL Developer GUI tool (or SQL*Plus if you are dedicated to this beloved command-
line tool) is a handy tool for learning SQL, triggers, and stored procedures. In our experience,
students require considerable support to install Oracle on their own computers, and you may
be better off to use Oracle from a central server.

SQL Server 2008 R2, although probably not as robust as Oracle Database 11g, is easy to
install on Windows machines, and it provides the capabilities of an enterprise-class DBMS
product. The standard database administrator tool is the Microsoft SQL Server Management
Studio GUI tool. As shown in Chapter 10, SQL Server 2008 R2 can be used to learn SQL,
triggers, and stored procedures.

MySQL 5.5, discussed in Chapter 10B, is an open-source DBMS product that is receiving
increased attention and market share. The capabilities of MySQL are continually being upgraded,
and MySQL 5.5 supports stored procedures and triggers. MySQL also has an excellent GUI tool
(the MySQL Workbench) and an excellent command-line tool (the MySQL Command Line
Client). It is the easiest of the three products for students to install on their own computers. It
also works with the Linux operating system, and is popular as part of the AMP
(Apache�MySQL�PHP) package (known as WAMP on Windows and LAMP on Linux).

If the DBMS you use is not driven by local circumstances and you do have
a choice, we recommend using SQL Server 2008 R2. It has all of the

features of an enterprise-class DBMS product, and it is easy to install and use. Another
option is to start with Microsoft Access 2010 if it is available, and switch to SQL Server
2008 R2 at Chapter 7. Chapters 1 and 2 and Appendix A are written specifically to
support this approach. A variant is to use Microsoft Access 2010 as the development
tool for forms and reports running against an SQL Server 2008 R2 database.

If you prefer a different DBMS product, you can still start with Microsoft Access
2010 and switch later in the course. You can order the text with a shrink-wrapped
version of Oracle Database 11g Release 1, while a trial version of SQL Server 2008 R2
can be downloaded from Microsoft, and MySQL 5.5 is so easy to download (and
updated often enough) that it makes no sense to package a copy with the book.

Preface xxi

Focus on Database Application Processing

In this edition, we clearly draw the line between application development per se and database
application processing. Specifically, we have:

� Focused on specific database-dependent applications:
� Web-based, database-driven applications
� XML-based data processing
� Business intelligence (BI) systems applications

� Emphasized the use of commonly available, multiple�OS-compatible application
development languages.

� Limited the use of specialized vendor-specific tools and programming languages as
much as possible.

There is simply not enough room in this book to provide even a basic introduction to, for
example, Visual Basic .NET and Java. Therefore, rather than attempting to introduce these
languages, we leave them for other classes where they can be covered at an appropriate depth.
Instead, we focus on basic tools that are relatively straightforward to learn and immediately
applicable to database-driven applications. We use PHP as our Web development language,
and we use the readily available Eclipse integrate development environment (IDE) as our
development tool. The result is a very focused final section of the book, where we deal
specifically with the interface between databases and the applications that use them.

Although we try to use widely available software as much as possible,
there are, of course, exceptions where we must use vendor-specific tools.

For BI applications, for example, we draw on Microsoft Excel�s PivotTable capabilities,
the Microsoft PowerPivot for Microsoft Excel 2010 add-in, and on the Microsoft SQL
Server 2008 Data Mining Add-ins for Microsoft Office 2007 (which also work in
Microsoft Office 2010). However, either alternatives to these tools are available
(OpenOffice.org DataPilot capabilities, the Palo OLAP Server) or the tools are generally
available for download.

Chapter 13 in this edition maintains the extended coverage of business intelligence (BI)
systems introduced in the previous edition. The chapter features a discussion of dimensional
databases, which are the underlying structure for data warehouses, data marts, and OLAP
servers. The chapter then covers data management for data warehouses and data marts, and
also describes reporting and data mining applications, including OLAP.

Chapter 13 includes coverage of two applications that should be particularly interesting to
students. The first is RFM analysis, a reporting application frequently used by mail order and
e-commerce companies. The complete RFM analysis is accomplished in Chapter 13 through
the use of standard SQL statements. Additionally, this chapter includes a market basket
analysis that is also performed using SQL correlated subqueries. This chapter can be assigned
at any point after Chapter 8 and could be used as a motivator to illustrate the practical
applications of SQL midcourse.

Overview of the Chapters in the 12th Edition

Chapter 1 sets the stage by introducing database processing, describing basic components of
database systems, and summarizing the history of database processing. If the students are
using Microsoft Access 2010 for the first time (or need a good review), they will also need to
study Appendix A, �Getting Started with Microsoft Access 2010,� at this point. Chapter 2

xxii Preface

We have maintained our extended coverage of Microsoft Access, SQL
Server, Oracle Database, and MySQL (introduced in Database

Processing: Fundamentals, Design, and Implementation, 11th edition) in this book. In
order to keep the bound book to a reasonable length, and to keep the cost of the book
down, we have chosen to provide some materials by download from our Web site at
www.pearsonhighered.com/kroenke. There you will find:

� Chapter 10A�Managing Databases with Oracle Database 11g

� Chapter 10B�Managing Databases with MySQL 5.5

� Appendix A�Getting Started with Microsoft Access 2010

� Appendix B�Getting Started with Systems Analysis and Design

� Appendix C�The IDEF1X Standard

� Appendix D�UML-Style Entity-Relationship Diagrams

� Appendix E�Getting Started with the MySQL Workbench Database Design Tools

� Appendix F�Getting Started with Microsoft Visio 2010

� Appendix G�The Semantic Object Model

� Appendix H�Data Structures for Database Processing

� Appendix I�Getting Started with Web Servers, PHP, and the Eclipse PDT

presents SQL SELECT statements. It also includes sections on how to submit SQL statements
to Microsoft Access 2010, SQL Server 2008 R2, Oracle Database 11g, and MySQL 5.5.

The next four chapters, Chapters 3 through 6, present the first two iterations of database
design. Chapter 3 presents the principles of normalization to Boyce-Codd normal form
(BNCF). It describes the problems of multivalued dependencies and explains how to eliminate
them. This foundation in normalization is applied in Chapter 4 to the design of databases from
existing data.

Chapters 5 and 6 describe the design of new databases. Chapter 5 presents the E-R data
model. Traditional E-R symbols are explained, but the majority of the chapter uses IE Crow�s
Foot notation. Chapter 5 provides a taxonomy of entity types, including strong, ID-dependent,
weak but not ID-dependent, supertype/subtype, and recursive. The chapter concludes with a
simple modeling example for a university database.

Chapter 6 describes the transformation of data models into database designs by convert-
ing entities and attributes to tables and columns, by representing maximum cardinality by cre-
ating and placing foreign keys, and by representing minimum cardinality via carefully
designed DBMS constraints, triggers, and application code. The primary section of this chap-
ter parallels the entity taxonomy in Chapter 5.

Chapter 7 presents SQL DDL, DML, and SQL/Persistent Stored Modules (SQL/PSM). SQL
DDL is used to implement the database design of an example database introduced in Chapter 6.
INSERT, UPDATE, MERGE, and DELETE statements are discussed, as are SQL views. Addition-
ally, the principles of embedding SQL in program code are presented, SQL/PSM is discussed,
and triggers and stored procedures are explained.

Database redesign, the third iteration of database design, is described in Chapter 8. This
chapter presents SQL correlated subqueries and EXISTS/NOT EXISTS statements and uses
those statements in the redesign process. Reverse engineering is described, and basic redesign
patterns are illustrated and discussed.

Chapters 9, 10, 10A, and 10B consider the management of multiuser organizational data-
bases. Chapter 9 describes database administration tasks, including concurrency, security, and
backup and recovery. Chapters 10, 10A, and 10B then describe SQL Server 2008 R2, Oracle
Database 11g, and MySQL 5.5, respectively. These chapters show how to use these products to
create database structures and process SQL statements. They also explain concurrency, secu-
rity, and backup and recovery with each product. The discussion in Chapters 10, 10A, and 10B
parallels the order of discussion in Chapter 9 as much as possible, although rearrangements of
some topics are made, as needed, to support the discussion of a specific DBMS product.

Preface xxiii

Chapters 11, 12, and 13 address standards for accessing databases. Chapter 11 presents
ODBC, OLE DB, ADO.NET, ASP.NET, JDBC, and JavaServer Pages (JSP). It then introduces PHP
(and the Eclipse IDE) and illustrates the use of PHP for the publication of databases via Web
pages. Chapter 12 describes the integration of XML and database technology. The chapter
begins with a primer on XML and then shows how to use the FOR XML SQL statement in
SQL Server.

Chapter 13 concludes the text with a discussion of BI systems, dimensional data models,
data warehouses, and data marts. It illustrates the use of SQL for RFM reporting analysis and
for market basket analysis.

Supplements

This text is accompanied by a wide variety of supplements. Please visit the text�s Web site at
www.pearsonhighered.com/kroenke to access the instructor and student supplements
described below. Please contact your Pearson sales representative for more details. All supple-
ments were written by David Auer.

For Students

� Many of the sample databases used in this text are available online in Microsoft
Access, Oracle Database 11g, SQL Server 2008 R2, and MySQL 5.5 format.

For Instructors

� The Instructor�s Resource Manual provides sample course syllabi, teaching
suggestions, and answers to end-of-chapter review, project, and case questions.

� The Test Item File and TestGen include an extensive set of test questions in
multiple-choice, true/false, fill-in-the-blank, short-answer, and essay format. The
difficulty level and where the topic is covered in the text are noted for each question.
The Test Item File is available in Microsoft Word and in TestGen. The TestGen
software is PC/MAC compatible and preloaded with all of the Test Item File
questions. You can manually or randomly view test questions and drag and drop to
create a test. You can add or modify test-bank questions as needed. Our TestGens are
converted for use in BlackBoard and WebCT. These conversions can be found on the
Instructor�s Resource Center. Conversions to D2L or Angel can be requested through
your local Pearson Sales Representative.

� PowerPoint Presentation Slides feature lecture notes that highlight key terms and
concepts. Instructors can customize the presentation by adding their own slides or
editing the existing ones.

� The Image Library is a collection of the text art organized by chapter. This includes
all figures, tables, and screenshots (as permission allows) to enhance class lectures
and PowerPoint presentations.

Acknowledgments

We are grateful for the support of many people in the development of this 12th edition and
previous editions. Thanks to Rick Mathieu at James Madison University for interesting and
insightful discussions on the database course. Professor Doug MacLachlan from the Market-
ing Department at the University of Washington was most helpful in understanding the
goals, objectives, and technology of data mining, particularly as it pertains to marketing. Don
Nilson of the Microsoft Corporation helped us understand the importance of XML to data-
base processing.

xxiv Preface

In addition, we wish to thank the reviewers of this edition:

Ann Aksut, Central Piedmont Community College
Allen Badgett, Oklahoma City University
Rich Beck, Washington University
Jeffrey J. Blessing, Milwaukee School of Engineering
Alan Brandyberry, Kent State University
Jason Deane, Virginia Polytechnic Institute and State University
Barry Flaschbart, Missouri University of Science and Technology
Andy Green, Kennesaw State University
Dianne Hall, Auburn University
Jeff Hassett, University of Utah
Barbara Hewitt, Texas A&M, Kingsville
William Hochstettler, Franklin University
Margaret Hvatum, St. Louis Community College
Nitin Kale, University of Southern California, Los Angeles
Darrel Karbginsky, Chemeketa Community College
Johnny Li, South University
Mike Morris, Southeastern Oklahoma State University
Jane Perschbach, Texas A&M University�Central Texas
Catherine Ricardo, Iona College
Kevin Roberts, DeVry University
Ioulia Rytikova, George Mason University
Christelle Scharff, Pace University
Julian M. Scher, New Jersey Institute of Technology
K. David Smith, Cameron University
Marcia Williams, Bellevue Community College

Finally, we would like to thank Bob Horan, our editor, Kelly Loftus and Ashlee Bradbury,
our assistant editors during this project, Jacqueline Martin, our production editor, and Jennifer
Welsch, our project manager, for their professionalism, insight, support, and assistance in the
development of this project. We would also like to thank Russ Fish for his detailed comments
on the final manuscript. Finally, David Kroenke would like to thank his wife, Lynda, and David
Auer would like to thank his wife, Donna, for their love, encouragement, and patience while
this project was being completed.

David Kroenke
Seattle, Washington

David Auer
Bellingham, Washington

xxv

David M. Kroenke

Work Experience

David M. Kroenke has more than 40 years� experience in the computer industry. He began as a
computer programmer for the U.S. Air Force, working both in Los Angeles and at the Pentagon,
where he developed one of the world�s first DBMS products while part of a team that created a
computer simulation of World War III. That simulation served a key role for strategic weapons
studies during a 10-year period of the Cold War.

From 1973 to 1978, Kroenke taught in the College of Business at Colorado State
University. In 1977, he published the first edition of Database Processing, a significant and
successful textbook that, over 30 years later, you now are reading in its 12th edition. In 1978,
he left Colorado State and joined Boeing Computer Services, where he managed the team
that designed database management components of the IPAD project. After that, he joined
with Steve Mitchell to form Mitchell Publishing and worked as an editor and author, devel-
oping texts, videos, and other educational products and seminars. Mitchell Publishing was
acquired by Random House in 1986. During these years he also worked as an independent
consultant, primarily as a database disaster repairman helping companies recover from
failed database projects.

In 1982, Kroenke was one of the founding directors of the Microrim Corporation. From
1984 to 1987, he served as the Vice President of Product Marketing and Development and
managed the team that created and marketed the DBMS product R:base 5000 as well as other
related products.

For the next 5 years, Kroenke worked independently while he developed a new data mod-
eling language called the semantic object model. He licensed this technology to the Wall Data
Corporation in 1992 and then served as the Chief Technologist for Wall Data�s SALSA line of
products. He was awarded three software patents on this technology.

Since 1998, Kroenke has continued consulting and writing. His current interests concern
the practical applications of data mining techniques on large organizational databases. An
avid sailor, he wrote Know Your Boat: The Guide to Everything That Makes Your Boat Work,
which was published by McGraw-Hill in 2002.

Consulting

Kroenke has consulted with numerous organizations during his career. In 1978, he worked for
Fred Brooks, consulting with IBM on a project that became the DBMS product DB2. In 1989,
he consulted for the Microsoft Corporation on a project that became Microsoft Access. In the
1990s, he worked with Computer Sciences Corporation and with General Research Corpora-
tion for the development of technology and products that were used to model all of the U.S.
Army�s logistical data as part of the CALS project. Additionally, he has consulted for Boeing
Computer Services, the U.S. Air Force Academy, Logicon Corporation, and other smaller
organizations.

A bout the Authors

xxvi About the Authors

Publications

� Database Processing, Pearson Prentice Hall, 12 editions, 1977�present (coauthor with
David Auer, 11th and 12th editions)

� Database Concepts, Pearson Prentice Hall, five editions, 2004�present (coauthor with
David Auer, 3rd, 4th, and 5th editions)

� Using MIS, Pearson Prentice Hall, four editions, 2006�present
� Experiencing MIS, Pearson Prentice Hall, three editions, 2007�present
� MIS Essentials, Pearson Prentice Hall, two editions, 2009�present
� SharePoint for Students, Pearson Prentice Hall, 2012 (coauthor with Carey Cole and

Steve Fox)
� Know Your Boat: The Guide to Everything That Makes Your Boat Work,

McGraw-Hill, 2002
� Management Information Systems, Mitchell Publishing/Random House, three

editions, 1987�1992
� Business Computer Systems, Mitchell Publishing/Random House, five editions,

1981�1990
� Managing Information for Microcomputers, Microrim Corporation, 1984 (coauthor

with Donald Nilson)
� Database Processing for Microcomputers, Science Research Associates, 1985

(coauthor with Donald Nilson)
� Database: A Professional�s Primer, Science Research Associates, 1978

Teaching

Kroenke taught in the College of Business at Colorado State University from 1973 to 1978. He
also has taught part-time in the Software Engineering program at Seattle University. From
1990 to 1991, he served as the Hanson Professor of Management Science at the University of
Washington. Most recently, he taught at the University of Washington from 2002 to 2008.
During his career, he has been a frequent speaker at conferences and seminars for computer
educators. In 1991, the International Association of Information Systems named him Computer
Educator of the Year.

Education

B.S., Economics, U.S. Air Force Academy, 1968
M.S., Quantitative Business Analysis, University of Southern California, 1971
Ph.D., Engineering, Colorado State University, 1977

Personal

Kroenke is married, lives in Seattle, and has two grown children and three grandchildren. He
enjoys skiing, sailing, and building small boats. His wife tells him he enjoys gardening as well.

David J. Auer

Work Experience

David J. Auer has more than 30 years� experience teaching college-level business and infor-
mation systems courses and for the last 17 years has worked professionally in the field of
information technology. He served as a commissioned officer in the U.S. Air Force, with
assignments to NORAD and the Alaskan Air Command in air defense operations. He later
taught both business administration and music classes at Whatcom Community College
and business courses for the Chapman College Residence Education Center at Whidbey
Island Naval Air Station. He was a founder of the Puget Sound Guitar Workshop (now in its
37th year of operations). He worked as a psychotherapist and organizational development

About the Authors xxvii

consultant for the Whatcom Counseling and Psychiatric Clinic�s Employee Assistance
Program, and provided training for the Washington State Department of Social and Health
Services. He has taught for Western Washington University �s College of Business and
Economics since 1981 and has been the college�s Director of Information Systems and
Technology Services since 1994.

Publications

� Database Processing, Pearson Prentice Hall, two editions, 2009�present (coauthor
with David Kroenke)

� Database Concepts, Pearson Prentice Hall, three editions, 2007�present (coauthor
with David Kroenke)

� Network Administrator: NetWare 4.1, Course Technology, 1997 (coauthor with Ted
Simpson and Mark Ciampa)

� New Perspectives on Corel Quattro Pro 7.0 for Windows 95, Course Technology, 1997
(coauthor with June Jamrich Parsons, Dan Oja, and John Leschke)

� New Perspectives on Microsoft Excel 7 for Windows 95�Comprehensive, Course
Technology, 1996 (coauthor with June Jamrich Parsons and Dan Oja)

� New Perspectives on Microsoft Office Professional for Windows 95�Intermediate,
Course Technology, 1996 (coauthor with June Jamrich Parsons, Dan Oja, Beverly
Zimmerman, Scott Zimmerman, and Joseph Adamski)

� The Student�s Companion for Use with Practical Business Statistics, Irwin, two editions
1991 and 1993

� Microsoft Excel 5 for Windows�New Perspectives Comprehensive, Course Technology,
1995 (coauthor with June Jamrich Parsons and Dan Oja)

� Introductory Quattro Pro 6.0 for Windows, Course Technology, 1995 (coauthor with
June Jamrich Parsons and Dan Oja)

� Introductory Quattro Pro 5.0 for Windows, Course Technology, 1994 (coauthor with
June Jamrich Parsons and Dan Oja)

Teaching

Auer has taught in the College of Business and Economics at Western Washington University
from 1981 to the present. From 1975 to 1981, he taught part time for community colleges, and
from 1981 to 1984 he taught part time for the Chapman College Residence Education Center
System. During his career, he has taught a wide range of courses in Quantitative Methods,
Production and Operations Management, Statistics, Finance, and Management Information
Systems. In MIS, he has taught Principles of Management Information Systems, Business
Database Development, Computer Hardware and Operating Systems, and Telecommuni-
cations and Network Administration.

Education

B.A., English Literature, University of Washington, 1969
B.S., Mathematics and Economics, Western Washington University, 1978
M.A., Economics, Western Washington University, 1980
M.S., Counseling Psychology, Western Washington University, 1991

Personal

Auer is married, lives in Bellingham, Washington, and has two grown children and five
grandchildren. He is active in his community, where he has been president of his neighbor-
hood association and served on the City of Bellingham Planning and Development
Commission. He enjoys music, playing acoustic and electric guitar, five-string banjo, and a
bit of mandolin.

The two chapters in Part 1 provide an introduction to database pro-
cessing. In Chapter 1, we consider the characteristics of databases and
describe important database applications. Chapter 1 also describes
the various database components and provides a survey of the knowl-
edge you need to learn from this text. The chapter also summarizes the
history of database processing.

You will start working with a database in Chapter 2 and use that
database to learn how to use Structured Query Language (SQL), a
database-processing language, to query database data. You will learn
how to query both single and multiple tables, and you will use SQL to
investigate a practical example�looking for patterns in stock market
data. Together, these two chapters will give you a sense of what data-
bases are and how they are processed.

G etting Started

1

1

This chapter introduces database processing. We will first consider the
nature and characteristics of databases and then survey a number of
important and interesting database applications. Next, we will describe the
components of a database system and then, in general terms, describe how
databases are designed. After that, we will survey the knowledge that you
need to work with databases as an application developer or as a database

� To understand the nature and characteristics of
databases

� To survey some important and interesting database
applications

� To gain a general understanding of tables and
relationships

� To describe the components of a Microsoft Access
database system and explain the functions they
perform

� To describe the components of an enterprise-class
database system and explain the functions they
perform

� To define the term database management system
(DBMS) and describe the functions of a DBMS

Chapter Objectives

Introduction1
� To define the term database and describe what is

contained within the database

� To define the term metadata and provide examples of
metadata

� To define and understand database design from existing
data

� To define and understand database design as new
systems development

� To define and understand database design in database
redesign

� To understand the history and development of database
processing

2

Chapter 1 Introduction 3

administrator. Finally, we conclude this introduction with a brief history of
database processing.

This chapter assumes a minimal knowledge of database use. It assumes
that you have used a product such as Microsoft Access to enter data into a
form, to produce a report, and possibly to execute a query. If you have not
done these things, you should obtain a copy of Microsoft Access 2010 and
work through the tutorial in Appendix A.

The Characteristics of Databases

The purpose of a database is to help people keep track of things, and the most commonly used
type of database is the relational database. We will discuss the relational database model in
depth in Chapter 3, so for now we just need to understand a few basic facts about how a rela-
tional database helps people track things of interest to them.

A relational database stores data in tables. Data are recorded facts and numbers. A table
has rows and columns, like those in a spreadsheet. A database usually has multiple tables, and
each table contains data about a different type of thing. For example, Figure 1-1 shows a
database with two tables: the STUDENT table holds data about students, and the CLASS table
holds data about classes.

Each row of a table has data about a particular occurrence or instance of the thing of
interest. For example, each row of the STUDENT table has data about one of four students:
Cooke, Lau, Harris, and Greene. Similarly, each row of the CLASS table has data about a parti-
cular class. Because each row records the data for a specific instance, rows are also known as
records. Each column of a table stores a characteristic common to all rows. For example, the
first column of STUDENT stores StudentNumber, the second column stores LastName, and
so forth.

A table and a spreadsheet (also known as a worksheet) are very similar in
that you can think of both as having rows, columns, and cells. The details

that define a table as something different from a spreadsheet are discussed in Chapter 3.
For now, the main differences you will see are that tables have column names instead
of identifying letters (for example, Name instead of A) and that the rows are not neces-
sarily numbered.

Although, in theory, you could switch the rows and columns by putting instances in
the columns and characteristics in the rows, this is never done. Every database in this
text, and 99.999999 percent of all databases throughout the world, store instances in
rows and characteristics in columns.

A Note on Naming Conventions

In this text, table names appear in capital letters. This convention will help you to distinguish
table names in explanations. However, you are not required to set table names in capital let-
ters. Microsoft Access and similar programs will allow you to write a table name as STUDENT,
student, Student, stuDent, or in some other way.

Additionally, in this text column names begin with a capital letter. Again, this is just a con-
vention. You could write the column name Term as term, teRm, TERM, or in any other way. To
ease readability, we will sometimes create compound column names in which the first letter of
each element of the compound word is capitalized. Thus, in Figure 1-1 the STUDENT table has
columns StudentNumber, LastName, FirstName, and EmailAddress. Again, this capitalization
is just a convenient convention. However, following these or other consistent conventions will
make interpretation of database structures easier. For example, you will always know that
STUDENT is the name of a table and that Student is the name of a column of a table.

4 Part 1 Getting Started

The STUDENT table

The GRADE table�
but who do these
grades belong to?

The CLASS table

Figure 1-2

The STUDENT, CLASS,
and GRADE Tables

The STUDENT table

The CLASS table

This column stores the
ClassName for
each class

This row stores the
data for Sam Cooke

Figure 1-1

The STUDENT and CLASS
Tables

A Database Has Data and Relationships

Figure 1-1 illustrates how database tables are structured to store data, but a database is not
complete unless it also shows the relationships among the rows of data. To see why this is
important, examine Figure 1-2. In this figure, the database contains all of the basic data shown
in Figure 1-1 together with a GRADE table. Unfortunately, the relationships among the data
are missing. In this format, the GRADE data are useless. It is like the joke about the sports
commentator who announced: �Now for tonight�s baseball scores: 2�3, 7�2, 1�0, and 4�5.� The
scores are useless without knowing the teams that earned them. Thus, a database contains
both data and the relationships among the data.

Figure 1-3 shows the complete database that contains not only the data about students,
classes, and grades, but also the relationships among the rows in those tables. For example,
StudentNumber 1, who is Sam Cooke, earned a Grade of 3.7 in ClassNumber 10, which is
Chem101. He also earned a Grade of 3.5 in ClassNumber 40, which is Acct101.

Chapter 1 Introduction 5

The STUDENT table

The GRADE table with
foreign keys�now
each grade is linked
back to the STUDENT
and CLASS tables

The CLASS table

Figure 1-3

The Key Database
Characteristic: Related
Tables Figure 1-3 illustrates an important characteristic of database processing. Each row in a

table is uniquely identified by a primary key, and the values of these keys are used to create the
relationships between the tables. For example, in the STUDENT table StudentNumber serves as
the primary key. Each value of StudentNumber is unique and identifies a particular student.
Thus, StudentNumber 1 identifies Sam Cooke. Similarly, ClassNumber in the CLASS table
identifies each class. If the numbers used in primary key columns such as StudentNumber and
ClassNumber are automatically generated and assigned in the database itself, then the key is
also called a surrogate key.

By comparing Figures 1-2 and 1-3, we can see how the primary keys of STUDENT
and CLASS were added to the GRADE table to provide GRADE with a primary key of
(Student-Number, ClassNumber) to uniquely identify each row. More important, in GRADE
StudentNumber and ClassNumber each now serves as a foreign key. A foreign key provides the
link between two tables. By adding a foreign key, we create a relationship between the two tables.

Figure 1-4 shows a Microsoft Access 2010 view of the tables and relationships shown in
Figure 1-3. In Figure 1-4, primary keys in each table are marked with key symbols, and
connecting lines representing the relationships are drawn from the foreign keys (in GRADE) to
the corresponding primary keys (in STUDENT and CLASS). The symbols on the relationship
line (the number 1 and the infinity symbol) mean that, for example, one student in STUDENT
can be linked to many grades in GRADE.

Databases Create Information

In order to make decisions, we need information upon which to base those decisions. Because we
have already defined data as recorded facts and numbers, we can now define1 information as:

� Knowledge derived from data
� Data presented in a meaningful context
� Data processed by summing, ordering, averaging, grouping, comparing, or other

similar operations

1 These definitions are from David M. Kroenke�s books Using MIS, 4th ed. (Upper Saddle River, NJ: Prentice-Hall,
2012) and Experiencing MIS, 3rd ed. (Upper Saddle River, NJ: Prentice-Hall, 2012). See these books for a full dis-
cussion of these definitions, as well as a discussion of a fourth definition, �a difference that makes a difference.�

6 Part 1 Getting Started

The STUDENT table�
the key symbol shows
the primary key

The relationship
between STUDENT
and GRADE�the
number 1 and the
infinity symbol indicate
that one student may
be linked to many
grades by
StudentNumber

Figure 1-4

Microsoft Access 2010 View
of Tables and Relationships

Databases record facts and figures, so they record data. They do so, however, in a way that
enables them to produce information. The data in Figure 1-3 can be manipulated to produce a
student�s GPA, the average GPA for a class, the average number of students in a class, and so
forth. In Chapter 2, you will be introduced to a language called Structured Query Language
(SQL) that you can use to produce information from database data.

To summarize, relational databases store data in tables, and they represent the relation-
ships among the rows of those tables. They do so in a way that facilitates the production of
information. We will discuss the relational database model in depth in Part 2 of this book.

Database Examples

Today, database technology is part of almost every information system. This fact is not surpris-
ing when we consider that every information system needs to store data and the relationships
among those data. Still, the vast array of applications that use this technology is staggering.
Consider, for example, the applications listed in Figure 1-5.

Single-User Database Applications

In Figure 1-5, the first application is used by a single salesperson to keep track of the customers
she has called and the contacts that she�s had with them. Most salespeople do not build their
own contact manager applications; instead, they license products such as GoldMine (see
www.frontrange.com/goldmine) or ACT! (see www.act.com).

Multiuser Database Applications

The next applications in Figure 1-5 are those that involve more than one user. The patient-
scheduling application, for example, may have 15 to 50 users. These users will be appointment
clerks, office administrators, nurses, dentists, doctors, and so forth. A database like this one
may have as many as 100,000 rows of data in perhaps 5 or 10 different tables.

When more than one user employs a database application, there is always the chance that
one user�s work may interfere with another�s. Two appointment clerks, for example, might
assign the same appointment to two different patients. Special concurrency-control mecha-
nisms are used to coordinate activity against the database to prevent such conflict. You will
learn about these mechanisms in Chapter 9.

The third row of Figure 1-5 shows an even larger database application. A customer
relationship management (CRM) system is an information system that manages customer
contacts from initial solicitation through acceptance, purchase, continuing purchase, support,
and so forth. CRM systems are used by salespeople, sales managers, customer service and sup-
port staff, and other personnel. A CRM database in a larger company might have 500 users and
10 million or more rows in perhaps 50 or more tables. According to Microsoft, in 2004 Verizon
had an SQL Server customer database that contained more than 15 terabytes of data. If that
data were published in books, a bookshelf 450 miles long would be required to hold them.

Enterprise resource planning (ERP) is an information system that touches every depart-
ment in a manufacturing company. It includes sales, inventory, production planning,

Chapter 1 Introduction 7

Sales contact
manager

Salesperson

Example
Users

1 2,000 rows

Number
of Users

Typical Size RemarksApplication

Products such as GoldMine and
Act! are database centric.

Patient appointment
(doctor, dentist)

Medical office 15 to 50 100,000 rows Vertical market software vendors
incorporate databases into their
software products.

Customer
relationship
management (CRM)

Sales, marketing,
or customer
service
departments

500 10 million rows Major vendors such as Microsoft
and Oracle PeopleSoft
Enterprise build applications
around the database.

Enterprise resource
planning (ERP)

An entire
organization

5,000 10 million+
rows

SAP uses a database as a
central repository for
ERP data.

E-commerce site Internet users Possibly
millions

1 billion+
rows

Drugstore.com has a database
that grows at the rate of
20 million rows per day!

Digital dashboard Senior managers 500 100,000 rows Extractions, summaries, and
consolidations of operational
databases.

Data mining Business analysts 25 100,000 to
millions+

Data are extracted, reformatted,
cleaned, and filtered for use
by statistical data mining tools.

Figure 1-5

Example Database Uses

purchasing, and other business functions. SAP is the leading vendor of ERP applications, and
a key element of its product is a database that integrates data from these various business
functions. An ERP system may have 5,000 or more users and perhaps 100 million rows in
several hundred tables.

E-Commerce Database Applications

E-commerce is another important database application. Databases are a key component of
e-commerce order entry, billing, shipping, and customer support. Surprisingly, however,
the largest databases at an e-commerce site are not order-processing databases. The largest
databases are those that track customer browser behavior. Most of the prominent e-commerce
companies, such as Amazon.com (www.amazon.com) and Drugstore.com (www.drugstore.com)
keep track of the Web pages and the Web page components that they send to their customers.
They also track customer clicks, additions to shopping carts, order purchases, abandoned
shopping carts, and so forth.

E-commerce companies use Web activity databases to determine which items on a Web page
are popular and successful and which are not. They also can conduct experiments to determine if
a purple background generates more orders than a blue one, and so forth. Such Web usage data-
bases are huge. For example, Drugstore.com adds 20 million rows to its Web log database each day!

Reporting and Data Mining Database Applications

Two other example applications in Figure 1-5 are digital dashboards and data mining applica-
tions. These applications use the data generated by order processing and other operational
systems to produce information to help manage the enterprise. Such applications do not
generate new data, but instead summarize existing data to provide insights to management.

8 Part 1 Getting Started

Database
Application

Users

DatabaseDBMS

� Create
� Process
� Administer

Figure 1-6

The Components of a
Database System

Database
Application

Users

DatabaseDBMS

� Create
� Process
� Administer

S
Q
L

Figure 1-7

The Components of a
Database Systems with SQL

Digital dashboards and other reporting systems assess past and current performance. Data min-
ing applications predict future performance. We will consider such applications in Chapter 15.
The bottom line is that database technology is used in almost every information system and
involves databases ranging in size from a few thousand rows to many millions of rows.

Do not assume that just because a database is small that its structure is
simple. For example, consider parts distribution for a company that sells

$1 million in parts per year and parts distribution for a company that sells $100 million in
parts per year. Despite the difference in sales, the companies have similar databases. Both
have the same kinds of data, about the same number of tables of data, and the same level
of complexity in data relationships. Only the amount of data varies from one to the other.
Thus, although a database for a small business may be small, it is not necessarily simple.

The Components of a Database System

As shown in Figure 1-6, a database system is typically defined to consist of four components:
users, the database application, the database management system (DBMS), and the database.
However, given the importance of Structured Query Language (SQL), an internationally
recognized standard language that is understood by all commercial DBMS products, in database
processing and the fact that database applications typically send SQL statements to the DBMS for
processing, we can refine our illustration of a database system to appear as shown in Figure 1-7.

Starting from the right of Figure 1-7, the database is a collection of related tables and other
structures. The database management system (DBMS) is a computer program used to create,
process, and administer the database. The DBMS receives requests encoded in SQL and trans-
lates those requests into actions on the database. The DBMS is a large, complicated program that
is licensed from a software vendor; companies almost never write their own DBMS programs.

A database application is a set of one or more computer programs that serves as an
intermediary between the user and the DBMS. Application programs read or modify database
data by sending SQL statements to the DBMS. Application programs also present data to users
in the format of forms and reports. Application programs can be acquired from software
vendors, and they are also frequently written in-house. The knowledge you gain from this text
will help you write database applications.

Users, the fourth component of a database system, employ a database application to keep
track of things. They use forms to read, enter, and query data, and they produce reports to con-
vey information.

Chapter 1 Introduction 9

Database Applications and SQL

Figure 1-7 shows the database applications that users interact with directly. Figure 1-8 lists the
basic functions of database applications.

First, an application program creates and processes forms. Figure 1-9 shows a typical form
for entering and processing student enrollment data for the Student-Class-Grade database
shown in Figures 1-3 and 1-4. Notice that this form hides the structure of the underlying tables
from the user. By comparing the tables and data in Figures 1-3 and 1-4 to the form in Figure 1-9,
we can see that data from the CLASS table appears at the top of the form, while data from the
STUDENT table is presented in a tabular section labeled Class Enrollment Data.

The goal of this form, like that for all data entry forms, is to present the data in a format
that is useful for the users, regardless of the underlying table structure. Behind the form, the
application processes the database in accordance with the users� actions. The application
generates an SQL statement to insert, update, or delete data for any of the tables that under-
lie this form.

The second function of application programs is to process user queries. The application
program first generates a query request and sends it to the DBMS. Results are then formatted
and returned to the user. Applications use SQL statements and pass them to the DBMS for
processing. To give you a taste of SQL, here is a sample SQL statement for processing the
STUDENT table in Figure 1-1:

SELECT LastName, FirstName, EmailAddress

FROM STUDENT

WHERE StudentNumber > 2;

� Create and process forms
� Process user queries
� Create and process reports
� Execute application logic
� Control application

Figure 1-8

Basic Functions of
Application Programs

Figure 1-9

An Example Data Entry Form

10 Part 1 Getting Started

Figure 1-10

Example SQL Query Results

Figure 1-11

Example Report

This SQL statement is a query statement, which asks the DBMS to obtain specific data
from a database. In this case, the query asks for the last name, first name, and e-mail address
of all students having a StudentNumber greater than 2. The results of this SQL statement are
shown (as displayed in Microsoft Access 2010) in Figure 1-10. As shown in Figure 1-10, running
this SQL statement will produce the LastName, FirstName, and EmailAddress for students
Harris and Greene.

The third function of an application is to create and process reports. This function is
somewhat similar to the second because the application program first queries the DBMS
for data (again using SQL). The application then formats the query results as a report.
Figure 1-11 shows a report that displays all the Student-Class-Grade data shown
in Figure 1-3 sorted by ClassNumber and LastName. Notice that the report, like the form in
Figure 1-9, is structured according to the users� needs, not according to the underlying
table structure.

In addition to generating forms, queries, and reports, the application program takes other
actions to update the database in accordance with application-specific logic. For example,
suppose a user using an order entry application requests 10 units of a particular item. Suppose
further that when the application program queries the database (via the DBMS), it finds that
only 8 units are in stock. What should happen? It depends on the logic of that particular appli-
cation. Perhaps no units should be removed from inventory, and the user should be notified, or
perhaps the 8 units should be removed and 2 more placed on back order. Perhaps some other
action should be taken. Whatever the case, it is the job of the application program to execute
the appropriate logic.

Finally, the last function for application programs listed in Figure 1-8 is to control the
application. This is done in two ways. First, the application needs to be written so that only
logical options are presented to the user. For example, the application may generate a menu
with user choices. In this case, the application needs to ensure that only appropriate choices

Chapter 1 Introduction 11

are available. Second, the application needs to control data activities with the DBMS. The
application might direct the DBMS, for example, to make a certain set of data changes as a
unit. The application might tell the DBMS to either make all these changes or none of them.
You will learn about such control topics in Chapter 9.

The DBMS

The DBMS, or database management system, creates, processes, and administers the data-
base. A DBMS is a large, complicated product that is almost always licensed from a software
vendor. One DBMS product is Microsoft Access. Other commercial DBMS products are Oracle
Database and MySQL, both from Oracle Corporation; SQL Server, from Microsoft; and DB2,
from IBM. Dozens of other DBMS products exist, but these five have the lion�s share of the
market. Figure 1-12 lists the functions of a DBMS.

A DBMS is used to create a database and to create the tables and other supporting struc-
tures inside that database. As an example of the latter, suppose that we have an EMPLOYEE
table with 10,000 rows and that this table includes a column, DepartmentName, that records
the name of the department in which an employee works. Furthermore, suppose that we
frequently need to access employee data by DepartmentName. Because this is a large
database, searching through the table to find, for example, all employees in the accounting
department would take a long time. To improve performance, we can create an index (akin to
the index at the back of a book) for DepartmentName to show which employees are in which
departments. Such an index is an example of a supporting structure that is created and main-
tained by a DBMS.

The next two functions of a DBMS are to read and modify database data. To do this, a
DBMS receives SQL and other requests and transforms those requests into actions on the
database files. Another DBMS function is to maintain all the database structures. For example,
from time to time it might be necessary to change the format of a table or another supporting
structure. Developers use a DBMS to make such changes.

With most DBMS products, it is possible to declare rules about data values and have a
DBMS enforce them. For example, in the Student-Class-Grade database tables in Figure 1-3,
what would happen if a user mistakenly entered a value of 9 for StudentNumber in the GRADE
table? No such student exists, so such a value would cause numerous errors. To prevent this
situation, it is possible to tell the DBMS that any value of StudentNumber in the GRADE
table must already be a value of StudentNumber in the STUDENT table. If no such value exists,
the insert or update request should be disallowed. The DBMS then enforces these rules, which
are called referential integrity constraints.

The last three functions of a DBMS listed in Figure 1-12 have to do with database
administration. A DBMS controls concurrency by ensuring that one user�s work does not
inappropriately interfere with another user�s work. This important (and complicated) function
is discussed in Chapter 9. Also, a DBMS contains a security system that ensures that only
authorized users perform authorized actions on the database. For example, users can be
prevented from seeing certain data. Similarly, users� actions can be confined to making only
certain types of data changes on specified data.

Finally, a DBMS provides facilities for backing up database data and recovering it from
backups, when necessary. The database, as a centralized repository of data, is a valuable orga-
nizational asset. Consider, for example, the value of a book database to a company such as

� Create database
� Create tables
� Create supporting structures (e.g., indexes)
� Read database data
� Modify (insert, update, or delete) database data
� Maintain database structures
� Enforce rules
� Control concurrency
� Provide security
� Perform backup and recovery

Figure 1-12

Functions of a DBMS

12 Part 1 Getting Started

TableName

USER_TABLES Table

STUDENT

PrimaryKey

CLASS

GRADE

StudentNumber

ClassNumber

(StudentNumber, ClassNumber)

NumberColumns

4

4

3

ColumnName

USER_COLUMNS Table

StudentNumber

DataType

LastName

EmailAddress

Integer

Text

Text

ClassNumber

Name

Term

Section

StudentNumber

Grade

ClassNumber

CLASS

CLASS

CLASS

CLASS

GRADE

GRADE

GRADE

TableName

STUDENT

STUDENT

STUDENT

Integer

Text

Text

Integer

Integer

Decimal

Integer

Length (bytes)

4

25

FirstName TextSTUDENT 25

100

4

4

25

12

4

(2, 1)

4

Figure 1-13

Typical Metadata Tables

Amazon.com. Because the database is so important, steps need to be taken to ensure that no
data will be lost in the event of errors, hardware or software problems, or natural or human
catastrophes.

The Database

The last component in Figure 1-7 is the database. A database is a self-describing collec-
tion of integrated tables. Integrated tables are tables that store both data and the relation-
ships among the data. The tables in Figure 1-3 are integrated because they store not just
student, class, and grade data, but also data about the relationships among the rows
of data.

A database is self-describing because it contains a description of itself. Thus, databases
contain not only tables of user data, but also tables of data that describe that user data. Such
descriptive data is called metadata because it is data about data. The form and format of
metadata varies from DBMS to DBMS. Figure 1-13 shows generic metadata tables that
describe the tables and columns for the database in Figure 1-3.

You can examine metadata to determine if particular tables, columns, indexes, or
other structures exist in a database. For example, the following statement queries the Microsoft

Chapter 1 Introduction 13

Because metadata is stored in tables, you can use SQL to query it, as just
illustrated. Thus, by learning how to write SQL to query user tables, you will

also learn how to write SQL to query metadata. To do that, you just apply the SQL state-
ments to metadata tables rather than user tables.

In addition to user tables and metadata, databases contain other elements, as shown in
Figure 1-14. These other components will be described in detail in subsequent chapters. For now,
however, understand that indexes are structures that speed the sorting and searching of database
data. Triggers and stored procedures are programs that are stored within the database. Triggers
are used to maintain database accuracy and consistency and to enforce data constraints. Stored
procedures are used for database administration tasks and are sometimes part of database appli-
cations. You will learn more about these different elements in Chapters 7, 10, 10A, and 10B.

Security data define users, groups, and allowed permissions for users and groups. The par-
ticulars depend on the DBMS product in use. Finally, backup and recovery data are used to
save database data to backup devices as well as to recover the database data when needed. You
will learn more about security and backup and recovery data in Chapters 9, 10, 10A, and 10B.

SQL Server metadata table SYSOBJECTS to determine if a user table (Type = �U�) named CLASS
exists in the database. If it does, the table is dropped (removed) from the database.

IF EXISTS
(SELECT *
FROM SYSOBJECTS
WHERE [Name]=’CLASS’

AND Type=’U’)
DROP TABLE CLASS;

Do not be concerned with the syntax of this statement. You will learn what it means and
how to write such statements yourself as we proceed. For now, just understand that this is one
way that database administrators use metadata.

� Tables of user data
� Metadata
� Indexes
� Stored procedures
� Triggers
� Security data
� Backup/recovery data

Discussed in
Chapters 7, 10, 10A, 10B

Discussed in
Chapters 9, 10, 10A, 10B

Figure 1-14

Database Contents

Personal Versus Enterprise-Class Database Systems

We can divide database systems and DBMS products into two classes: personal database sys-
tems and enterprise-class database systems.

What Is Microsoft Access?

We need to clear up a common misconception: Microsoft Access is not just a DBMS. Rather, it
is a personal database system: a DBMS plus an application generator. Although Microsoft
Access contains a DBMS engine that creates, processes, and administers the database, it
also contains form, report, and query components that are the Microsoft Access application
generator. The components of Microsoft Access are shown in Figure 1-15, which illustrates
that the Microsoft Access form, report, and query applications create SQL statements and
then pass them to the DBMS for processing.

14 Part 1 Getting Started

Queries

Data Entry Forms

Form-Processing
Application

Report-Generator
Application

Query-Processing
Application

The DBMS can be the
native Microsoft Access
Access Database Engine

(ADE) or Microsoft SQL Server.

Reports

Users

Database
S
Q
L

DBMS

Microsoft Access

Figure 1-15

Components of a Microsoft
Access Database System

Microsoft Access is a low-end product intended for individuals and small workgroups.
As such, Microsoft has done all that it can to hide the underlying database technology from
the user. Users interact with the application through data entry forms like the one shown in
Figure 1-9. They also request reports and perform queries against the database data. Microsoft
Access then processes the forms, produces the reports, and runs the queries. Internally, the
application components hidden under the Microsoft Access cover use SQL to call the DBMS,
which is also hidden under that cover. At Microsoft, the current DBMS engine within
Microsoft Access is called the Access Database Engine (ADE). ADE is a Microsoft Office spe-
cific version of Microsoft�s Joint Engine Technology (JET or Jet) database engine. Jet was used
as the Microsoft Access database engine until Microsoft Office 2007 was released. Jet itself is
still used in the Microsoft Windows operating system, but you seldom hear about Jet because
Microsoft does not sell Jet as a separate product.

Although Microsoft Access is the best-known personal database system, it
is not the only one. OpenOffice.org Base is a personal database system distri-

buted as part of the OpenOffice.org software suite (which is available at www.openoffice.
org), and the personal database system LibreOffice Base is distributed as part of the related
LibreOffice software suite (which is available at www.libreoffice.org/).

Although hiding the technology is an effective strategy for beginners working on small
databases, it will not work for database professionals who work with applications, such as
most of those described in Figure 1-5. For larger, more complex databases, it is necessary to
understand the technology and components that Microsoft hides.

Nonetheless, because Microsoft Access is included in the Microsoft Office suite, it is often
the first DBMS used by students. In fact, you may have already learned to use Microsoft Access
in other classes you have taken, and in this book we will provide some examples using
Microsoft Access 2010. If you are not familiar with Microsoft Access 2010, you should work
through Appendix A, �Getting Started with Microsoft Access 2010.�

With Microsoft Access 2000 and later versions, you can effectively replace
the Micrsoft Access database engine (either Jet or ADE) with Microsoft�s

enterprise-class DBMS product�Microsoft SQL Server. You would do this if you wanted
to process a large database or if you needed the advanced functions and features of
Microsoft SQL Server.

Chapter 1 Introduction 15

Web Portal with
Reporting

Applications

XML Web Services
Applications

Applications Running
over Corporate

Network (Client/Server)

E-Commerce
Applications on

Web Server

� Create
� Process
� Administer

Users

Database
S
Q
L

DBMS

Figure 1-16

Components of an
Enterprise-Class Database
System

What Is an Enterprise-Class Database System?

Figure 1-16 shows the components of an enterprise-class database system. Here, the appli-
cations and the DBMS are not under the same cover as they are in Microsoft Access. Instead,
the applications are separate from each other and separate from the DBMS.

Database Applications in an Enterprise-Class Database System
Earlier in this chapter, we discussed the basic functions of an application program, and these
functions are summarized in Figure 1-8. However, as exemplified by the list in Figure 1-5,
dozens of different types of database applications are available, and database applications in
an enterprise-class database system introduce functions and features beyond the basics. For
example, Figure 1-16 shows applications that connect to the database over a corporate
network. Such applications are sometimes called client/server applications because the appli-
cation program is a client that connects to a database server. Client/server applications often
are written in programming languages such as VB.NET, C++, or Java.

A second category of applications in Figure 1-16 is e-commerce and other applications
that run on a Web server. Users connect to such applications via Web browsers such as
Microsoft Internet Explorer, Mozilla Firefox, and Google Chrome. Common Web servers
include Microsoft�s Internet Information Server (IIS) and Apache. Common languages for
Web server applications are PHP, Java, and the Microsoft .NET languages, such as C#.NET
and VB.NET. We will discuss some of the technology for such applications in Chapter 11.

A third category of applications is reporting applications that publish the results of database
queries on a corporate portal or other Web site. Such reporting applications are often created
using third-party report generation and digital dashboard products from vendors such as IBM
(Cognos) and MicroStrategy (MicroStrategy 9). We will describe these applications in Chapter 13.

The last category of applications is XML Web services. These applications use a combina-
tion of the XML markup language and other standards to enable program-to-program
communication. In this way, the code that comprises an application is distributed over several
different computers. Web services can be written in Java or any of the .NET languages. We will
discuss this important new class of applications in Chapter 12.

All of these database applications get and put database data by sending SQL statements
to the DBMS. These applications may create forms and reports, or they may send their results
to other programs. They also may implement application logic that goes beyond simple form
and report processing. For example, an order entry application uses application logic to deal
with out-of-stock items and backorders.

The DBMS in an Enterprise-Class Database System
As stated earlier, the DBMS manages the database. It processes SQL statements and provides
other features and functions for creating, processing, and administering the database.
Figure 1-17 presents the five most prominent DBMS products. The products are shown in
order of increasing power, features, and difficulty of use.

16 Part 1 Getting Started

Increasing
power and
features

Microsoft
Access (ADE)

Oracle Corp.
Oracle Database

Increasing
difficulty
of use

IBM
DB2

Microsoft
SQL Server

Oracle Corp.
MySQLFigure 1-17

Common Professional
View of DBMS Products

� From existing data (Chapters 3 and 4)
Analyze spreadsheets and other data tables

 Extract data from other databases
 Design using normalization principles
� New systems development (Chapters 5 and 6)
 Create data model from application requirements
 Transform data model into database design
� Database redesign (Chapter 8)
 Migrate databases to newer databases
 Integrate two or more databases
 Reverse engineer and design new databases using
 normalization principles and data model transformation

Note: Chapter 7 discusses database implementation using SQL. You need that knowledge
before you can understand database redesign.

Figure 1-18

Three Types of Database
Design

Microsoft Access (really the Microsoft ADE) is the easiest to use and the least powerful.
Oracle MySQL is a powerful, open source DBMS frequently chosen for Web applications.
Microsoft SQL Server has far more power than its stablemate Microsoft Access�it can
process larger databases, faster, and it includes features for multiuser control, backup and
recovery, and other administrative functions. DB2 is a DBMS product from IBM. Most people
would agree that it has faster performance than SQL Server, that it can handle larger
databases, and that it is also more difficult to use. Finally, the fastest and most capable DBMS
is Oracle Database from Oracle Corporation. Oracle Database can be configured to offer very
high performance on exceedingly large databases that operate 24/7, year after year. Oracle
Database is also far more difficult to use and administer than Microsoft SQL Server.

Database Design

Database design is both difficult and important. Determining the proper structure of tables,
the proper relationships among tables, the appropriate data constraints, and other structural
components is challenging, and sometimes even daunting. Consequently, the world is full of
poorly designed databases. Such databases do not perform well. They may require application
developers to write overly complex and contrived SQL to get wanted data, they may be diffi-
cult to adapt to new and changing requirements, or they fail in some other way.

Because database design is both difficult and important, we will devote most of the first
half of this text to the topic. As shown in Figure 1-18, there are three types of database design:

� Database design from existing data
� Database design for new systems development
� Database redesign of an existing database

Chapter 1 Introduction 17

Database Design from Existing Data

The first type of database design involves databases that are constructed from existing data, as
shown in Figure 1-19. In some cases, a development team is given a set of spreadsheets or a set
of text files with tables of data. The team is required to design a database and import the data
from those spreadsheets and tables into a new database.

Alternatively, databases can be created from extracts of other databases. This alternative
is especially common in business intelligence (BI) systems, which include reporting and data
mining applications. For example, data from an operational database, such as a CRM or ERP
database, may be copied into a new database that will be used only for studies and analysis. As
you will learn in Chapter 13, such databases are used in facilities called data warehouses and
data marts. The data warehouse and data mart databases store data specifically organized for
research and reporting purposes, and these data often are exported to other analytical tools,
such as SAS�s Enterprise Miner, IBM’s SPSS Data Modeler, or TIBCO’s Spotfire Metrics.

When creating a database from existing data, database developers must determine the
appropriate structure for the new database. A common issue is how the multiple files or tables
in the new database should be related. However, even the import of a single table can pose
design questions. Figure 1-20 shows two different ways of importing a simple table of employ-
ees and their departments. Should this data be stored as one table or two?

Decisions such as this are not arbitrary. Database professionals use a set of principles, col-
lectively called normalization, or normal forms, to guide and assess database designs. You
will learn those principles and their role in database design in Chapter 3.

Database Design for New Systems Development

A second way that databases are designed is for the development of new information systems.
As shown in Figure 1-21, requirements for a new system, such as desired data entry forms and
reports, user requirements statements, use cases, and other requirements, are analyzed to cre-
ate the database design.

In all but the simplest system development projects, the step from user requirements to
database design is too big. Accordingly, the development team proceeds in two steps. First, the
team creates a data model from the requirements statements and then transforms that data
model into a database design. You can think of a data model as a blueprint that is used as a
design aid on the way to a database design, which is the basis for constructing the actual
database in a DBMS.

Spreadsheet
Spreadsheet
Spreadsheet
Spreadsheet

Text
filesText
filesText
filesText

File

Database
Design

Database
Design

Database extraction

Operational
Database

(ERP, CRM)

OR

Figure 1-19

Databases Originating from
Existing Data

18 Part 1 Getting Started

Reports
Database

Design

FormsFormsFormsForms

User
Requirement
Statements

Use Cases and
Other Systems
Development
Documents

Systems Requirements

Data
Model

Data Model
Transformation

Figure 1-21

Databases Originating
from New Systems
Development

In Chapter 5, you will learn about the most popular data modeling technique�entity-
relationship (ER) data modeling. You also will see how to use the entity-relationship model
to represent a variety of common form and report patterns. Then, in Chapter 6, you will learn
how to transform entity-relationship data models into database designs.

Database Redesign

Database redesign also requires that databases are designed. As shown in Figure 1-22, there are
two common types of database redesign.

In the first, a database is adapted to new or changing requirements. This process some-
times is called database migration. In the migration process, tables may be created, modified,
or removed; relationships may be altered; data constraints may be changed; and so forth.

The second type of database redesign involves the integration of two or more databases.
This type of redesign is common when adapting or removing legacy systems. It is also

EmpNum

100

EmpName DeptName

150

200

300

Accounting

MarketingLau

AccountingMcCauley

AccountingGriffin

DeptNum

10

20

10

10
EmpNum

100

EmpName

150

200

300 Griffin

DeptNum

10

20

10

10

DeptName

Accounting

Marketing

DeptNum

10

20

(a) One-Table Design

(b) Two-Table Design

OR?

Jones

Lau

McCauley

Jones

Figure 1-20

Data Import: One or Two
Tables?

Chapter 1 Introduction 19

common for enterprise application integration, when two or more previously separate infor-
mation systems are adapted to work with each other.

Database redesign is complicated. There is no getting around that fact. If this is your first
exposure to database design, your instructor may skip this topic. If this is the case, after you
have gained more experience you should reread this material. In spite of its difficulty, database
redesign is important.

To understand database redesign, you need to know SQL statements for defining database
structures and more advanced SQL statements for querying and updating a database. Conse-
quently, we will not address database redesign until Chapter 8, after we present SQL statements
and techniques for creating and altering the tables that make up a database in Chapter 7.

Database
Design2

Database1

Database1

Database2

Database
Design3

Database Integration

+

Migration

OR

Figure 1-22

Databases Originating from
Database Redesign

What You Need to Learn

In your career, you may work with database technology as either a user or as a database admin-
istrator. As a user, you may be a knowledge worker who prepares reports, mines data, and
does other types of data analysis or you may be a programmer who writes applications that
process the database. Alternatively, you might be a database administrator who designs,
constructs, and manages the database itself. Users are primarily concerned with constructing
SQL statements to get and put the data they want. Database administrators are primarily con-
cerned with the management of the database. The domains for each of these roles are shown in
Figure 1-23.

The most exciting and interesting jobs in technology are always those on
the leading edge. If you live in the United States and are concerned about

outsourcing, a recent study by the Rand Corporation2 indicates that the most secure
jobs in the United States involve the adaptation of new technology to solve business
problems in innovative ways.

Right now, the leading edge involves the integration of XML, Web services, and
database processing. You will need all of the fundamentals presented in this book, espe-
cially the material in Chapter 12, to work in this exciting new area.

2 Lynn A. Karoly and Constantijn W. A. Panis, The 21st Century at Work (Santa Monica, CA: The Rand
Corporation, 2004).

20 Part 1 Getting Started

Importance to Knowledge
Worker and Programmer

Importance to Database
Administrator

Basic SQL

Chapters 11, 12, 13

Design via normalization

Data modeling

Data model transformation

DDL SQL

Constraint enforcement

Database redesign

Database administration

SQL Server, Oracle Database,
MySQL specifics

Database application technology

1 = Very important; 2 = Important; 3 = Less important Warning: Opinions vary, ask your instructor for his or hers.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapters 10, 10A, 10B

1

2

1

2

2

3

3

2

3

1

1

1

1

1

1

1

2, but 1 for senior DBA

1

1

3

Topic Chapter

Figure 1-24

Priorities of What
You Need to Know

A Brief History of Database Processing

Database processing emerged around 1970 and has been continuously evolving and changing
since then. This continual change has made it a fascinating and thoroughly enjoyable field in
which to work. Figure 1-25 summarizes the major eras of database processing.

The Early Years

Prior to 1970, all data were stored in separate files, most of which were kept on reels of magnetic
tape. Magnetic disks and drums (magnetic cylinders that are no longer used) were exceedingly
expensive and very small. Today�s 1.44 megabyte floppy disk (which is now itself a limited use
technology) has more capacity than many disks of that era. Memory was expensive as well. In
1969, we were processing payroll on a computer that had just 32,000 bytes of memory, while the
computer on which this history is being written has 2 gigabytes of memory.

Integrated processing was an important but very difficult problem. An insurance com-
pany, for example, wanted to relate customer account data to customer claim data. Accounts

Both users and database administrators need all of the knowledge in this text. However, the
emphasis on each topic differs for the two groups. Figure 1-24 shows our opinion as to the relative
importance of each topic to each group. Discuss this table with your instructor. He or she may
have knowledge about your local job market that affects the relative importance of these topics.

Web Server
with PHP or

Java Applications

Client
Applications

in C# or VB.NET

� Access Database Engine (ADE)
� SQL Server
� MySQL
� Oracle Database

Web Portal
with Reporting
Applications

Knowledge Worker
and Programmer

Database Administrator

Users

Database
S
Q
L

DBMS

Figure 1-23

Working Domains of
Knowledge Workers,
Programmers, and Database
Administrators

Chapter 1 Introduction 21

Era Years Important
Products

Remarks

Emergence of
relational model

Web databases

Open source
DBMS products

Microcomputer
DBMS products

Object-oriented
DBMS

Predatabase

Early database

1978�1985

1995�
present

1995�
present

1982�1992+

1985�2000

Before 1970

1970�1980

DB2, Oracle

IIS, Apache, PHP,
ASP.NET, and Java

MySQL, PostgresQL,
and other products

dBase-II, R:base,
Paradox, Access

Oracle ODBMS and
others

File managers

ADABAS, System2000,
Total, IDMS, IMS

Early relational DBMS
products had substantial
inertia to overcome. In
time, the advantages
weighed out.

Stateless characteristic of
HTTP was a problem at
first. Early applications
were simple one-stage
transactions. Later, more
complex logic developed.

Open source DBMS
products provide much of
the functionality and
features of commercial
DBMS products at
reduced cost.

Amazing! A database on a
micro. All micro DBMS
products were eliminated
by Microsoft Access in
the early 1990s.

Never caught on. Required
relational database to be
converted. Too much work
for perceived benefit.

All data were stored in
separate files. Data
integration was very
difficult. File storage
space was expensive
and limited.

First products to provide
related tables. CODASYL
DBTG and hierarchical
data models (DL/I) were
prevalent.

XML and Web
services

1998�
present

XML, SOAP, WSDL,
UDDI, and other
standards

XML provides tremendous
benefits to Web-based
database applications. Very
important today. May
replace relational databases
during your career. See
Chapter 12.

The NoSQL
movement

2009�
present

Apache Cassandra,
dbXML, MonetDB/
XQuery, and other
products

The NoSQL movement is
really a NoRelationalDB
movement that replaces
relational databases with
nonrelational data
structures. The NoSQL
approach, which is used by
Facebook and Twitter, often
is based on XML. See
Chapter 12.

Figure 1-25

Database History

22 Part 1 Getting Started

were stored on one magnetic tape, and claims were stored on another. To process claims, the
data on the two tapes had to be integrated somehow.

The need for data integration drove the development of the first database technology. By
1973, several commercial DBMS products had emerged. These products were in use by the
mid-1970s. The first edition of this text, copyrighted 1977, featured the DBMS products
ADABAS, System2000, Total, IDMS, and IMS. Of those five, only ADABAS and IMS are still in
use, and neither of them has substantial market share today.

Those early DBMS products varied in the way that they structured data relationships. One
method, called Data Language/I (DL/I) used hierarchies or trees (see Appendix G) to repre-
sent relationships. IMS, which was developed and licensed by IBM, was based on this model.
IMS had success at many organizations, particularly among large manufacturers, and is still in
limited use today.

Another technique for structuring data relationships used data structures called networks.
The CODASYL Committee (the group that developed the programming language COBOL) spon-
sored a subcommittee called the Database Task Group (DBTG). This subcommittee developed
a standard data model that came to bear its name�the CODASYL DBTG model. It was an
unnecessarily complicated model (everyone�s favorite idea made it into the committee�s design),
but several successful DBMS products were developed using it. The most successful was IDMS,
and its vendor, the Cullinane Corporation, was the first software company to be listed on the New
York Stock Exchange. To the best of our knowledge, no IDMS database is in use today.

The Emergence and Dominance of the Relational Model

In 1970, a then little-known IBM engineer named E. F. Codd published a paper in the
Communications of the ACM3 in which he applied the concepts of a branch of mathematics
called relational algebra to the problem of �shared data banks,� as databases were then known.
The results of this work are now the relational model for databases, and all relational data-
base DBMS products are built on this model.

Codd�s work was at first viewed as too theoretical for practical implementation. Practi-
tioners argued that it was too slow and required so much storage that it would never be useful
in the commercial world. However, the relational model and relational database DBMS
products became adopted as the best way to create and manage databases.

The 1977 edition of this text featured a chapter on the relational model (which Codd
himself reviewed). Many years later, Wayne Ratliff, the creator of the dBase series of
products for personal computers, stated that he had the idea for dBase while reading that
very chapter.4

Today, there are as many opportunities for innovation as there were for
Wayne Ratliff in 1977. Perhaps you can read Chapter 12 and develop an

innovative product that integrates XML and DBMS processing in a new way, or join the
NoSQL movement and help develop an alternative to relational database technology.
Just as in 1977, no product has a lock on the future. Opportunity awaits you!

The relational model, relational algebra, and, later, SQL made sense. They were not need-
lessly complicated; rather, they seemed to boil down the data integration problem to a few
essential ideas. Over time, Codd convinced IBM management to develop relational-model
DBMS products. The result was IBM�s DB2 and its variants, which are still very popular today.

3 E. F. Codd, �A Relational Model of Data for Large Shared Databanks,� Communications of the ACM, June 1970,
pp. 377�387. A downloadable copy of this paper in PDF format is available at portal.acm.org/citation.cfm?
id=362685
4 C. Wayne Ratliff, �dStory: How I Really Developed dBASE,� Data Based Advisor, March 1991, p. 94. For more
information of Wayne Ratliff, dBase II, and also his work with FoxPro (now Microsoft Visual FoxPro), see the
Wikipedia article Wayne Ratliff at en.wikipedia.org/wiki/Wayne_Ratliff. For the history of dBase, see the
Wikipedia article dBase at en.wikipedia.org/wiki/DBASE

Chapter 1 Introduction 23

Meanwhile, other companies were considering the relational model as well, and by 1980
several more relational DBMS products had been released. The most prominent and important
of those was Oracle Corporation�s Oracle Database (the product was originally just named
Oracle, but was renamed as Oracle Database after Oracle Corporation acquired other products
and needed to distinguish their DBMS product from the others). Oracle Database achieved
success for many reasons, one of which was that it would run on just about any computer and
just about any operating system. (Some users complained, �Yes, and equally badly on all of
them.� Another, when asked �Should we sell it to communist Russia?� responded, �Only as long
as they have to take the documentation with it.�)

However, in addition to being able to run on many different types of machines, Oracle
Database had, and continues to have, an elegant and efficient internal design. You will learn
aspects of that design in the concurrency-control section in Chapter 10A. That excellent
design, together with hard-driving and successful sales and marketing, has pushed Oracle
Database to the top of the DBMS market.

Meanwhile, Gordon Moore and others were hard at work at Intel. By the early 1980s, per-
sonal computers were prevalent, and DBMS products were developed for them. Developers of
microcomputer DBMS products saw the advantages of the relational model and developed
their products around it. dBase was the most successful of the early products, but another
product, R:base, was the first to implement true relational algebra and other operations on the
PC. Later, another relational DBMS product named Paradox was developed for personal com-
puters. Eventually, Paradox was acquired by Borland.

Alas, it all came to an end when Microsoft entered the picture. Microsoft released
Microsoft Access in 1991 and priced it at $99. No other PC DBMS vendor could survive at that
price point. Microsoft Access killed R:base and Paradox, and then Microsoft bought a dBase
�work-alike� product called FoxPro and used it to eliminate dBase. Microsoft has now stopped
upgrading Microsoft FoxPro, now named Microsoft Visual FoxPro, but Microsoft will continue
to support it until 2014 (see http://en.wikipedia.org/wiki/Visual_FoxPro).

Thus, Microsoft Access is the only major survivor of that bloodbath of PC DBMS prod-
ucts. Today, the main challenge to Microsoft Access actually comes from Oracle Corporation
and the open source software development community, who have taken over development of
OpenOffice.org, a downloadable suite of free software products that includes the personal
database OpenOffice.org Base (see www.openoffice.org), and its sister product LibreOffice (see
www.libreoffice.org). LibreOffice is a related development of OpenOffice that was started when
Oracle Corporation acquired Sun Microsystems in early 2010.

Post-Relational Developments

In the mid-1980s, object-oriented programming (OOP) emerged, and its advantages over
traditional structured programming were quickly recognized. By 1990, some vendors had
developed object-oriented DBMS (OODBMS or ODBMS) products. These products were
designed to make it easy to store the data encapsulated in OOP objects. Several special-
purpose OODBMS products were developed, and Oracle added OOP constructs to Oracle to
enable the creation of a hybrid called an object-relational DBMS.

OODBMS never caught on, and today that category of DBMS products is fading away.
There were two reasons for their lack of acceptance. First, using an OODBMS required that the
relational data be converted from relational format to object-oriented format. By the time
OODBMS emerged, billions upon billions of bytes of data were stored in relational format in
organizational databases. No company was willing to undergo the expensive travail of convert-
ing those databases to be able to use the new OODBMS.

Second, object-oriented databases had no substantial advantage over relational databases
for most commercial database processing. As you will see in the next chapter, SQL is not object
oriented. But it works, and thousands of developers have created programs that use it. Without
a demonstrable advantage over relational databases, no organization was willing to take on the
task of converting their data to OODBMS format.

Meanwhile, the Internet took off. By the mid-1990s, it was clear that the Internet was one
of the most important phenomena in history. It changed, forever, the ways that customers
and businesses relate to each other. Early Web sites were nothing more than online brochures,

24 Part 1 Getting Started

but within a few years dynamic Web sites that involved querying and processing databases
began to appear.

However, one substantial problem existed. HTTP is a stateless protocol; a server receives a
request from a user, processes the request, and then forgets about the user and the request.
Many database interactions are multistage. A customer views products, adds one or more to a
shopping cart, views more products, adds more to the shopping cart, and eventually checks
out. A stateless protocol cannot be used for such applications.

Over time, capabilities emerged to overcome this problem. Web application developers
learned to add SQL statements to their Web applications, and soon thousands of databases
were being processed over the Web. You will learn more about such processing in Chapter 11.
An interesting phenomenon was the emergence of open source DBMS products. Open source
products generally make the source code widely available so that a group of programmers not
bound to a single company can contribute to the program. Further, some forms of these prod-
ucts are usually offered as free downloads, although other forms or product support must be
purchased from the company that owns the product.

A good example of this is the MySQL DBMS (www.mysql.com). MySQL was originally
released in 1995 by the Swedish company MySQL AB. In February 2008, Sun Microsystems
bought MySQL AB, and in January 2010 Oracle Corporation completed its acquisition of Sun
Microsystems. This means that Oracle Corporation now owns two major DBMS products:
Oracle Database and Oracle MySQL. At present, MySQL continues to be available as an open
source product, and the free MySQL Community Server edition can be downloaded from the
MySQL Web site. MySQL has proven to be especially popular with Web site developers who
need to run Web page queries against an SQL DBMS on a Web server running the Linux oper-
ating system. We will work with MySQL in Chapter 10B.

MySQL is not the only open source DBMS product�in fact, as this is being written
there are 72 listed on the Wikipedia category page http://en.wikipedia.org/wiki/Category:
Open_source_database_management_systems.

One interesting outcome of the emergence of open source DBMS products is that compa-
nies that typically sell proprietary (closed source) DBMS products now offer free versions of their
products. For example, Microsoft now offers SQL Server 2008 R2 Express (www.microsoft.
com/express/Database), and Oracle Corporation makes its Oracle Database 10g Express Edition
available for free (www.oracle.com/technetwork/database/express-edition/overview/index.html).
Although neither of these products is as complete or as powerful (for example, in terms of maxi-
mum data storage allowed) as some other versions the companies sell, they are useful for projects
that require a small database. They are also ideal for students learning to use databases and SQL.

In the late 1990s, XML was defined to overcome the problems that occur when HTML is used
to exchange business documents. The design of the XML family of standards not only solved the
problems of HTML, it also meant that XML documents were superior for exchanging views of
database data. In 2002, Bill Gates said that �XML is the lingua-franca of the Internet Age.� As you
will learn in Chapter 12, however, two key problems that remain are (1) getting data from a database
and putting it into an XML document and (2) taking data from an XML document and putting it
into a database. In fact, this is where future application programmers can enter the picture.

XML database processing was given a further boost with the definition of XML Web service
standards such as SOAP (not an acronym), WSDL (Web Services Description Language), UDDI
(Universal Description, Discovery, and Integration), and others. Using Web services, it is possible
to expose nuggets of database processing to other programs that use the Internet infrastructure.
This means, for example, that in a supply chain management application a vendor can expose
portions of its inventory application to its suppliers. Further, it can do so in a standardized way.

The last row in Figure 1-25 brings us to the present. Built on the development of XML, the
NoSQL movement has emerged in recent years, particularly following a 2009 conference orga-
nized around work on open source distributed databases (discussed in Chapter 9). This movement
should really be called a NoRelational movement, because the work is really on databases that do
not follow the relational model introduced in this chapter and discussed in Chapter 3. As dis-
cussed in Chapter 12, these databases are often based on XML and are finding wide acceptance
in such applications as Facebook and Twitter.

The NoSQL movement brings us to the edge of the IT volcano, where the magma of new
technology is just now oozing from the ground. What happens next will be, in part, up to you.

Chapter 1 Introduction 25

The purpose of a database is to help people keep track of
things. Databases store data in tables in which each table has
data about a different type of thing. Instances of the thing are
stored in the rows of tables, and the characteristics of those
instances are stored in columns. In this text, table names are
written in all capital letters; column names are written in ini-
tial capital letters. Databases store data and the relationships
among the data. Databases store data, but they are structured
so that information can be created from that data.

Figure 1-5 lists many important examples of database
applications. Databases can be processed by a single user
or by many users. Those that support many users require
special concurrency-control mechanisms to ensure that one
user�s work does not conflict with a second user�s work.

Some databases involve just a few users and thousands
of rows of data in a few tables. At the other end of the spec-
trum, some large databases, such as those that support ERP
applications, support thousands of users and include many
millions of rows in several hundred different tables.

Some database applications support e-commerce activi-
ties. Some of the largest databases are those that track users�
responses to Web pages and Web page components. These
databases are used to analyze customers� responses to differ-
ent Web-based marketing programs.

Digital dashboards, data mining applications, and other
reporting applications use database data that is generated by
transaction processing systems to help manage the enter-
prise. Digital dashboards and reporting systems assess past
and current performance. Data mining applications predict
future performance. The basic components of a database
system are the database, the database management system
(DBMS), one or more database applications, and users.
Because Structured Query Language (SQL) is an internation-
ally recognized language for processing databases, it can be
considered a fifth component of a database system.

The functions of database applications are to create and
process forms, to process user queries, and to create and
process reports. Application programs also execute specific
application logic and control the application. Users provide
data and data changes and read data in forms, queries, and
reports.

A DBMS is a large, complicated program used to create,
process, and administer a database. DBMS products are
almost always licensed from software vendors. Specific func-
tions of a DBMS are summarized in Figure 1-12.

A database is a self-describing collection of integrated
tables. A relational database is a self-describing collection of
related tables. Tables are integrated because they store data
about the relationships among rows of data. Tables are
related by storing linking values of a common column. A
database is self-describing because it contains a description
of its contents within itself, which is known as metadata.
Most DBMS products carry metadata in the form of tables.

As shown in Figure 1-14, databases also contain indexes,
triggers, stored procedures, security features, and backup
and recovery data.

Microsoft Access is not just a DBMS, but rather an
application generator plus a DBMS. The application genera-
tor consists of applications components that create and
process forms, reports, and queries. The default Access
DBMS product is called the Access Data Engine (ADE),
which is not licensed as a separate product. SQL Server can
be substituted for the ADE to support larger databases.

Enterprise database systems do not combine applica-
tions and the DBMS as Access does. Instead, applications are
programs separate from each other and from the DBMS.
Figure 1-16 shows four categories of database applications:
client/server applications, Web applications, reporting appli-
cations, and XML Web services applications.

The five most popular DBMS products, in order of
power, features, and difficulty of use, are Microsoft Access,
MySQL, SQL Server, DB2, and Oracle Database. Microsoft
Access and SQL Server are licensed by Microsoft, DB2 is
licensed by IBM, and Oracle Database and MySQL are
licensed by Oracle Corporation.

Database design is both difficult and important. Most of
the first half of this text concerns database design. New data-
bases arise in three ways: from existing data, from new
systems development, and from database redesign. Normal-
ization is used to guide the design of databases from existing
data. Data models are used to create a blueprint from system
requirements. The blueprint is later transformed into a
database design. Most data models are created using the
entity-relationship model. Database redesign occurs when
an existing database is adapted to support new or changed
requirements or when two or more databases are integrated.

With regards to database processing, you can have one
of two roles: user or database administrator. You may be a
user of a database/DBMS as a knowledge worker or as an
application programmer. Alternatively, you might be a
database administrator who designs, constructs, and man-
ages the database itself. The domains of each role are shown
in Figure 1-23, and the priorities as to what you need to know
for each role are shown in Figure 1-24.

The history of database processing is summarized in
Figure 1-25. In the early years, prior to 1970, database pro-
cessing did not exist, and all data were stored in separated
files. The need for integrated processing drove the develop-
ment of early DBMS products. The CODASYL DBTG and
DL/I data models were prevalent. Of the DBMS products
used at that time, only ADABAS and IMS are still in use.

The relational model rose to prominence in the 1980s.
At first, the relational model was judged to be impractical,
but over time relational products such as DB2 and Oracle
Database achieved success. During this time, DBMS prod-
ucts were developed for personal computers as well. dBase,

26 Part 1 Getting Started

R:base, and Paradox were all PC DBMS products that were
eventually consumed by the success of Microsoft Access.

Object-oriented DBMS products were developed in the
1990s but never achieved commercial success. More recently,
Web-based databases have been developed to support
e-commerce. Open source DBMS products are readily

available, forcing commercial DBMS vendors to offer limited-
capacity free versions of their enterprise products. Features
and functions have been implemented to overcome the
stateless nature of HTTP. XML and XML Web services data-
bases are at the leading edge of database processing, as are
the databases in the NoSQL movement.

1.1 What is the purpose of a database?

1.2 What is the most commonly used type of database?

1.3 Give an example of two related tables other than one in this book. Use the STUDENT
and GRADE tables in Figure 1-3 as an example pattern for your tables. Name the tables
and columns using the conventions in this book.

1.4 For the tables you created in Review Question 1.3, what are the primary keys of each
table? Do you think that any of these primary keys be could be surrogate keys?

1.5 Explain how the two tables you provided in Review Question 1.3 are related. Which
table contains the foreign key, and what is the foreign key?

1.6 Show your two tables from Review Question 1.3 without the columns that represent
the relationships. Explain how the value of your two tables is diminished without the
relationships.

1.7 Define the terms data and information. Explain how the two terms differ.

1.8 Give an example of information that could be determined using the two tables you
provided in your answer to Review Question 1.3.

CODASYL DBTG
column
concurrency
data
Data Language/I (DL/I)
data marts
data model
data warehouses
database
database administrator
database application
database design
database management system (DBMS)
database migration
database system
enterprise-class database system
entity-relationship (ER) data modeling
foreign key
information
instance
integrated tables
knowledge worker

metadata
normal forms
normalization
NoSQL movement
object-oriented DBMS (OODBMS or

ODBMS)
object-oriented programming (OOP)
object-relational DBMS
personal database system
primary key
programmer
record
referential integrity constraints
relational database
relational model
relationship
row
self-describing
Structured Query Language (SQL)
surrogate key
table
user

Chapter 1 Introduction 27

1.9 Give examples of a single-user database application and a multiuser database applica-
tion other than the ones shown in Figure 1-5.

1.10 What problem can occur when a database is processed by more than one user?

1.11 Give an example of a database application that has hundreds of users and a very large
and complicated database. Use an example other than one in Figure 1-5.

1.12 What is the purpose of the largest databases at e-commerce companies such as
Amazon.com?

1.13 How do the e-commerce companies use these databases?

1.14 How do digital dashboard and data mining applications differ from transaction
processing applications?

1.15 Explain why a small database is not necessarily simpler than a large one.

1.16 Explain the components in Figure 1-7.

1.17 What are the functions of application programs?

1.18 What is Structured Query Language (SQL), and why is it important?

1.19 What does DBMS stand for?

1.20 What are the functions of the DBMS?

1.21 Name three vendors of DBMS products.

1.22 Define the term database.

1.23 Why is a database considered to be self-describing?

1.24 What is metadata? How does this term pertain to a database?

1.25 What advantage is there in storing metadata in tables?

1.26 List the components of a database other than user tables and metadata.

1.27 Is Microsoft Access a DBMS? Why or why not?

1.28 Describe the components shown in Figure 1-15.

1.29 What is the function of the application generator in Microsoft Access?

1.30 What is the name of the DBMS engine within Microsoft Access? Why do we rarely hear
about that engine?

1.31 Why does Microsoft Access hide important database technology?

1.32 Why would someone choose to replace the native Microsoft Access DBMS engine with
SQL Server?

1.33 Name the components of an enterprise-class database system.

1.34 Name and describe the four categories of database applications that would use an
enterprise-class database system.

1.35 How do database applications get and put database data?

1.36 Name the five DBMS products described in this chapter, and compare them in terms of
power, features, and ease of use.

1.37 List several consequences of a poorly designed database.

1.38 Explain two ways that a database can be designed from existing data.

1.39 What is a data warehouse? What is a data mart?

1.40 Describe the general process of designing a database for a new information system.

1.41 Explain two ways that databases can be redesigned.

28 Part 1 Getting Started

1.42 What does the term database migration mean?

1.43 Summarize the various ways that you might work with database technology.

1.44 What job functions does a knowledge worker perform?

1.45 What job functions does a database administrator perform?

1.46 Explain the meaning of the domains in Figure 1-23.

1.47 What need drove the development of the first database technology?

1.48 What are Data Language/I and CODASYL DBTG?

1.49 Who was E. F. Codd?

1.50 What were the early objections to the relational model?

1.51 Name two early relational DBMS products.

1.52 What are some of the reasons for the success of Oracle Database?

1.53 Name three early personal computer DBMS products.

1.54 What happened to the products in your answer to Review Question 1.53?

1.55 What was the purpose of OODBMS products? State two reasons that OODBMS
products were not successful.

1.56 What characteristic of HTTP was a problem for database processing applications?

1.57 What is an open source DBMS product? Which of the five DBMS products that you
named in answering Review Question 1.36 is historically an open source DBMS
product?

1.58 What has been the response of companies that sell proprietary DBMS products to the
open source DBMS products? Include two examples in your answer.

1.59 What is XML? What comment did Bill Gates make regarding XML?

1.60 What is the NoSQL movement? Name two applications that rely on NoSQL
databases.

To perform the following projects, you will need a computer that has Microsoft Access
installed. If you have no experience working with Microsoft Access, read Appendix A
before you proceed.

For this set of project questions, we will create a Microsoft Access database for
the Wedgewood Pacific Corporation (WPC). Founded in 1957 in Seattle, Washington,
WPC has grown into an internationally recognized organization. The company is
located in two buildings. One building houses the Administration, Accounting, Finance,
and Human Resources departments, and the second houses the Production,
Marketing, and Information Systems departments. The company database contains
data about company employees, departments, company projects, company assets
(for example, computer equipment), and other aspects of company operations.

In the following project questions, we will start by creating the WPC.accdb
database with the following two tables:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Chapter 1 Introduction 29

DepartmentName Text (35) Primary Key Yes

Type Key Required RemarksColumn Name

DEPARTMENT

BudgetCode Text (30) No Yes

OfficeNumber Text (15) No Yes

Phone Text (12) No Yes

Figure 1-26

Column Characteristics for
the DEPARTMENT Table

Administration BC-100-10 BLDG01-300 360-285-8100

BudgetCode OfficeNumber PhoneDepartmentName

Legal BC-200-10 BLDG01-200 360-285-8200

Accounting BC-300-10 BLDG01-100 360-285-8300

Finance BC-400-10 BLDG01-140 360-285-8400

Human Resources BC-500-10 BLDG01-180 360-285-8500

Production BC-600-10 BLDG02-100 360-287-8600

Marketing BC-700-10 BLDG02-200 360-287-8700

InfoSystems BC-800-10 BLDG02-270 360-287-8800

Figure 1-27

WPC DEPARTMENT Data

1.61 Create a Microsoft Access database named WPC.accdb.

1.62 Figure 1-26 shows the column characteristics for the WPC DEPARTMENT table. Using
the column characteristics, create the DEPARTMENT table in the WPC.accdb database.

1.63 Figure 1-27 shows the data for the WPC DEPARTMENT table. Using Datasheet view,
enter the data shown in Figure 1-27 into your DEPARTMENT table.

1.64 Figure 1-28 shows the column characteristics for the WPC EMPLOYEE table. Using the
column characteristics, create the EMPLOYEE table in the WPC.accdb database.

1.65 Create the relationship and referential integrity constraint between DEPARTMENT
and EMPLOYEE. Enable enforcing of referential integrity and cascading of data
updates, but do not enable cascading of data from deleted records.

1.66 Figure 1-29 shows the data for the WPC EMPLOYEE table. Using Datasheet view, enter
the first three rows of the data shown in Figure 1-29 into your EMPLOYEE table.

1.67 Using the Microsoft Access form wizard, create a data input form for the EMPLOYEE
table and name it WPC Employee Data Form. Make any adjustments necessary to the
form so that all data display properly. Use this form to enter the rest of the data in the
EMPLOYEE table shown in Figure 1-29 into your EMPLOYEE table.

1.68 Using the Microsoft Access report wizard, create a report named Wedgewood Pacific
Corporation Employee Report that presents the data contained in your EMPLOYEE
table sorted first by employee last name and then by employee first name. Make any
adjustments necessary to the report so that all headings and data display properly.
Print a copy of this report.

30 Part 1 Getting Started

[AutoNumber] Mary Jacobs Administration

FirstName LastName DepartmentEmployeeNumber

[AutoNumber] Rosalie Jackson Administration

[AutoNumber] Richard Bandalone Legal

[AutoNumber] Tom Caruthers Accounting

[AutoNumber] Heather Jones Accounting

[AutoNumber] Mary Abernathy Finance

[AutoNumber] George Smith Human Resources

[AutoNumber] Tom Jackson Production

[AutoNumber] George Jones Production

[AutoNumber] Ken Numoto Marketing

[AutoNumber] James Nestor InfoSystems

[AutoNumber] Rick Brown InfoSystems

360-285-8110

Phone

360-285-8120

360-285-8210

360-285-8310

360-285-8320

360-285-8410

360-285-8510

360-287-8610

360-287-8620

360-287-8710

360-287-8820

Mary.Jacobs@WPC.com

Email

Rosalie.Jackson@WPC.com

Richard.Bandalone@WPC.com

Tom.Caruthers@WPC.com

Heather.Jones@WPC.com

Mary.Abernathy@WPC.com

George.Smith@WPC.com

Tom.Jackson@WPC.com

George.Jones@WPC.com

Ken.Numoto@WPC.com

James.Nestor@WPC.com

Rick.Brown@WPC.com

Figure 1-29

WPC EMPLOYEE Data

1.69 Using the Microsoft Access form wizard, create a form that has all of the data from
both tables. When asked how you want to view your data, select by DEPARTMENT.
Choose the default options for other questions that the wizard asks. Open your form
and page through your departments.

1.70 Using the Microsoft Access report wizard, create a report that has all of the data from both
tables. When asked how you want to view your data, select by DEPARTMENT. For the data
contained in your EMPLOYEE table in the report, specify that it will be sorted first
by employee last name and then by employee first name. Make any adjustments necessary
to the report so that all headings and data display properly. Print a copy of this report.

1.71 Explain, to the level of detail in this chapter, what is going on within Microsoft Access
in Project Questions 1.67, 1.68, 1.69, and 1.70. What subcomponent created the form
and report? Where is the data stored? What role do you think SQL is playing?

EmployeeNumber AutoNumber Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

EMPLOYEE

FirstName Text (25) No Yes

LastName Text (25) No Yes

Department Text (35) No Yes

Phone Text (12) No No

Email Text (100) No Yes

Figure 1-28

Column Characteristics
for the EMPLOYEE Table

In today�s business environment, users typically use data stored in databases
to produce information that can help them make business decisions. In
Chapter 13, we will take an in-depth look at business intelligence (BI) systems,
which are information systems used to support management decisions by
producing information for assessment, analysis, planning, and control. In this
chapter, we will see how BI systems users use ad-hoc queries, which are
essentially questions that can be answered using database data. For example,

� To understand the use of extracted data sets in
business intelligence (BI) systems

� To understand the use of ad-hoc queries in business
intelligence (BI) systems

� To understand the history and significance of Structured
Query Language (SQL)

� To understand the SQL SELECT/FROM/WHERE
framework as the basis for database queries

� To create SQL queries to retrieve data from a single
table

� To create SQL queries that use the SQL SELECT,
FROM, WHERE, ORDER BY, GROUP BY, and HAVING
clauses

Chapter Objectives

Introduction to
Structured Query
Language2

� To create SQL queries that use the SQL DISTINCT,
AND, OR, NOT, BETWEEN, LIKE, and IN keywords

� To create SQL queries that use the SQL built-in
functions of SUM, COUNT, MIN, MAX, and AVG with
and without the SQL GROUP BY clause

� To create SQL queries that retrieve data from a single
table while restricting the data based upon data in
another table (subquery)

� To create SQL queries that retrieve data from multiple
tables using the SQL JOIN operation

31

32 Part 1 Getting Started

in English an ad-hoc query would be �How many customers in Portland,
Oregon, bought our green baseball cap?� These queries are called ad-hoc
because they are created by the user as needed, rather than programmed into
an application.

This approach to database querying has become important enough that
some companies produce dedicated applications to help users who are not
familiar with database structures create ad-hoc queries. One example is
Open Text�s Open Text Business Intelligence product www.opentext.com/
2/global/sol-products/sol-pro-business-intelligence/pro-llecm-business-
intelligence.htm (formerly known as LiveLink ECM BI Query), which uses a
user-friendly graphical user interface (GUI) to simplify the creation of ad-hoc
queries. Personal databases such as Microsoft Access also have ad-hoc
query tools available. Microsoft Access uses a GUI style called query by
example (QBE) to simplify ad-hoc queries.

However, Structured Query Language (SQL)�the universal query language
of relational DBMS products�is always behind the user-friendly GUIs. In this
chapter, we will introduce SQL by learning how to write and run SQL queries.
We will then return to SQL in Chapter 7 to learn how to use it for other
purposes, such as how to create and add data to the databases themselves.

Components of a Data Warehouse

BI systems typically store their associated data in data warehouses, which are database
systems that have data, programs, and personnel that specialize in the preparation of data for
BI processing. Data warehouses will be discussed in detail in Chapter 13, and for now we will
simply note that data warehouses vary in scale and scope. They can be as simple as a sole
employee processing a data extract on a part-time basis or as complex as a department with
dozens of employees maintaining libraries of data and programs.

Figure 2-1 shows the components of a typical company-wide data warehouse. Data are
read from operational databases (the databases that store the company�s current day-to-day

ETL System

Data Extraction/
Cleaning/

Preparation
Programs

Data Warehouse
DBMS

Business
Intelligence

Tools

Other
Internal

Data

Data
Warehouse
Metadata

Data
Warehouse
Database

BI Users

Operational
Databases

External
Data

Figure 2-1

Components of a Data
Warehouse

Chapter 2 Introduction to Structured Query Language 33

A small, specialized data warehouse is referred to as a data mart. Data
marts and their relationship to data warehouses are discussed in Chapter 13.

Note that the DBMS used for the data warehouse may or may not be the same DBMS
product used for the operational databases. For example, operational databases may be
stored in an Oracle Database 11g DBMS, while the data warehouse uses a Microsoft SQL
Server 2008 R2 DBMS.

Cape Codd Outdoor Sports

For our work in this chapter, we will use data from Cape Codd Outdoor Sports (although based
on a real outdoor retail equipment vendor, Cape Codd Outdoor Sports is a fictitious company).
Cape Codd sells recreational outdoor equipment in 15 retail stores across the United States
and Canada. It also sells merchandise over the Internet from a Web storefront application and
via mail order. All retail sales are recorded in a sales database managed by an Oracle Database
11g DBMS, as shown in Figure 2-2.

The Extracted Retail Sales Data

Cape Codd�s marketing department wants to perform an analysis of in-store sales. Accordingly,
marketing analysts ask the IT department to extract retail sales data from the operational data-
base. To perform the marketing study, they do not need all of the order data. They want just the
tables and columns shown in Figure 2-3. Looking at this figure, it is easy to see that columns

Point-of-Sale
Application

Store 2
. . .

Sales
Extraction
Database

Oracle
Database 11g

Sales
Database

Point-of-Sale
Application

Store 15

Web Storefront
Internet Sales

Mail Order
Sales

Point-of-Sale
Application

Store 1

Internet Customers

Mail Order Customers

Retail Store Sales
Data Extraction

Figure 2-2

The Cape Codd Retail Sales
Data Extraction Process

transaction data), from other internal data, or from external data source by the Extract,
Transform, and Load (ETL) system. The ETL system then cleans and prepares the data
for BI processing. This can be a complex process, but the data is then stored in the data
warehouse DBMS for use by BI users who access the data by various BI tools. As described in
Chapter 1, the DBMS used for the data warehouse stores both databases and the metadata for
those databases.

34 Part 1 Getting Started

The RETAIL_ORDER
table�the key symbol
shows the primary key

The relationship
between
RETAIL_ORDER
and ORDER_ITEM�
the number 1 and the
infinity symbol indicate
that one retail order
may be linked to many
order items by
OrderNumber

Figure 2-3

Cape Codd Extracted Retail
Sales Data Database Tables
and Relationships

that would be needed in an operational sales database are not included in the extracted
data. For example, the RETAIL_ORDER table does not have CustomerLastName, Customer-
FirstName , and OrderDay columns. The data types for the columns in the tables is shown in
Figure 2-4.

As shown in Figures 2-3 and 2-4, three tables are needed: RETAIL_ORDER,
ORDER_ITEM, and SKU_DATA. The RETAIL_ORDER table has data about each retail sales
order, the ORDER_ITEM table has data about each item in an order, and the SKU_DATA table
has data about each stock-keeping unit (SKU). SKU is a unique identifier for each particular
item that Cape Codd sells. The data stored in the tables is shown in Figure 2-5.

The dataset shown is a small dataset we are using to illustrate the con-
cepts explained in this chapter. A �real world� data extract would produce

a much larger dataset.

Table

RETAIL_ORDER

Column Date Type

Integer

Integer

Character (9)

Character (12)OrderMonth

ORDER_ITEM

SKU_DATA

OrderNumber

StoreNumber

StoreZip

Integer

Character (35)

Character (30)

Character (30)Buyer

SKU

SKU_Description

Department

OrderYear

OrderTotal

Price

OrderNumber

SKU

Quantity

ExtendedPrice

Integer

Currency

Integer

Integer

Integer

Currency

Currency

Figure 2-4

Cape Codd Extracted Retail
Sales Data Format

Chapter 2 Introduction to Structured Query Language 35

RETAIL_ORDER

SKU_DATA

ORDER_ITEM

Figure 2-5

Sample Data in the Cape
Codd Extracted Retail Sales
Database

RETAIL_ORDER Data

As shown in Figures 2-3 and 2-5, the RETAIL_ORDER table has columns for OrderNumber,
StoreNumber, StoreZip (the zip code of the store selling the order), OrderMonth, OrderYear,
and OrderTotal:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)

Sample data for RETAIL_ORDER is shown in Figure 2-5. This extract only includes data for
retail store sales, and operational data for other types of sales (and returns and other sales-
related transactions) are not copied during the extraction process. Further, the data extraction
process selects only a few columns of the operational data�the Point of Sale (POS) and other
sales applications process far more data than that shown here. The operational database also
stores the data in a different format. For example, the order data in the an Oracle Database 11g
DBMS operational database contains a column named OrderDate that stores the data in the
date format MM/DD/YYYY (e.g., 10/22/2010 for October 22, 2010). The extraction program
used to populate the retail sales extracted data database converts OrderDate into two separate
values of OrderMonth and OrderYear. This is done because this is the data format that marketing
wants. Such filtering and data transformation are typical of a data extraction process.

ORDER_ITEM Data

As shown in Figures 2-3 and 2-4, the ORDER_ITEM table has columns for OrderNumber, SKU,
Quantity, Price, and ExtendedPrice (which equals Quantity × Price):

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

Thus, the ORDER_ITEM table stores an extract of the items purchased in each order. There
is one row in the table for each item in an order, and this item is identified by its SKU. To

36 Part 1 Getting Started

understand this table, think about a sales receipt you get from a retail store. That receipt has
data for one order. It includes basic order data such as the date and order total, and it has one
line for each item you purchase. The rows in the ORDER_ITEM table correspond to the lines
on such an order receipt.

The OrderNumber Column in ORDER_ITEM relates each row in ORDER_ITEM to the
corresponding OrderNumber in the RETAIL_ORDER table. SKU identifies the actual item pur-
chased by its stock-keeping unit number. Further, the SKU column in ORDER_ITEM relates
each row in ORDER_ITEM to its corresponding SKU in the SKU_DATA table (discussed in the
next section). Quantity is the number of items of that SKU purchased in that order. Price is the
price of each item, and ExtendedPrice is equal to Quantity × Price.

ORDER_ITEM data are shown in the bottom part of Figure 2-5. The first row relates to
order 1000 and to SKU 201000. For SKU 201000, one item was purchased for $300.00, and the
ExtendedPrice was $300.00. The second row shows the second item in order 1000. There, 1 of
item 202000 was purchased for $130.00 and the ExtendedPrice is 1 × $130.00, or $130.00.
This table structure of an ORDER table related to an ORDER_ITEM table is typical for sales
system with many items in one order. We will discuss it in detail in Chapters 5 and 6,
where we will create a data model of a complete order and then design the database for that
data model.

You would expect the total of ExtendedPrice for all rows for a given order
to equal OrderTotal in the RETAIL_ORDER table. They do not. For order

1000, for example, the sum of ExtendedPrice in the relevant rows of ORDER_ITEM is
$300.00 + $130.00 = $430.00. However, the OrderTotal for order 1000 is $445.00. The
difference occurs because OrderTotal includes tax, shipping, and other charges that do
not appear in the data extract.

SKU_DATA Table

As shown in Figures 2-3 and 2-4, the SKU_DATA table has columns SKU, SKU_Description,
Department, and Buyer:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

SKU is an integer value that identifies a particular product sold by Cape Codd. For example,
SKU 100100 identifies a yellow, standard-size SCUBA tank, whereas SKU 100200 identifies the
magenta version of the same tank. SKU_Description contains a brief text description of each
item. Department and Buyer identify the department and individual who is responsible for
purchasing the product. As with the other tables, these columns are a subset of the SKU data
stored in the operational database.

The Complete Cape Codd Data Extract Schema

A database schema is a complete logical view of the database, containing all the tables, all the
columns in each table, the primary key of each table, and the foreign keys that link the tables
together. The schema for the Cape Codd sales data extract therefore is:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

SKU_DATA (SKU, SKU_Description, Department, Buyer)

Note how the composite primary key for ORDER_ITEM also contains the foreign keys linking
this table to RETAIL_ORDER and SKU_DATA.

Chapter 2 Introduction to Structured Query Language 37

In the Review Questions at the end of this chapter, we will extend this
schema to include two additional tables: WAREHOUSE and INVENTORY.

The figures in this chapter include these two tables in the Cape Codd database, but they
are not used in our discussion of SQL in the chapter text.

Data Extracts Are Common

Before we continue, realize that the data extraction process described here is not just an
academic exercise. To the contrary, such extraction processes are realistic, common, and
important BI system operations. Right now, hundreds of businesses worldwide are using their
BI systems to create extract databases just like the one created by Cape Codd.

In the next sections of this chapter, you will learn how to write SQL statements to process
the extracted data via ad-hoc SQL queries, which is how SQL is used to �ask questions� about
the data in the database. This knowledge is exceedingly valuable and practical. Again, right
now, as you read this paragraph, hundreds of people are writing SQL to create information
from extracted data. The SQL you will learn in this chapter will be an essential asset to you as
a knowledge worker, application programmer, or database administrator. Invest the time to
learn SQL�the investment will pay great dividends later in your career.

SQL Background

SQL was developed by the IBM Corporation in the late 1970s. It was endorsed as a national
standard by the American National Standards Institute (ANSI) in 1986 and by the
International Organization for Standardization (ISO) (and no, that�s not a typo�the
acronym is ISO, not IOS!) in 1987. Subsequent versions of SQL were adopted in 1989 and 1992.
The 1992 version is sometimes referred to as SQL-92, or sometimes as ANSI-92 SQL. In 1999,
SQL:1999 (also referred to as SQL3), which incorporated some object-oriented concepts, was
released. This was followed by the release of SQL:2003 in 2003, SQL:2006 in 2006, and, most
recently, SQL:2008 in 2008. Each of these added new features or extended existing SQL
features, the most important of which for us is SQL support for Extensible Markup
Language (XML). (XML is discussed in Chapter 12.) Our discussion in this chapter and
in Chapter 7 focuses on common language features that have been in SQL since SQL-92,
but does include some features from SQL:2003 and SQL:2008. We discuss the SQL XML
features in Chapter 12.

SQL is not a complete programming language, like Java or C#. Instead, it is called a data
sublanguage, because it has only those statements needed for creating and processing data-
base data and metadata. You can use SQL statements in many different ways. You can submit
them directly to the DBMS for processing. You can embed SQL statements into client/server
application programs. You can embed them into Web pages, and you can use them in report-
ing and data extraction programs. You also can execute SQL statements directly from Visual
Studio.NET and other development tools.

SQL statements are commonly divided into categories, three of which are of interest to
us here:

� Data definition language (DDL) statements, which are used for creating tables,
relationships, and other structures

� Data manipulation language (DML) statements, which are used for querying,
inserting, modifying, and deleting data

� SQL/Persistent stored modules (SQL/PSM) statements, which extend SQL
by adding procedural programming capabilities, such as variables and flow-
of-control statements, that provide some programmability within the SQL
framework.

38 Part 1 Getting Started

This chapter considers only DML statements for querying data. The remaining DML state-
ments for inserting, modifying, and deleting data are discussed in Chapter 7, where we will also
discuss SQL DDL statements. SQL/PSM is introduced in Chapter 7, and the specific variations
of it used with each DBMS are discussed in detail in Chapter 10 for SQL Server 2008 R2,
Chapter 10A for Oracle Database 11g, and Chapter 10B for MySQL.

Some authors treat SQL queries as a separate part of SQL rather than as
a part of SQL DML. We note that the SQL/Framework section of the SQL

specification includes queries as part of the �SQL-data statements� class of statements
along with the rest of the SQL DML statements, and treat them as SQL DML statements.

The four actions listed for SQL DML are sometimes referred to as CRUD:
create, read, update, and delete. We do not use this term in this book, but

now you know what it means.

SQL is ubiquitous, and SQL programming is a critical skill. Today, nearly all DBMS
products process SQL, with the only exceptions being some of the emerging NoSQL movement
products. Enterprise-class DBMSs such as Microsoft SQL Server 2008 R2, Oracle Database 11g,
Oracle MySQL 5.5, and IBM DB2 require that you know SQL. With these products, all data
manipulation is expressed using SQL.

As explained in Chapter 1, if you have used Microsoft Access, you have used SQL, even if
you didn�t know it. Every time you process a form, create a report, or run a query, Microsoft
Access generates SQL and sends that SQL to Microsoft Access� internal ADE DBMS engine. To
do more than elementary database processing, you need to uncover the SQL hidden by
Microsoft Access. Further, once you know SQL, you will find it easier to write a query state-
ment in SQL rather than fight with the graphical forms, buttons, and other paraphernalia that
you must use to create queries with the Microsoft Access query-by-example style GUI.

The SQL SELECT/FROM/WHERE Framework

This section introduces the fundamental statement framework for SQL query statements.
After we discuss this basic structure, you will learn how to submit SQL statements to
Microsoft Access, SQL Server, Oracle Database, and MySQL. If you choose, you can then follow
along with the text and process the SQL statements as they are explained in the rest of this
chapter. The basic form of SQL queries uses the SQL SELECT/FROM/WHERE framework.
In this framework:

� The SQL SELECT clause specifies which columns are to be listed in the query
results.

� The SQL FROM clause specifies which tables are to be used in the query.
� The SQL WHERE clause specifies which rows are to be listed in the query results.

Let�s work through some examples so that this framework makes sense to you.

Reading Specified Columns from a Single Table

We begin very simply. Suppose we want to obtain just the values of the Department and Buyer
columns of the SKU_DATA table. An SQL statement to read that data is the following:

SELECT Department, Buyer

FROM SKU_DATA;

Chapter 2 Introduction to Structured Query Language 39

Using the data in Figure 2-4, when the DBMS processes this statement the result will be:

When SQL statements are executed, the statements transform tables. SQL statements
start with a table, process that table in some way, and then place the results in another table
structure. Even if the result of the processing is just a single number, that number is considered
to be a table with one row and one column. As you will learn at the end of this chapter, some
SQL statements process multiple tables. Regardless of the number of input tables, though, the
result of every SQL statement is a single table.

Notice that SQL statements terminate with a semicolon (;) character. The semicolon is
required by the SQL standard. Although some DBMS products will allow you to omit the
semicolon, some will not, so develop the habit of terminating SQL statements with a semicolon.

SQL statements can also include an SQL comment, which is a block of text that is used to
document the SQL statement while not executed as part of the SQL statement. SQL com-
ments are enclosed in the symbols /* and */, and any text between these symbols is ignored
when the SQL statement is executed. For example, here is the previous SQL query with an SQL
comment added to document the query by including a query name:

/* *** SQL-Query-CH02-01 *** */
SELECT Department, Buyer
FROM SKU_DATA;

Because the SQL comment is ignored when the SQL statement is executed, the output from
this query is identical to the query output shown above. We will use similar comments to label the
SQL statements in this chapter as an easy way to reference a specific SQL statement in the text.

Specifying Column Order in SQL Queries from a Single Table

The order of the column names in the SELECT phrase determines the order of the columns in
the results table. Thus, if we switch Buyer and Department in the SELECT phrase, they will be
switched in the output table as well. Hence, the SQL statement:

/* *** SQL-Query-CH02-02 *** */
SELECT Buyer, Department
FROM SKU_DATA;

produces the following result table:

40 Part 1 Getting Started

Notice that some rows are duplicated in these results. The data in the first and second
row, for example, are identical. We can eliminate duplicates by using the SQL DISTINCT
keyword, as follows:

/* *** SQL-Query-CH02-03 *** */

SELECT DISTINCT Buyer, Department

FROM SKU_DATA;

The result of this statement, where all of the duplicate rows have been removed, is:

The reason that SQL does not automatically eliminate duplicate rows is
that it can be very time consuming to do so. To determine if any rows are

duplicates, every row must be compared with every other row. If there are 100,000 rows
in a table, that checking will take a long time. Hence, by default duplicates are not
removed. However, it is always possible to force their removal using the DISTINCT
keyword.

Suppose that we want to view all of the columns of the SKU_DATA table. To do so, we can
name each column in the SELECT statement as follows:

/* *** SQL-Query-CH02-04 *** */

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

The result will be a table with all of the rows and all four of the columns in SKU_DATA:

However, SQL provides a shorthand notation for querying all of the columns of a table.
The shorthand is to use the SQL asterisk (*) wildcard character to indicate that we want
all the columns to be displayed:

/* *** SQL-Query-CH02-05 *** */

SELECT *

FROM SKU_DATA;

Chapter 2 Introduction to Structured Query Language 41

Reading Specified Rows from a Single Table

Suppose we want all of the columns of the SKU_DATA table, but we want only the rows for the
Water Sports department. We can obtain that result by using the SQL WHERE clause as
follows:

/* *** SQL-Query-CH02-06 *** */

SELECT *

FROM SKU_DATA

WHERE Department=’Water Sports’;

The result of this statement will be:

The result will again be a table with all rows and all four of the columns in SKU_DATA:

In an SQL WHERE clause, if the column contains text or date data, the comparison values
must be enclosed in single quotation marks (’{text or date data}’). If the column contains
numeric data, however, the comparison values need not be in quotes. Thus, to find all of the
SKU rows with a value greater than 200,000, we would use the SQL statement (note that no
comma is included in the numeric value code):

/* *** SQL-Query-CH02-07 *** */

SELECT *

FROM SKU_DATA

WHERE SKU > 200000;

The result is:

42 Part 1 Getting Started

SQL is very fussy about single quotes. It wants the plain, nondirectional
quotes found in basic text editors. The fancy directional quotes produced

by many word processors will produce errors. For example, the data value ’Water Sports’
is correctly stated, but �Water Sports� is not. Do you see the difference?

Reading Specified Columns and Rows from a Single Table

So far, we have selected certain columns and all rows and we have selected all columns and
certain rows. We can combine these operations to select certain columns and certain rows by
naming the columns we want and then using the SQL WHERE clause. For example, to obtain
the SKU_Description and Department of all products in the Climbing department, we use the
SQL query:

/* *** SQL-Query-CH02-08 *** */

SELECT SKU_Description, Department

FROM SKU_DATA
WHERE Department=’Climbing’;

The result is:

Standard practice is to write SQL statements with the SELECT, FROM, and
WHERE clauses on separate lines. This practice is just a coding conven-

tion, however, and SQL parsers do not require it. You could code SQL-Query-CH02-09
all on one line as:

SELECT SKU_Description, Buyer FROM SKU_DATA WHERE Department=
’Climbing’;

All DBMS products would process the statement written in this fashion. However, the
standard multiline coding convention makes SQL easier to read, and we encourage you
to write your SQL according to it.

SQL does not require that the column used in the WHERE clause also appear in the
SELECT clause column list. Thus, we can specify:

/* *** SQL-Query-CH02-09 *** */

SELECT SKU_Description, Buyer

FROM SKU_DATA
WHERE Department=’Climbing’;

where the qualifying column, Department, does not appear in the SELECT clause column list.
The result is:

Chapter 2 Introduction to Structured Query Language 43

When using a date in the WHERE clause, you can usually enclose it in sin-
gle quotes just as you would a character string, However, when using

Microsoft Access you must enclose dates with the # symbol. For example:

SELECT *

FROM PROJECT

WHERE StartDate = #05/10/11#;

Submitting SQL Statements to the DBMS

Before continuing the explanation of SQL, it will be useful for you to learn how to submit SQL
statements to specific DBMS products. That way, you can work along with the text by keying
and running SQL statements as you read the discussion. The particular means by which you
submit SQL statements depends on the DBMS. Here we will describe the process for Microsoft
Access, Microsoft SQL Server, Oracle Database, and Oracle MySQL.

You can learn SQL without running the queries in a DBMS, so if for some
reason you do not have Microsoft Access, SQL Server, Oracle Database,

or MySQL readily available, do not despair. You can learn SQL without them. Chances
are your instructor, like a lot of us in practice today, learned SQL without a DBMS. It is
just that SQL statements are easier to understand and remember if you can run the SQL
while you read. Given that there are freely downloadable versions of Microsoft
SQL Server 2008 R2 Express edition, Oracle Database 10g Express Edition, and Oracle
MySQL Server Community Edition, you can have an installed DBMS to run these SQL
examples even if you have not purchased Microsoft Access. See Chapters 10, 10A, and
10B for specific instructions for creating databases using each of these products. The
SQL scripts needed to create the Cape Codd Outdoor Sports database used in this
chapter are available at www.pearsonhighered.com/kroenke.

Using SQL in Microsoft Access 2010

Before you can execute SQL statements, you need a computer that has Microsoft Access
installed, and you need a Microsoft Access database that contains the tables and sample data
in Figure 2-5. Microsoft Access is part of many versions of the Microsoft Office suite, so it
should not be too difficult to find a computer that has it.

Because Microsoft Access is commonly used in classes that use this book as a textbook,
we will look how to use SQL in Microsoft Access in some detail. Before we proceed, however,
we need to discuss a specific peculiarity of Microsoft Access�the limitations of the default
version of SQL used in Microsoft Access.

�Does Not Work with Microsoft Access ANSI-89 SQL�
As mentioned previously, our discussion of SQL is based on SQL features present in SQL
standards since the ANSI SQL-92 standard (which Microsoft refers to as ANSI-92 SQL). Unfor-
tunately, Microsoft Access 2010 still defaults to the earlier SQL-89 version�Microsoft calls it
ANSI-89 SQL or Microsoft Jet SQL (after the Microsoft Jet DBMS engine used by Microsoft
Access). ANSI-89 SQL differs significantly from SQL-92, and, therefore, some features of the
SQL-92 language will not work in Microsoft Access.

Microsoft Access 2010 (and the earlier Microsoft Access 2003 and 2007 versions) does
contain a setting that allows you to use SQL-92 instead of the default ANSI-89 SQL. Microsoft
included this option to allow Microsoft Access tools such as forms and reports to be used in
application development for Microsoft SQL Server, which supports newer SQL standards. To
set the option in Microsoft Access 2010, click the File command tab and then click the

44 Part 1 Getting Started

The Object
Designers button

The SQL Server
Compatible Syntax
(ANSI 92) option
controls the use of
SQL-89 versus
SQL-92 syntax in
Access queries

Use this check box to
use SQL-92 syntax
in just the open
database

Use this check box to
use SQL-92 syntax
when new databases
are created

Figure 2-6

The Microsoft Access 2010
Options Object Designers
Page

Figure 2-7

The Microsoft Access 2010
SQL-Syntax Information
Dialog Box

Options command to open the Access Options dialog box. In the Access Options dialog box,
click the Object Designers button to display the Access Options Object Designers page, as
shown in Figure 2-6.

As shown in Figure 2-6, the SQL Server Compatible Syntax (ANSI 92) options control
which version of SQL is used in a Microsoft Access 2010 database. If you check the This data-
base check box, you will use SQL-92 syntax in the current database. Or, you can check the
Default for new databases check box to make SQL-92 syntax the default for all new data-
bases you create. When you click the OK button to save the changed SQL syntax option, the
SQL-Syntax Information dialog box shown in Figure 2-7 will be displayed. Read the informa-
tion, and then click the OK button to close the dialog box.

Unfortunately, very few Microsoft Access users or organizations using Microsoft Access
are likely to set the Microsoft Access SQL version to the SQL-92 option, and, in this chapter, we
assume that Microsoft Access is running in the default ANSI-89 SQL mode. One advantage of
doing so is that it will help you understand the limitations of Microsoft Access ANSI-89 SQL
and how to cope with them.

In the discussion that follows, we use �Does Not Work with Microsoft Access ANSI-89
SQL� boxes to identify SQL commands and SQL clauses that do not work in Microsoft Access
ANSI-89 SQL. We also identify any workarounds that are available. Remember that the one
permanent workaround is to choose to use the SQL-92 syntax option in the databases you
create!

Nonetheless, two versions of the Microsoft Access 2010 Cape Codd Outdoor Sports data-
base are available at www.pearsonhighered.com/kroenke for your use with this chapter.

Chapter 2 Introduction to Structured Query Language 45

The Microsoft Access database file named Cape-Codd.accdb is set to use Microsoft Access
ANSI-89, whereas the Microsoft Access database file name Cape-Codd-SQL-92.accdb is set to
use Microsoft Access SQL-92. Choose the one you want to use (or use them both and compare
the results!). Note that these files contain two additional tables (INVENTORY and WARE-
HOUSE) that we will not use in this chapter, but that you will need for the Review Questions at
the end of the chapter.

Alternatively, of course, you can create your own Microsoft Access database and then
add the tables and data in Figures 2-3, 2-4, and 2-5, as described in Appendix A. If you create
your own database, look at the Review Questions at the end of the chapter and create the
INVENTORY and WAREHOUSE tables shown there in addition to the RETAIL_ORDER,
ORDER_ITEM, and SKU tables shown in the chapter discussion. This will make sure that
what you see on your monitor matches the screenshots in this chapter. Whether you down-
load the database file or build it yourself, you will need to do one or the other before you can
proceed.

Processing SQL Statements in Microsoft Access 2010
To process an SQL statement in Microsoft Access 2010, first open the database in Microsoft
Access as described in Appendix A and then create a new tabbed Query window.

Opening a Microsoft Access Query Window in Design View

1. Click the Create command tab to display the Create command groups, as shown in
Figure 2-8.

2. Click the Query Design button.
3. The Query1 tabbed document window is displayed in Design view, along with the

Show Table dialog box, as shown in Figure 2-9.
4. Click the Close button on the Show Table dialog box. The Query1 document window

now looks as shown in Figure 2-10. This window is used for creating and editing
Microsoft Access queries in Design view and is used with Microsoft Access QBE.

Note that in Figure 2-10 the Select button is selected in the Query Type group on the
Design tab. You can tell this is so because active or selected buttons are always shown in color
on the Ribbon. This indicates that we are creating a query that is the equivalent of an SQL
SELECT statement.

The Create
command tab

The Query Design
button

The INVENTORY and
WAREHOUSE tables
will be used in the
chapter Review
Exercises

Figure 2-8

The Create Command Tab

46 Part 1 Getting Started

The Query1 tabbed
document window

The Show Table
dialog box

Click the Close button

Figure 2-9

The Show Table Dialog Box

The Query Tools tab

The SQL View button

The View gallery
drop-down arrow
button

The Select Query
Type button

The Query Type
command group

The Query1 tabbed
document window in
Design view

The Design
command tab

Figure 2-10

The Query Tools Contextual
Command Tab

Also note that in Figure 2-10 the View gallery is available in the Results group of the
Design tab. We can use this gallery to switch between Design view and SQL view. However, we
can also just use the displayed SQL View button to switch to SQL view. The SQL View button
is being displayed because Microsoft Access considers that to be the view you would most
likely choose in the gallery if you used it. Microsoft Access always presents a �most likely
needed� view choice as a button above the View gallery.

For our example SQL query in Microsoft Access, we will use SQL-Query-CH02-01, the first
SQL query earlier in our discussion:

/* *** SQL-Query-CH02-01 *** */
SELECT Department, Buyer
FROM SKU_DATA;

Chapter 2 Introduction to Structured Query Language 47

The Query1 window
in SQL view

The SQL SELECT;
statement�this is an
incomplete statement
and will not run as
written�it is intended
as the start of an SQL
query

Figure 2-11

The Query1 Window in SQL
View

The Run button

The complete SQL
query statement

Figure 2-12

The SQL Query

Opening a Microsoft Access SQL Query Window and Running a Microsoft Access SQL Query

1. Click the SQL View button in the Results group on the Design tab. The Query1 win-
dow switches to the SQL view, as shown in Figure 2-11. Note the basic SQL command
SELECT; that�s shown in the window. This is an incomplete command, and running
it will not produce any results.

2. Edit the SQL SELECT command to read (do not include the SQL comment line):

SELECT Department, Buyer

FROM SKU_DATA;

as shown in Figure 2-12.
3. Click the Run button on the Design tab. The query results appear, as shown in Figure 2-13.

Compare the results shown in Figure 2-13 to the SQL-Query-CH02-01 results shown
on page 39.

Because Microsoft Access is a personal database and includes an application generator,
we can save Microsoft Access queries for future use. Enterprise-level DBMS products generally
do not allow us to save queries (although they do allow us to save SQL Views within the data-
base and SQL query scripts as separate files�we will discuss these methods later).

The SQL query results

Figure 2-13

The SQL Query Results

48 Part 1 Getting Started

The Save button

The Save As
dialog box

Type the query
name SQLQuery-
CH02-01 here

The OK button

Figure 2-14

The Save As Dialog box

The query window is
now named
SQLQuery-CH02-01

The Queries section
of the Navigation Pane

The SQLQuery-
CH02-01 query object

Figure 2-15

The Named and Saved
Query

Saving a Microsoft Access SQL Query

1. To save the query, click the Save button on the Quick Access Toolbar. The Save As dia-
log box appears, as shown in Figure 2-14.

2. Type in the query name SQL-Query-CH02-01 and then click the OK button. The query
is saved, and the window is renamed with the query name. As shown in Figure 2-15,
the query document window is now named SQ-LQuery-CH02-01, and a newly
created SQL-Query-CH02-01 query object appears in a Queries section of the
Navigation Pane.

3. Close the SQL-Query-CH02-01 window by clicking the document window�s Close
button.

4. If Microsoft Access displays a dialog box asking whether you want to save changes to
the design of the query SQL-Query-CH02-01, click the Yes button.

At this point, you should work through each of the other nine queries in the preceding dis-
cussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQL-Query-
CH02-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

Using SQL in Microsoft SQL Server 2008 R2

Before you can use SQL statements with Microsoft SQL Server, you need access to a computer
that has SQL Server installed and that has a database with the tables and data shown in
Figures 2-3, 2-4, and 2-5. Your instructor may have installed SQL Server in your computer lab
and entered the data for you. If so, follow his or her instructions for accessing that database.
Otherwise, you will need to obtain a copy of SQL Server 2008 R2 and install it on your com-
puter. Read the appropriate sections of Chapter 10 about obtaining and installing SQL Server
2008 R2.

After you have SQL Server 2008 R2 installed, you will need to read the introductory dis-
cussion for using SQL Server in Chapter 10, starting on page 373, and create the Cape Codd

Chapter 2 Introduction to Structured Query Language 49

database. SQL Server scripts for creating and populating the Cape Codd database tables are
available on our Web site at www.pearsonhighered.com/kroenke.

SQL Server 2008 R2 uses the Microsoft SQL Server 2008 R2 Management Studio as the GUI
tool for managing the SQL Server DBMS and the databases controlled by the DBMS. The
Microsoft SQL Server 2008 R2 Management Studio, which we will also refer to as just the SQL
Server Management Studio, is installed as part of the SQL Server 2008 R2 installation process
and is discussed in Chapter 10. Figure 2-16 shows the execution of SQL-Query-CH02-01 (note
that the SQL comment is not included in the SQL statement as run�also note that the SQL
comment could have been included in the SQL code if we had chosen to include it):

/* *** SQL-Query-CH02-01 *** */

SELECT Department, Buyer

FROM SKU_DATA;

Running an SQL Query in SQL Server Management Studio

1. Click the New Query button to display a new tabbed query window.
2. If the Cape Codd database is not displayed in the Available Database box, select it in

the Available Databases drop-down list, and then click the Intellisense Enabled
button to disable Intellisense.

3. Type the SQL SELECT command (without the SQL comment line shown above):

SELECT Department, Buyer

FROM SKU_DATA;

in the query window, as shown in Figure 2-16.
4. At this point you can check the SQL command syntax before actually running the

command by clicking the Parse button. A Results window will be displayed in the
same location shown in Figure 2-16, but with the message �Command(s) completed

The New Query
button

Available Databases
drop-down list�select
the database here

The Execute button

The Cape Codd
database

The Cape Codd
database tables

The Parse button

The IntelliSense
Enabled button

The SQL query in the
tabbed query window

The Results tabbed
window

Figure 2-16

Running an SQL Query in
SQL Server Management
Studio

50 Part 1 Getting Started

SQL Server 2008 R2 is an enterprise-class DBMS product, and, as is typical of such
products, does not store queries within the DBMS (it does store SQL Views, which can be
considered a type of query, and we will discuss SQL Views in Chapter 7. However, you can
save queries as SQL script files. An SQL script file is a separately stored plain text file, and it
usually uses a file name extension of *.sql. An SQL script can be opened and run as an SQL
command (or set of commands). Often used to create and populate databases, scripts can also
be used to store a query or set of queries. Figure 2-17 shows the SQL query being saved as an
SQL script.

Note that in Figure 2-17 the SQL scripts are shown in a folder named DBP-e12-Cape-Codd-
Database. When the Microsoft SQL Server 2008 R2 Management Studio is installed, a new
folder named SQL Server Management Studio is created in your My Documents folder, with
Projects as a subfolder. The Projects folder is the default location used by SQL Server 2008 R2
for SQL script files.

We recommend that you create a folder for each database in the Projects folder. We have
created a folder named DBP-e12-Cape-Codd-Database to store the script files associated with
the Cape Codd database.

Saving an SQL Server Query as an SQL Script in SQL Server Management Studio

1. Click the Save button shown in Figure 2-17. The Save File As dialog appears, as shown
in Figure 2-17.

2. Browse to the My Documents\SQL Server Management Studio\Projects\DBP-
e12-Cape-Codd-Database folder.

3. Note that there are already two SQL script names displayed in the dialog box. These
are the SQL scripts that were used to create and populate the Cape Codd database
tables, and they are available on our Web site at www.pearsonhighered.com/kroenke.

4. In the File Name text box, type the SQL script file name SQL-Query-CH02-01.
5. Click the Save button.

successfully� if the SQL command syntax is correct or with an error message if there
is a problem with the syntax.

5. Click the Execute button to run the query. The results are displayed in a results win-
dow, as shown in Figure 2-16.

Note that in Figure 2-16 the Cape Codd database object in the Object Browser in the left
side window of the SQL Server Management Studio has been expanded to show the tables in
the Cape Codd database. Many of the functions of the SQL Server Management Studio are
associated with the objects in the Object Browser and are often accessed by right-clicking the
object to display a shortcut menu.

We are using SQL Server 2008 R2 Enterprise edition running in Microsoft
Server 2008 R2. When we give specific sequences of steps to follow in the

text or figures in this book, we use the command terminology used by SQL Server 2008
and associated utility programs in Microsoft Server 2008 R2. If you are running a
workstation operating system such as Microsoft XP or Microsoft Vista, the terminology
may vary somewhat.

As this book goes to press, Microsoft is due to release the next version of
SQL Server�SQL Server 2011. Although we cannot show screenshots of

the prerelease version of SQL Server 2011 that we have been using, we have tested all
of the SQL Server commands and SQL statements in this book in SQL Server 2011, and
they should all run correctly in SQL Server 2011 when it is released.

Chapter 2 Introduction to Structured Query Language 51

The Open File button

The Save button

The Save File As
dialog box

The DBP-e12-Cape
Codd-Database folder

Existing SQL scripts�
these were used to
create and populate
the Cape Codd
database

Type the SQL script
file name here

The Save button

Figure 2-17

Saving an SQL Query as an
SQL Script in SQL Server
Management Studio

To rerun the saved query, you would click the Open File button shown in Figure 2-17 to
open the Open File dialog box, open the query, and then click the Execute button.

At this point, you should work through each of the other nine queries in the preceding
discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQL-Query-
CH02-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

Using SQL in Oracle Database 11g

Before you can enter SQL statements into Oracle Database 11g, you need access to a computer
that has Oracle Database 11g installed and that has a database with the tables and data shown
in Figure 2-4. Your instructor may have installed Oracle Database 11g on a computer in the lab
and entered the data for you. If so, follow his or her instructions for accessing that database.
Otherwise, you will need to obtain a copy of Oracle Database 11g and install it on your com-
puter. Read the appropriate sections of Chapter 10A about obtaining and installing Oracle
Database 11g.

After you have installed Oracle Database 11g, you will need to read the introductory dis-
cussion for Oracle Database 11g in Chapter 10A, starting on page 10A-1, and create the Cape
Codd database. Oracle scripts for creating and populating the Cape Codd database tables are
available on our Web site at www.pearsonhighered.com/kroenke.

Although Oracle users have been dedicated to the Oracle SQL*Plus command line tool,
professionals are moving to the new Oracle SQL Developer GUI tool. This application is
installed as part of the Oracle Database 11g installation, and updated versions are available for
free download at www.oracle.com/technology/software/products/sql/index.html. We will use it
as our standard GUI tool for managing the databases created by the Oracle DBMS. Figure 2-18
shows the execution of SQL-Query-CH02-01 (note that the SQL comment is not included in
the SQL statement as run�also note that the SQL comment could have been included in the
SQL code if we had chosen to include it):

/* *** SQL-Query-CH02-01 *** */

SELECT Department, Buyer

FROM SKU_DATA;

52 Part 1 Getting Started

The SQL Worksheet

Connections object
browser shows
connected databases

The New Connection
button

The Cape Codd
database

The Cape Codd
database tables

The Execute button

The SQL query in the
SQL Worksheet

The Results
tabbed window

Figure 2-18

Running an SQL Query in
Oracle SQL Developer

Running an SQL Query in Oracle SQL Developer

1. Click the New Connection button and open the Cape Codd database.
2. In the tabbed SQL Worksheet, type the SQL SELECT command (without the SQL

comment line shown above):

SELECT Department, Buyer

FROM SKU_DATA;

as shown in Figure 2-18.
3. Click the Execute button to run the query. The results are displayed in a results win-

dow, as shown in Figure 2-18.

Note that in Figure 2-18, the Cape Codd database object in the Object Browser in the left
side Connection object browser of the Oracle SQL Developer has been expanded to show the
tables in the Cape Codd database. Many of the functions of SQL Developer are associated with
the objects in the Connections object browser and are often accessed by right-clicking the
object to display a shortcut menu.

We are using Oracle Database 11g running in Microsoft Server 2008 R2.
When we give specific sequences of steps to follow in the text or figures

in this book, we use the command terminology used by Oracle Database 11g and
associated utility programs in Microsoft Server 2008. If you are running a workstation
operating system such as Microsoft XP, Microsoft Vista, or Linux, the terminology may
vary somewhat.

Oracle Database 11g is an enterprise-class DBMS product, and, as is typical of such
products, does not store queries within the DBMS (it does store SQL Views, which can be con-
sidered a type of query, and we will discuss SQL Views later in this chapter). However, you can

Chapter 2 Introduction to Structured Query Language 53

save queries as SQL script files. An SQL script file is a separately stored plain text file, and it
usually has a file name extension of *.sql. An SQL script can be opened and run as an SQL
command (or set of commands). Often used to create and populate databases, scripts can also
be used to store a query or set of queries. Figure 2-19 shows the SQL query being saved as an
SQL script.

Note that in Figure 2-19 the SQL scripts are shown in a folder named {UserName}\
Documents\Oracle Workspace\DBP-e12-Cape-Codd-Database. By default, Oracle SQL Deve-
loper stores *.sql files in an obscure location within its own application files. We recommend
that you create a subfolder in your My Documents folder named Oracle Workspace, and then
create a subfolder for each database in the Oracle Workspace folder. We have created a folder
named DBP-e12-Cape-Codd-Database store the script files associated with the Cape Codd
database.

Saving an SQL Script in Oracle SQL Developer

1. Click the Save button shown in Figure 2-19. The Save dialog appears, as shown in
Figure 2-19.

2. Click the Documents button on the Save dialog box to move to the Documents
folder, and then browse to the DBP-e12-Cape-Codd-Database folder.

3. Note that there are already two SQL script names displayed in the dialog box.
These are the SQL scripts that were used to create and populate the Cape Codd
database tables, and they are available on our Web site at www.pearsonhighered.
com/kroenke.

4. In the File Name text box, type the SQL script file name SQL-Query-CH02-01.sql.
5. Click the Save button.

To rerun the saved query, you would click the SQL Developer Open File button to open
the Open File dialog box, browse to the query file, open the query file, and then click the
Execute button.

The Save button

The Save dialog box

The Cape-Codd-
Database folder

Existing SQL scripts�
these were used to
create and populate
the Cape-Codd
database

The Documents
Folder button

Type the SQL script
file name here

The dialog box Save
button

Figure 2-19

Saving an Oracle SQL Query
as an SQL Script in Oracle
SQL Developer

54 Part 1 Getting Started

The SQL Editor tab
with menu and toolbar

The Object Browser

The Execute Current
SQL Statement in
Connected Server
button

The Cape Codd
database

The Cape Codd
database tables

The Query 1 tabbed
window�enter your
SQL statement

The query results in
the Query 1 Result
tabbed window

Figure 2-20

Running an SQL Query in the
MySQL Workbench

At this point, you should work through each of the other nine queries in the preceding
discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQLQuery-
CH02-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

Using SQL in Oracle MySQL 5.5

Before you can use SQL statements with Oracle MySQL 5.5, you need access to a computer that
has MySQL installed and that has a database with the tables and data shown in Figure 2-4. Your
instructor may have installed MySQL in your computer lab and entered the data for you. If so,
follow his or her instructions for accessing that database. Otherwise, you will need to obtain a
copy of MySQL Server 5.5 and install it on your computer. Read the appropriate sections of
Chapter 10B about obtaining and installing MySQL Community Server 5.5.

After you have MySQL Sever 5.5 installed, you will need to read the introductory discus-
sion for MySQL Server 5.5 in Chapter 10B, starting on page 10 B-448, and create the Cape Codd
database. MySQL scripts for creating and populating the Cape Codd database tables are
available on our Web site at www.pearsonhighered.com/kroenke.

MySQL uses the MySQL Workbench as the GUI tool for managing the MySQL DBMS and
the databases controlled by the DBMS. This tool must be installed separately from the MySQL
DBMS, and this is discussed in Chapter 10B. SQL statements are created and run in the
MySQL Workbench, and Figure 2-20 shows the execution of SQL-Query-CH02-01 (note that
the SQL comment is not included in the SQL statement as run�also note that the SQL com-
ment could have been included in the SQL code if we had chosen to include it):

/* *** SQL-Query-CH02-01 *** */

SELECT Department, Buyer

FROM SKU_DATA;

Running an SQL Query in the MySQL Workbench

1. To make the Cape Codd database the default schema (active database), right-click
the cape_codd schema (database) object to display the shortcut menu and then
click the Set as Default Schema command.

Chapter 2 Introduction to Structured Query Language 55

2. In the Query 1 tabbed window in the SQL Editor tabbed window, type the SQL
SELECT command (without the SQL comment line shown above):

SELECT Department, Buyer

FROM SKU_DATA;

as shown in Figure 2-20.
3. Click the Execute Current SQL Statement in Connected Server button to run the

query. The results are displayed in a tabbed Query Result window, shown as the Query 1
Result window in Figure 2-20 (you can have more than one Query Result window open,
and thus they need to be numbered).

Note that in Figure 2-20 the Cape Codd database object in the Object Browser in the left-side
window of the MySQL Workbench has been expanded to show the tables in the Cape Codd data-
base. Many of the functions of the MySQL Workbench are associated with the objects in the
Object Browser and are often accessed by right-clicking the object to display a shortcut menu.

We are using MySQL 5.5 Community Server running in Microsoft Server
2008 R2. When we give specific sequences of steps to follow in the text

or figures in this book, we use the command terminology used for MySQL 5.5 and asso-
ciated utility programs in Microsoft Server 2008 R2. If you are running a workstation
operating system such as Microsoft XP, Microsoft Vista, or Linux, the terminology may
vary somewhat.

MySQL 5.5 is an enterprise-class DBMS product, and, as is typical of such products, does
not store queries within the DBMS (it does store SQL Views, which can be considered a type of
query, and we will discuss SQL Views later in this chapter). However, you can save MySQL
queries as SQL script files. An SQL script file is a separately stored plain text file, and it usually
uses a file name extension of *.sql. An SQL script file can be opened and run as an SQL
command. Figure 2-21 shows the SQL query being saved as an SQL script file.

Note that in Figure 2-21 the query will be saved in a folder named My Documents\MySQL
Workspace\Schemas\DBP-e12-Cape-Codd-Database. By default, MySQL Workbench stores

Click the Save SQL
Script to File button
to open the Save SQL
Script dialog box

The Save SQL
Script dialog box

The My Documents\
MySQL Workbench\
Schemas\DBP-e12-
Cape-Codd-Database
folder

Type the SQL script
File name here

The Save button

Figure 2-21

Saving an SQL Query as an
SQL Script in the MySQL
Workbench

56 Part 1 Getting Started

files in the user�s My Documents folder. We recommend that you create a subfolder in your My
Documents folder named MySQL Workspace, and then create subfolders labeled EER Models
and Schemas. Within each of these subfolders, create a sub-subfolder for each MySQL data-
base. We have created a folder named DBP-e12-Cape-Code-Database to store the script files
associated with the Cape Codd database.

Saving a MySQL Query

1. Use the File | Save as command, as shown in Figure 2-20. The Save Query to File dia-
log appears, as shown in Figure 2-21.

2. Browse to the My Documents\MySQL Workspace\Schemas\DBP-e12-Cape-Codd-
Database folder.

3. In the File Name text box, type the SQL query file name SQL-Query-CH02-01.
4. Click the Save button.

To rerun the saved query, you would click the File | Open SQL Script menu command to
open the Open SQL Script dialog box, then select and open the SQL query *.sql files, and,
finally, click the Execute Current SQL Statement in Connected Server button.

At this point, you should work through each of the other nine queries in the preceding
discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQLQuery-
CH02-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

SQL Enhancements for Querying a Single Table

We started our discussion of SQL queries with SQL statements for processing a single table, and
now we will add an additional SQL feature to those queries. As we proceed, you will begin to see
how powerful SQL can be for querying databases and for creating information from existing data.

The SQL results shown in this chapter were generated using Microsoft SQL
Server 2008 R2. Query results from other DBMS products will be similar,

but may vary a bit.

Sorting the SQL Query Results

The order of the rows produced by an SQL statement is arbitrary and determined by programs
in the bowels of each DBMS. If you want the DBMS to display the rows in a particular order,
you can use the SQL ORDER BY clause. For example, the SQL statement:

/* *** SQL-Query-CH02-10 *** */
SELECT *
FROM ORDER_ITEM
ORDER BY OrderNumber;

will generate the following results:

Chapter 2 Introduction to Structured Query Language 57

We can sort by two columns by adding a second column name. For example, to sort first
by OrderNumber and then by Price within OrderNumber, we use the following SQL query:

/* *** SQL-Query-CH02-11 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY OrderNumber, Price;

The result for this query is:

Note to Microsoft Access users: Unlike the SQL Server output shown here,
Microsoft Access displays dollar signs in the output of currency data.

By default, rows are sorted in ascending order. To sort in descending order, add the SQL
DESC keyword after the column name. Thus, to sort first by Price in descending order and
then by OrderNumber in ascending order, we use the SQL query:

/* *** SQL-Query-CH02-13 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY Price DESC, OrderNumber ASC;

If we want to sort the data by Price and then by OrderNumber, we would simply reverse
the order of those columns in the ORDER BY clause as follows:

/* *** SQL-Query-CH02-12 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY Price, OrderNumber;

with the results:

58 Part 1 Getting Started

Because the default order is ascending, it is not necessary to specify ASC in the last SQL
statement. Thus, the following SQL statement is equivalent to the previous SQL query:

/* *** SQL-Query-CH02-14 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY Price DESC, OrderNumber;

and produces the same results:

The result is:

SQL WHERE Clause Options

SQL includes a number of SQL WHERE clause options that greatly expand SQL�s power and
utility. In this section, we consider three options: compound clauses, ranges, and wildcards.

Compound WHERE Clauses
SQL WHERE clauses can include multiple conditions by using the SQL AND, OR, IN, and NOT
IN operators. For example, to find all of the rows in SKU_DATA that have a Department named
Water Sports and a Buyer named Nancy Meyers, we can use the SQL AND operator in our
query code:

/* *** SQL-Query-CH02-15 *** */

SELECT *

FROM SKU_DATA

WHERE Department=’Water Sports’

AND Buyer=’Nancy Meyers’;

The results of this query are:

Chapter 2 Introduction to Structured Query Language 59

Similarly, to find all of the rows of SKU_DATA for either the Camping or Climbing depart-
ments, we can use the SQL OR operator in the SQL query:

/* *** SQL-Query-CH02-16 *** */

SELECT *

FROM SKU_DATA

WHERE Department=’Camping’

OR Department=’Climbing’;

which gives us the following results:

Three or more AND and OR conditions can be combined, but in such cases the SQL IN
operator and the SQL NOT IN operator are easier to use. For example, suppose we want to
obtain all of the rows in SKU_DATA for buyers Nancy Meyers, Cindy Lo, and Jerry Martin. We
could construct a WHERE clause with two ANDs, but an easier way to do this is to use the IN
operator, as illustrated in the SQL query:

/* *** SQL-Query-CH02-17 *** */

SELECT *

FROM SKU_DATA

WHERE Buyer IN (’Nancy Meyers’, ’Cindy Lo’, ’Jerry Martin’);

In this format, a set of values is enclosed in parentheses. A row is selected if Buyer is equal to
any one of the values provided. The result is:

Similarly, if we want to find rows of SKU_DATA for which the buyer is someone other than
Nancy Meyers, Cindy Lo, or Jerry Martin, we would use the SQL query:

/* *** SQL-Query-CH02-18 *** */

SELECT *

FROM SKU_DATA

WHERE Buyer NOT IN (’Nancy Meyers’, ’Cindy Lo’, ’Jerry Martin’);

The result is:

60 Part 1 Getting Started

Observe an important difference between IN and NOT IN. A row qualifies for an IN condi-
tion if the column is equal to any of the values in the parentheses. However, a row qualifies for
a NOT IN condition if it is not equal to all of the items in the parentheses.

Ranges in SQL WHERE Clauses
SQL WHERE clauses can specify ranges of data values by using the SQL BETWEEN keyword.
For example, the following SQL statement:

/* *** SQL-Query-CH02-19 *** */
SELECT *
FROM ORDER_ITEM
WHERE ExtendedPrice BETWEEN 100 AND 200;

will produce the following results:

Notice that both the ends of the range, 100 and 200, are included in the resulting table. The pre-
ceding SQL statement is equivalent to the SQL query:

/* *** SQL-Query-CH02-20 *** */
SELECT *
FROM ORDER_ITEM
WHERE ExtendedPrice >= 100

AND ExtendedPrice <= 200;

And which, of course, produces identical results:

Wildcards in SQL WHERE Clauses
The SQL LIKE keyword can be used in SQL WHERE clauses to specify matches on portions
of column values. For example, suppose we want to find the rows in the SKU_DATA table for
all buyers whose first name is Pete. To find such rows, we use the SQL keyword LIKE with the
SQL percent sign (%) wildcard character, as shown in the SQL query:

/* *** SQL-Query-CH02-21 *** */
SELECT *
FROM SKU_DATA
WHERE Buyer LIKE ’Pete%’;

When used as an SQL wildcard character, the percent symbol (%) stands for any sequence
of characters. When used with the SQL LIKE keyword, the character string �Pete%� means any
sequence of characters that start with the letters Pete. The result of this query is:

Chapter 2 Introduction to Structured Query Language 61

Microsoft Access ANSI-89 SQL uses wildcards, but
not the SQL-92 standard wildcards. Microsoft Access
uses the Microsoft Access asterisk (*) wildcard
character instead of a percent sign to represent
multiple characters.

Solution: Use the Microsoft Access asterisk (*) wildcard in place of the SQL-92 percent
sign (%) wildcard in Microsoft Access ANSI-89 SQL statements. Thus, the preceding
SQL query would be written as follows for Microsoft Access:

/* *** SQL-Query-CH02-21-Access *** */

SELECT *

FROM SKU_DATA

WHERE Buyer LIKE ’Pete*’;

Suppose we want to find the rows in SKU_DATA for which the SKU_Description includes
the word Tent somewhere in the description. Because the word Tent could be at the front, the
end, or in the middle, we need to place a wildcard on both ends of the LIKE phrase, as follows:

/* *** SQL-Query-CH02-22 *** */

SELECT *

FROM SKU_DATA

WHERE Buyer LIKE ’%Tent%’;

This query will find rows in which the word Tent occurs in any place in the SKU_Description.
The result is:

Sometimes we need to search for a particular value in a particular location in the column.
For example, assume SKU values are coded such that a 2 in the third position from the right
has some particular significance, maybe it means that the product is a variation of another
product. For whatever reason, assume that we need to find all SKUs that have a 2 in the third
column from the right. Suppose we try the SQL query:

/* *** SQL-Query-CH02-23 *** */

SELECT *

FROM SKU_DATA

WHERE SKU LIKE ’%2%’;

The result is:

62 Part 1 Getting Started

This is not what we wanted. We mistakenly retrieved all rows that had a 2 in any position
in the value of SKU. To find the products we want, we cannot use the SQL wildcard character
%. Instead, we must use the SQL underscore (_) wildcard character, which represents a
single, unspecified character in a specific position. The following SQL statement will find all
SKU_DATA rows with a value of 2 in the third position from the right:

/* *** SQL-Query-CH02-24 *** */

SELECT *

FROM SKU_DATA

WHERE SKU LIKE ’%2__’;

Observe that there are two underscores in this SQL query� one for the first position on the right
and another for the second position on the right. This query gives us the result that we want:

Microsoft Access ANSI-89 SQL uses wildcards, but not
the SQL-92 standard wildcards. Microsoft Access uses
the Microsoft Access question mark (?) wildcard
character instead of an underscore (_) to represent a
single character.

Solution: Use the Microsoft Access question mark (?) wildcard in place of the SQL-92
underscore (_) wildcard in Microsoft Access ANSI-89 SQL statements. Thus, the pre-
ceding SQL query would be written as follows for Microsoft Access:

/* *** SQL-Query-CH02-24-Access *** */

SELECT *

FROM SKU_DATA

WHERE SKU LIKE ’*2??’;

Furthermore, Microsoft Access can sometimes be fussy about stored trailing spaces in
a text field. You may have problems with a WHERE clause like this:

WHERE SKU LIKE ’10?200’;

Solution: Use a trailing asterisk (*), which allows for the trailing spaces:

WHERE SKU LIKE ’10?200*’;

The SQL wildcard percent sign (%) and underscore (_) characters are spec-
ified in the SQL-92 standard. They are accepted by all DBMS products

except Microsoft Access. So, why does Microsoft Access use the asterisk (*) character
instead of the percent sign (%) and the question mark (?) instead of the underscore?
This difference probably exists because the designers of Microsoft Access chose to use
the same wildcard characters that Microsoft was already using in the Microsoft MS-DOS
operating system.

Chapter 2 Introduction to Structured Query Language 63

Combining the SQL WHERE Clause and the SQL ORDER BY Clause

If we want to sort the results generated by these enhanced SQL WHERE clauses, we simply
combine the SQL ORDER BY clause with the WHERE clause. This is illustrated by the follow-
ing SQL query:

/* *** SQL-Query-CH02-25 *** */
SELECT *
FROM ORDER_ITEM
WHERE ExtendedPrice BETWEEN 100 AND 200
ORDER BY OrderNumber DESC;

which will produce the following result:

Performing Calculations in SQL Queries

It is possible to perform certain types of calculations in SQL query statements. One group of
calculations involves the use of SQL built-in functions. Another group involves simple arith-
metic operations on the columns in the SELECT statement. We will consider each, in turn.

Using SQL Built-in Functions

There are five SQL built-in functions for performing arithmetic on table columns: SUM,
AVG, MIN, MAX, and COUNT. Some DBMS products extend these standard built-in func-
tions by providing additional functions. Here, we will focus only on the five standard SQL
built-in functions.

Suppose we want to know the sum of OrderTotal for all of the orders in RETAIL_ORDER.
We can obtain that sum by using the SQL built-in SUM function:

/* *** SQL-Query-CH02-26 *** */
SELECT SUM(OrderTotal)
FROM RETAIL_ORDER;

The result will be:

Recall that the result of an SQL statement is always a table. In this case, the table has one
cell (the intersection of one row and one column that contains the sum of OrderTotal). But
because the OrderTotal sum is not a column in a table, the DBMS has no column name to
provide. The preceding result was produced by Microsoft SQL Server 2008 R2, and it names the
column �(No column name)�. Other DBMS products take other, equivalent actions.

This result is ugly. We would prefer to have a meaningful column name, and SQL allows us
to assign one using the SQL AS keyword. If we use the AS keyword in the query as follow:

/* *** SQL-Query-CH02-27 *** */
SELECT SUM(OrderTotal) AS OrderSum
FROM RETAIL_ORDER;

64 Part 1 Getting Started

The result of this modified query will be:

This result has a much more meaningful column label. The name OrderSum is arbitrary�
we are free to pick any name that we think would be meaningful to the user of the result. We
could pick OrderTotal_Total, OrderTotalSum, or any other label that we think would be useful.

The utility of the built-in functions increases when you use them with an SQL WHERE
clause. For example, we can write the SQL query:

/* *** SQL-Query-CH02-28 *** */

SELECT SUM(ExtendedPrice) AS Order3000Sum

FROM ORDER_ITEM

WHERE OrderNumber=3000;

The result of this query is:

The SQL built-in functions can be mixed and matched in a single statement. For example,
we can create the following SQL statement:

/* *** SQL-Query-CH02-29 *** */

SELECT SUM(ExtendedPrice) AS OrderItemSum,

AVG(ExtendedPrice) AS OrderItemAvg,

MIN(ExtendedPrice) AS OrderItemMin,

MAX(ExtendedPrice) AS OrderItemMax

FROM ORDER_ITEM;

The result of this query is:

The SQL built-in COUNT function sounds similar to the SUM function, but it produces
very different results. The COUNT function counts the number of rows, whereas the SUM
function adds the values in a column. For example, we can use the SQL built-in COUNT
function to determine how many rows are in the ORDER_ITEM table:

/* *** SQL-Query-CH02-30 *** */

SELECT COUNT(*) AS NumberOfRows

FROM ORDER_ITEM;

The result of this query is:

This result indicates that there are seven rows in the ORDER_ITEM table. Notice that we need
to provide an asterisk (*) after the COUNT function when we want to count rows. COUNT is
the only built-in function that requires an asterisk. The COUNT function is also unique
because it can be used on any type of data, but the SUM, AVG, MIN, and MAX functions can
only be used with numeric data.

X

Chapter 2 Introduction to Structured Query Language 65

The COUNT function can produce some surprising results. For example, suppose you want
to count the number of departments in the SKU_DATA table. If we use the following query:

/* *** SQL-Query-CH02-31 *** */

SELECT COUNT(Department) AS DeptCount

FROM SKU_DATA;

The result is:

Microsoft Access does not support the DISTINCT key-
word as part of the COUNT expression, so although
the SQL command with COUNT(Department) will
work, the SQL command with COUNT(DISTINCT
Department) will fail.

Solution: Use an SQL subquery structure (discussed later in this chapter) with the
DISTINCT keyword in the subquery itself. This SQL query works:

/* *** SQL-Query-CH02-32-Access *** */

SELECT COUNT(*) AS DeptCount

FROM (SELECT DISTINCT Department

FROM SKU_DATA) AS DEPT;

Note that this query is a bit different from the other SQL queries using subqueries we
show in this text because this subquery is in the FROM clause instead of (as you�ll see) the
WHERE clause. Basically, this subquery builds a new temporary table named DEPT con-
taining only distinct Department values, and the query counts the number of those values.

which is the number of rows in the SKU_DATA table, not the number of unique values of
Department, as shown in Figure 2-4. If we want to count the unique values of Department, we
need to use the SQL DISTINCT keyword, as follows:

/* *** SQL-Query-CH02-32 *** */

SELECT COUNT(DISTINCT Department) AS DeptCount

FROM SKU_DATA;

The result of this query is:

You should be aware of two limitations to SQL built-in functions. First, except for group-
ing (defined later), you cannot combine a table column name with an SQL built-in function.
For example, what happens if we run the following SQL query?

/* *** SQL-Query-CH02-33 *** */

SELECT Department, COUNT(*)

FROM SKU_DATA;

X

66 Part 1 Getting Started

The result in SQL Server 2008 R2 is:

This is the specific SQL Server 2008 R2 error message. However, you will receive an equiv-
alent message from Microsoft Access, Oracle Database, DB2, or MySQL.

The second problem with the SQL built-in functions that you should understand is that you
cannot use them in an SQL WHERE clause. Thus, you cannot use the following SQL statement:

/* *** SQL-Query-CH02-34 *** */

SELECT *

FROM RETAIL_ORDER

WHERE OrderTotal > AVG(OrderTotal);

An attempt to use such a statement will also result in an error statement from the DBMS:

Again, this is the specific SQL Server 2008 error message, but other DBMS products will
give you an equivalent error message. In Chapter 7, you will learn how to obtain the desired
result of the above query using a sequence of SQL views.

SQL Expressions in SQL SELECT Statements

It is possible to do basic arithmetic in SQL statements. For example, suppose we want to com-
pute the values of extended price, perhaps because we want to verify the accuracy of the data
in the ORDER_ITEM table. To compute the extended price, we can use the SQL expression
Quantity * Price in the SQL query:

/* *** SQL-Query-CH02-35 *** */

SELECT Quantity * Price AS EP

FROM ORDER_ITEM;

The result is:

An SQL expression is basically a formula or set of values that determines the exact
results of an SQL query. We can think of an SQL expression as anything that follows an actual
or implied equal to (=) character (or any other relational operator, such as greater than (>), less
than (<), and so on) or that follows certain SQL keywords, such as LIKE and BETWEEN. Thus,
the SELECT clause in the preceding query includes the implied equal to (=) sign as EP =
Quantity * Price. For another example, in the WHERE clause:

WHERE Buyer IN (’Nancy Meyers’, ’Cindy Lo’, ’Jerry Martin’);

the SQL expression consists of the three text values following the IN keyword.

Chapter 2 Introduction to Structured Query Language 67

Now that we know how to calculate the value of extended price, we can compare this
computed value to the stored value of ExtendedPrice by using the SQL query:

/* *** SQL-Query-CH02-36 *** */
SELECT Quantity * Price AS EP, ExtendedPrice
FROM ORDER_ITEM;

The result of this statement now allows us to visually compare the two values to ensure that
the stored data are correct:

Another use for SQL expressions in SQL statements is to perform string manipulation. Sup-
pose we want to combine (using the concatenation operator, which is the plus sign [+] in SQL
Server 2008 R2) the Buyer and Department columns into a single column named Sponsor.
To do this, we can use the SQL statement:

/* *** SQL-Query-CH02-37 *** */
SELECT Buyer+’ in ’+Department AS Sponsor
FROM SKU_DATA;

The result will include a column named Sponsor that contains the combined text values:

The concatenation operator, like many SQL syntax elements, varies from one
DBMS product to another. Oracle Database uses a double vertical bar [||] as

the concatenation operator, and SQL�QUERY-CH02-37 is written for Oracle Database as:

/* *** SQL-Query-CH02-37A *** */
SELECT Buyer||’ in ’||Department AS Sponsor
FROM SKU_DATA;

MySQL uses the concatenation string function CONCAT() as the concatenation opera-
tor with the elements to be concatenated separated by commas with the parentheses,
and SQL-QUERY-CH02-37 is written for MySQL as:

/* *** SQL-Query-CH02-37B *** */
SELECT CONCAT(Buyer,’ in ’,Department) AS Sponsor
FROM SKU_DATA;

68 Part 1 Getting Started

The result of SQL-Query-CH02-37 is ugly because of the extra spaces in each row. We can
eliminate these extra spaces by using more advanced functions. The syntax and use of such
functions vary from one DBMS to another, however, and a discussion of the features of each
product will take us away from the point of this discussion. To learn more, search on string
functions in the documentation for your specific DBMS product. Just to illustrate the possibilities,
however, here is an SQL Server 2008 R2 statement using the RTRIM function that strips the
tailing blanks off the right-hand side of Buyer and Department:

/* *** SQL-Query-CH02-38 *** */
SELECT DISTINCT RTRIM(Buyer)+’ in ’+RTRIM(Department) AS Sponsor
FROM SKU_DATA;

The result of this query is much more visually pleasing:

Grouping in SQL SELECT Statements

In SQL queries, rows can be grouped according to common values using the SQL GROUP BY
clause. For example, if you specify GROUP BY Department in a SELECT statement on the
SKU_DATA table, the DBMS will first sort all rows by Department and then combine all of the
rows having the same value into a group for that department. A grouping will be formed for each
unique value of Department. For example, we can use the GROUP BY clause in the SQL query:

/* *** SQL-Query-CH02-39 *** */
SELECT Department, COUNT(*) AS Dept_SKU_Count
FROM SKU_DATA
GROUP BY Department;

We get the result:

To obtain this result, the DBMS first sorts the rows according to Department and then
counts the number of rows having the same value of Department.

Here is another example of an SQL query using GROUP BY:

/* *** SQL-Query-CH02-40 *** */
SELECT SKU, AVG(ExtendedPrice) AS AvgEP
FROM ORDER_ITEM
GROUP BY SKU;

The result for this query is:

X

Chapter 2 Introduction to Structured Query Language 69

Here the rows have been sorted and grouped by SKU and the average ExtendedPrice for
each group of SKU items has been calculated.

We can include more than one column in a GROUP BY expression. For example, the SQL
statement:

/* *** SQL-Query-CH02-41 *** */

SELECT Department, Buyer, COUNT(*) AS Dept_Buyer_SKU_Count

FROM SKU_DATA

GROUP BY Department, Buyer;

groups rows according to the value of Department first, then according to Buyer, and then
counts the number of rows for each combination of Department and Buyer. The result is:

When using the GROUP BY clause, only the column or columns in the GROUP BY expres-
sion and the SQL built-in functions can be used in the expressions in the SELECT clause. The
following expressions will result in an error:

/* *** SQL-Query-CH02-42 *** */

SELECT SKU, Department, COUNT(*) AS Dept_SKU_Count

FROM SKU_DATA

GROUP BY Department;

The resulting error message is:

This is the specific SQL Server 2008 R2 error message, but other DBMS products will give you
an equivalent error message. Statements like this one are invalid because there are many values of
SKU for each Department group. The DBMS has no place to put those multiple values in the result.
If you do not understand the problem, try to process this statement by hand. It cannot be done.

Of course, the SQL WHERE and ORDER BY clauses can also be used with SELECT state-
ments, as shown in the following query:

/* *** SQL-Query-CH02-43 *** */

SELECT Department, COUNT(*) AS Dept_SKU_Count

FROM SKU_DATA

WHERE SKU <> 302000

GROUP BY Department

ORDER BY Dept_SKU_Count;

The result is:

70 Part 1 Getting Started

Edit the query in the
QBE GUI interface so
that it appears as
shown here

Figure 2-22

Editing the SQL Query in the
Access 2010 QBE GUI
Interface

Notice that one of the rows of the Climbing department has been removed from the count
because it did not meet the WHERE clause condition. Without the ORDER BY clause, the rows
would be presented in arbitrary order of Department. With it, the order is as shown. In general,
to be safe, always place the WHERE clause before the GROUP BY clause. Some DBMS products
do not require that placement, but others do.

Microsoft Access does not properly recognize the
alias Dept_SKU_Count in the ORDER BY clause and
creates a parameter query that requests an input
value of as yet nonexistent Dept_SKU_Count! How-

ever, it doesn�t matter whether you enter parameter values or not�click the OK button and
the query will run. The results will be basically correct, but they will not be sorted correctly.

Solution: Use the Microsoft Access QBE GUI to modify the query structure. The correct
QBE structure is shown in Figure 2-22. The resulting Microsoft Access ANSI-89 SQL is:

/* *** SQL-Query-CH02-43-Access-A *** */

SELECT SKU_DATA.Department, Count(*) AS Dept_SKU_Count

FROM SKU_DATA

WHERE (((SKU_DATA.SKU)<>302000))

GROUP BY SKU_DATA.Department

ORDER BY Count(*);

which can be edited down to:

/* *** SQL-Query-CH02-43-Access-B *** */

SELECT Department, Count(*) AS Dept_SKU_Count

FROM SKU_DATA

WHERE SKU<>302000

GROUP BY Department

ORDER BY Count(*);

Chapter 2 Introduction to Structured Query Language 71

SQL provides one more GROUP BY clause feature that extends its functionality even
further. The SQL HAVING clause restricts the groups that are presented in the result. We
can restrict the previous query to display only groups having more than one row by using the
SQL query:

/* *** SQL-Query-CH02-44 *** */

SELECT Department, COUNT(*) AS Dept_SKU_Count

FROM SKU_DATA

WHERE SKU <> 302000

GROUP BY Department

HAVING COUNT (*) > 1

ORDER BY Dept_SKU_Count;

The result of this modified query is:

This query fails in Microsoft Access ANSI-89 SQL for
the same reason as the previous query.

Solution: See the solution described in the previous
�Does Not Work with Microsoft Access ANSI-89

SQL� box. The correct Microsoft Access ANSI-89 SQL for this query is:

/* *** SQL-Query-CH02-44-Access *** */

SELECT Department, Count(*) AS Dept_SKU_Count

FROM SKU_DATA

WHERE SKU<>302000

GROUP BY Department

HAVING Count(*)>1

ORDER BY Count(*);

Comparing this result with the previous one, the row for Climbing (which has a count of 1) has
been eliminated.

SQL built-in functions can be used in the HAVING clause. For example, the following is a
valid SQL query:

/* *** SQL-Query-CH02-45 *** */

SELECT COUNT(*) AS SKU_Count, SUM(Price) AS TotalRevenue, SKU

FROM ORDER_ITEM

GROUP BY SKU

HAVING SUM(Price)=100;

72 Part 1 Getting Started

Looking for Patterns in NASDAQ Trading

Before we continue our discussion of SQL, consider an example problem that will illustrate the
power of the SQL just described.

Suppose that a friend tells you that she suspects the stock market tends to go up on
certain days of the week and down on others. She asks you to investigate past trading data to
determine if this is true. Specifically, she wants to trade an index fund called the NASDAQ 100,
which is a stock fund of the 100 top companies traded on the NASDAQ stock exchange. She
gives you a dataset with 20 years (1985�2004) of NASDAQ 100 trading data for analysis.
Assume she gives you the data in the form of a table named NDX containing 4611 rows of
data for use with a relational database (this dataset is available on the text�s Web site at www.
pearsonhighered.com/kroenke).

Investigating the Characteristics of the Data

Suppose you first decide to investigate the general characteristics of the data. You begin by
seeing what columns are present in the table by issuing the SQL query:

/* *** SQL-Query-NDX-CH02-01 *** */

SELECT *

FROM NDX;

The first five rows of that query are as follows:

To control how many rows an SQL query displays, use the SQL TOP
{NumberOfRows} expression. To show the top five rows in SQL-Query-
NDX-CH02-02, modify it as:

/* *** SQL-Query-NDX-CH02-01A *** */

SELECT TOP 5 *

FROM NDX;

Assume that you learn that the first column has the value of the fund at the close of a trad-
ing day, the second column has the value of the fund at the close of the prior trading day, and

Be aware that there is an ambiguity in statements that include both WHERE and
HAVING clauses. The results vary depending on whether the WHERE condition is applied
before or after the HAVING. To eliminate this ambiguity, the WHERE clause is always applied
before the HAVING clause.

The results for this query are:

Chapter 2 Introduction to Structured Query Language 73

DBMS products have many functions for formatting query results to reduce
the number of decimal points displayed, to add currency characters such

as $ or £, or to make other formatting changes. However, these functions are DBMS-
dependent. Search the documentation of your DBMS for the term formatting results to
learn more about such functions.

Just out of curiosity, you decide to determine which days had the maximum and mini-
mum change. To avoid having to key in the long string of decimal places that would be
required to make an equal comparison, you use a greater than and less than comparison with
values that are close:

/* *** SQL-Query-NDX-CH02-03 *** */

SELECT ChangeClose, TMonth, TDayOfMonth, TYear

FROM NDX

WHERE ChangeClose > 398

OR ChangeClose < -400;

The result is:

the third row has the difference between the current day�s close and the prior day�s close.
Volume is the number of shares traded, and the rest of the data concerns the trading date.

Next, you decide to investigate the change of the stock price by issuing the SQL query:

/* *** SQL-Query-NDX-CH02-02 *** */

SELECT AVG(ChangeClose) AS AverageChange,

MAX(ChangeClose) AS MaxGain,

MIN(ChangeClose) AS MaxLoss

FROM NDX;

The result of this query is:

This result is surprising! Is there some reason that both the greatest loss and the greatest gain
both occurred on January 3? You begin to wonder if your friend might have a promising idea.

Searching for Patterns in Trading by Day of Week

You want to determine if there is a difference in the average trade by day of week. Accordingly,
you create the SQL query:

/* *** SQL-Query-NDX-CH02-04 *** */

SELECT TDayOfWeek, AVG(ChangeClose) AS AvgChange

FROM NDX

GROUP BY TDayOfWeek;

74 Part 1 Getting Started

Indeed, there does seem to be a difference according to the day of the week. The NASDAQ
100 appears to go down on Monday and Tuesday and then go up on the other three days of the
week. Thursday, in particular, seems to be a good day to trade long.

But, you begin to wonder, is this pattern true for each year? To answer that question, you
use the query:

/* *** SQL-Query-NDX-CH02-05 *** */

SELECT TDayOfWeek, TYear, AVG(ChangeClose) AS AvgChange

FROM NDX

GROUP BY TDayOfWeek, TYear

ORDER BY TDayOfWeek, TYear DESC;

Because there are 20 years of data, this query results in 100 rows, of which the first 12 are
shown in the following results:

To simplify your analysis, you decide to restrict the number of rows to the most recent
5 years (2000�2004):

/* *** SQL-Query-NDX-CH02-06 *** */

SELECT TDayOfWeek, TYear, AVG(ChangeClose) AS AvgChange

FROM NDX

WHERE TYear > ’1999’

GROUP BY TDayOfWeek, TYear

ORDER BY TDayOfWeek, TYear DESC;

The result is:

Chapter 2 Introduction to Structured Query Language 75

Querying Two or More Tables with SQL

So far in this chapter we�ve worked with only one table. Now we will conclude by describing
SQL statements for querying two or more tables.

Suppose that you want to know the revenue generated by SKUs managed by the Water
Sports department. We can compute revenue as the sum of ExtendedPrice, but we have a
problem. ExtendedPrice is stored in the ORDER_ITEM table, and Department is stored in the
SKU_DATA table. We need to process data in two tables, and all of the SQL presented so far
operates on a single table at a time.

SQL provides two different techniques for querying data from multiple tables: subqueries
and joins. Although both work with multiple tables, they are used for slightly different
purposes, as you will learn.

Querying Multiple Tables with Subqueries

How can we obtain the sum of ExtendedPrice for items managed by the Water Sports depart-
ment? If we somehow knew the SKU values for those items, we could use a WHERE clause
with the IN keyword.

Alas, it does not appear that day of week is a very good predictor of gain or loss. At least,
not for this fund over this period of time. We could continue this discussion to further analyze
this data, but by now you should understand how useful SQL can be for analyzing and process-
ing a table. Suggested additional NDX analysis exercises are included in the SQL problems at
the end of this chapter.

Partial results from this query are as follows:

76 Part 1 Getting Started

For the data in Figure 2-4, the SKU values for items in Water Sports are 100100, 100200,
101100, and 101200. Knowing those values, we can obtain the sum of their ExtendedPrice with
the following SQL query:

/* *** SQL-Query-CH02-46 *** */

SELECT SUM(ExtendedPrice) AS Revenue

FROM ORDER_ITEM

WHERE SKU IN (100100, 100200, 101100, 101200);

The result is:

But, in general, we do not know the necessary SKU values ahead of time. However, we do have
a way to obtain them from an SQL query on the data in the SKU_DATA table. To obtain the
SKU values for the Water Sports department, we use the SQL statement:

/* *** SQL-Query-CH02-47 *** */

SELECT SKU

FROM SKU_DATA

WHERE Department=’Water Sports’

The result of this SQL statement is:

which is, indeed, the desired list of SKU values.
Now we need only combine the last two SQL statements to obtain the result we want. We

replace the list of values in the WHERE clause of the first SQL query with the second SQL
statement as follows:

/* *** SQL-Query-CH02-48 *** */

SELECT SUM(ExtendedPrice) AS Revenue

FROM ORDER_ITEM

WHERE SKU IN

(SELECT SKU

FROM SKU_DATA

WHERE Department=’Water Sports’);

The result of the query is:

which is the same result we obtained before when we know the values of SKU to use.
In the preceding SQL query, the second SELECT statement, the one enclosed in parenthe-

ses, is called a subquery. We can use multiple subqueries to process three or even more tables.
For example, suppose we want to know the name of the buyers who manage any product
purchased in January 2011. First, note that Buyer data is stored in the SKU_DATA table and
OrderMonth and OrderYear data are stored in the RETAIL_ORDER table.

Chapter 2 Introduction to Structured Query Language 77

Now, we can use an SQL query with two subqueries to obtain the desired data as
follows:

/* *** SQL-Query-CH02-49 *** */

SELECT Buyer

FROM SKU_DATA

WHERE SKU IN
(SELECT SKU
FROM ORDER_ITEM
WHERE OrderNumber IN

(SELECT OrderNumber
FROM RETAIL_ORDER
WHERE OrderMonth=’January’

AND OrderYear=2011));

The result of this statement is:

To understand this statement, work from the bottom up. The bottom SELECT state-
ment obtains the list of OrderNumbers of orders sold in January 2011. The middle SELECT
statement obtains the SKU values for items sold in orders in January 2011. Finally, the
top-level SELECT query obtains Buyer for all of the SKUs found in the middle SELECT
statement.

Any parts of the SQL language that you have learned earlier in this chapter can be applied
to a table generated by a subquery, regardless of how complicated the SQL looks. For example,
we can apply the DISTINCT keyword on the results to eliminate duplicate rows. Or, we can
apply the GROUP BY and ORDER BY clauses as follows:

/* *** SQL-Query-CH02-50 *** */

SELECT Buyer, COUNT(*) AS NumberSold

FROM SKU_DATA

WHERE SKU IN
(SELECT SKU
FROM ORDER_ITEM
WHERE OrderNumber IN

(SELECT OrderNumber
FROM RETAIL_ORDER
WHERE OrderMonth=’January’

AND OrderYear=2011))

GROUP BY Buyer

ORDER BY NumberSold DESC;

The result is:

78 Part 1 Getting Started

This query fails in Microsoft Access ANSI-89 SQL for
the same reason previously described on page 70.

Solution: See the solution described in the �Does Not
Work with Microsoft Access ANSI-89 SQL� box on

page 70. The correct Microsoft Access ANSI-89 SQL statement for this query is:

/* *** SQL-Query-CH02-50-Access *** */
SELECT Buyer, Count(*) AS NumberSold
FROM SKU_DATA
WHERE SKU IN

(SELECT SKU
FROM ORDER_ITEM
WHERE OrderNumber IN

(SELECT OrderNumber
FROM RETAIL_ORDER
WHERE OrderMonth=’January’

AND OrderYear=2011))
GROUP BY Buyer
ORDER BY Count(*) DESC;

Querying Multiple Tables with Joins

Subqueries are very powerful, but they do have a serious limitation. The selected data can only
come from the top-level table. We cannot use a subquery to obtain data that arise from more
than one table. To do so, we must use a join instead.

The SQL join operator is used to combine two or more tables by concatenating (sticking
together) the rows of one table with the rows of another table. Consider how we might com-
bine the data in the RETAIL_ORDER and ORDER_ITEM tables. We can concatenate the rows
of one table with the rows of the second table with the following SQL statement:

/* *** SQL-Query-CH02-51 *** */
SELECT *
FROM RETAIL_ORDER, ORDER_ITEM;

This statement will just stick every row of one table together with every row of the second
table. For the data in Figure 2-5, the result is:

Chapter 2 Introduction to Structured Query Language 79

Because there are 3 rows of retail order and 7 rows of order items, there are 3 times 7, or 21,
rows in this table. Notice that the retail order with OrderNumber 1000 has been combined
with all seven of the rows in ORDER_ITEM, the retail order with OrderNumber 2000 has been
combined with all seven of the same rows, and, finally, that the retail order with OrderNumber
3000 has again been combined with all seven rows.

This is illogical�what we need to do is to select only those rows for which the OrderNum-
ber of RETAIL_ORDER matches the OrderNumber in ORDER_ITEM. This is easy to do; we
simply add an SQL WHERE clause to the query:

/* *** SQL-Query-CH02-52 *** */

SELECT *

FROM RETAIL_ORDER, ORDER_ITEM

WHERE RETAIL_ORDER.OrderNumber=ORDER_ITEM.OrderNumber;

The result is:

This is technically correct, but it will be easier to read if we sort the results using an ORDER BY
clause:

/* *** SQL-Query-CH02-53 *** */

SELECT *

FROM RETAIL_ORDER, ORDER_ITEM

WHERE RETAIL_ORDER.OrderNumber=ORDER_ITEM.OrderNumber

ORDER BY RETAIL_ORDER.OrderNumber, ORDER_ITEM.SKU;

The result is:

If you compare this result with the data in Figure 2-5, you will see that only the appropri-
ate order items are associated with each retail order. You also can tell that this has been done
by noticing that in each row the value of OrderNumber from RETAIL_ORDER (the first
column) equals the value of OrderNumber from ORDER_ITEM (the seventh column). This was
not true for our first result.

You may have noticed that we introduced a new variation in SQL statement syntax in the pre-
vious two queries, where the terms RETAIL_ORDER.OrderNumber, ORDER_ITEM.OrderNumber,
and ORDER_ITEM.SKU were used. The new syntax is simply TableName.ColumnName, and

80 Part 1 Getting Started

it is used to specify exactly which table each column is linked to. RETAIL_ORDER.OrderNumber
simply means the OrderNumber from the RETAIL_ORDER table. Similarly, ORDER_ITEM.Order-
Number refers to the OrderNumber in the ORDER_ITEM table, and ORDER_ITEM.SKU
refers to the SKU column in the ORDER_ITEM table. You can always qualify a column name
with the name of its table like this. We have not done so previously because we were working
with only one table, but the SQL statements shown previously would have worked just as
well with syntax like SKU_DATA.Buyer rather than just Buyer or ORDER_ITEM.Price instead
of Price.

The table that is formed by concatenating two tables is called a join. The process of creat-
ing such a table is called joining the two tables, and the associated operation is called a join
operation. When the tables are joined using an equal condition (like the one on OrderNum-
ber), this join is called an equijoin. When people say join, 99.99999 percent of the time they
mean an equijoin. This type of join is also referred to as an inner join.

We can use a join to obtain data from two or more tables. For example, using the data in
Figure 2-5, suppose we want to show the name of the Buyer and the ExtendedPrice of the sales
of all items managed by that Buyer. The following SQL query will obtain that result:

/* *** SQL-Query-CH02-54 *** */

SELECT Buyer, ExtendedPrice

FROM SKU_DATA, ORDER_ITEM

WHERE SKU_DATA.SKU=ORDER_ITEM.SKU;

The result is:

Again, the result of every SQL statement is just a single table, so we can apply any of the
SQL syntax you learned for a single table to this result. For example, we can use the GROUP BY
and ORDER BY clauses to obtain the total revenue associated with each buyer, as shown in the
following SQL query:

/* *** SQL-Query-CH02-55 *** */

SELECT Buyer, SUM(ExtendedPrice) AS BuyerRevenue

FROM SKU_DATA, ORDER_ITEM

WHERE SKU_DATA.SKU=ORDER_ITEM.SKU

GROUP BY Buyer

ORDER BY BuyerRevenue DESC;

The result is:

Chapter 2 Introduction to Structured Query Language 81

This query fails in Microsoft Access ANSI-89 SQL for
the same reason previously described on page 70.

Solution: See the solution described in the �Does Not
Work with Microsoft Access ANSI-89 SQL� box on

page 70. The correct Microsoft Access ANSI-89 SQL statement for this query is:

/* *** SQL-Query-CH02-55-Access *** */
SELECT Buyer, Sum(ORDER_ITEM.ExtendedPrice) AS BuyerRevenue
FROM SKU_DATA, ORDER_ITEM
WHERE SKU_DATA.SKU=ORDER_ITEM.SKU
GROUP BY Buyer
ORDER BY Sum(ExtendedPrice) DESC;

We can extend this syntax to join three or more tables. For example, suppose we want to obtain
the Buyer and the ExtendedPrice and OrderMonth for all purchases of items managed by each
buyer. To retrieve that data, we need to join all three tables together, as shown in this SQL query:

/* *** SQL-Query-CH02-56 *** */
SELECT Buyer, ExtendedPrice, OrderMonth
FROM SKU_DATA, ORDER_ITEM, RETAIL_ORDER
WHERE SKU_DATA.SKU=ORDER_ITEM.SKU

AND ORDER_ITEM.OrderNumber=RETAIL_ORDER.OrderNumber;

The result is:

We can improve this result by sorting with the ORDER BY clause and grouping by Buyer
with the GROUP BY clause:

/* *** SQL-Query-CH02-57 *** */
SELECT Buyer, OrderMonth, SUM(ExtendedPrice) AS BuyerRevenue
FROM SKU_DATA, ORDER_ITEM, RETAIL_ORDER
WHERE SKU_DATA.SKU=ORDER_ITEM.SKU

AND ORDER_ITEM.OrderNumber=RETAIL_ORDER.OrderNumber
GROUP BY Buyer, OrderMonth
ORDER BY Buyer, OrderMonth DESC;

The result is:

82 Part 1 Getting Started

Joins also can be written using another syntax, the SQL JOIN . . . ON syntax, and there is a
bit more for you to learn about joins when values are missing, but this chapter is long enough.
We will finish the discussion of joins in Chapter 7. If you just cannot wait, turn to pages 272�277
for the rest of the join story.

Comparing Subqueries and Joins

Subqueries and joins both process multiple tables, but they differ slightly. As mentioned earlier, a
subquery can only be used to retrieve data from the top table. A join can be used to obtain data
from any number of tables. Thus, a join can do everything a subquery can do, and more. So why
learn subqueries? For one, if you just need data from a single table, you might use a subquery
because it is easier to write and understand. This is especially true when processing multiple tables.

In Chapter 8, however, you will learn about a type of subquery called a correlated sub-
query. A correlated subquery can do work that is not possible with joins. Thus, it is important
for you to learn about both joins and subqueries, even though right now it appears that joins
are uniformly superior. If you�re curious, ambitious, and courageous, jump ahead and read the
discussion of correlated subqueries on pages 315�320.

Wow! That was a full chapter!
Structured Query Language (SQL) was developed by

IBM and has been endorsed by the ANSI SQL-92 and follow-
ing standards. SQL is a data sublanguage that can be embed-
ded into full programming languages or submitted directly
to the DBMS. Knowing SQL is critical for knowledge work-
ers, application programmers, and database administrators.

All DBMS products process SQL. Microsoft Access hides
SQL, but SQL Server, Oracle Database, and MySQL require
that you use it

We are primarily interested in three categories of SQL
statements: DML, DDL, and SQL/PSM statements. DML
statements include statements for querying data and for
inserting, updating, and deleting data. This chapter addresses
only DML query statements. Additional DML statements,
DDL and SQL/PSM are discussed in Chapter 7.

The examples in this chapter are based on three tables
extracted from the operational database at Cape Codd Out-
door Sports. Such database extracts are common and impor-
tant. Sample data for the three tables is shown in Figure 2-5.

The basic structure of an SQL query statement is
SELECT/FROM/WHERE. The columns to be selected are
listed after SELECT, the table(s) to process is listed after
FROM, and any restrictions on data values are listed after

WHERE. In a WHERE clause, character and date data values
must be enclosed in single quotes. Numeric data need not be
enclosed in quotes. You can submit SQL statements directly
to Microsoft Access, SQL Server, Oracle Database, and
MySQL, as described in this chapter.

This chapter explained the use of the following SQL
clauses: SELECT, FROM, WHERE, ORDER BY, GROUP BY,
and HAVING. This chapter explained the use of the following
SQL keywords: DISTINCT, DESC, ASC, AND, OR, IN, NOT
IN, BETWEEN, LIKE, % (* for Microsoft Access), _ (? for
Microsoft Access), SUM, AVG, MIN, MAX, COUNT, AS. You
should know how to mix and match these features to obtain
the results you want. By default, the WHERE clause is
applied before the HAVING clause.

You can query multiple tables using subqueries and
joins. Subqueries are nested queries that use the SQL key-
words IN and NOT IN. An SQL SELECT expression is placed
inside parentheses. Using a subquery, you can display data
from the top table only. A join is created by specifying multi-
ple table names in the FROM clause. An SQL WHERE clause
is used to obtain an equijoin. In most cases, equijoins are the
most sensible option. Joins can display data from multiple
tables. In Chapter 8, you will learn another type of subquery
that can perform work that is not possible with joins.

/* and */
ad-hoc queries
American National Standards Institute (ANSI)
AVG
business intelligence (BI) systems
correlated subquery

COUNT
CRUD
data definition language (DDL)
data manipulation language (DML)
data mart
data sublanguage

Chapter 2 Introduction to Structured Query Language 83

data warehouse
data warehouse DBMS
equijoin
Extensible Markup Language (XML)
Extract, Transform, and Local (ETL) System
graphical user interface (GUI)
inner join
International Organization for

Standardization (ISO)
join
join operation
joining the two tables
MAX
Microsoft Access asterisk (*)

wildcard character
Microsoft Access question mark (?) wildcard

character
MIN
query by example (QBE)
schema
SQL AND operator
SQL AS keyword
SQL asterisk (*) wildcard character
SQL BETWEEN keyword
SQL built-in functions
SQL comment
SQL DESC keyword

SQL DISTINCT keyword
SQL expression
SQL FROM clause
SQL GROUP BY clause
SQL HAVING clause
SQL IN operator
SQL join operator
SQL JOIN . . . ON syntax
SQL LIKE keyword
SQL NOT IN operator
SQL OR operator
SQL ORDER BY clause
SQL percent sign (%) wildcard character
SQL/Persistent stored modules (SQL/PSM)
SQL queries
SQL script file
SQL SELECT clause
SQL SELECT/FROM/WHERE framework
SQL Server Compatible Syntax (ANSI 92)
SQL TOP {NumberOfRows} expression
SQL underscore (_) wildcard character
SQL WHERE clause
stock-keeping unit (SKU)
Structured Query Language (SQL)
subquery
SUM
TableName.ColumnName syntax

2.1 What is a business intelligence (BI) system?

2.2 What is an ad-hoc query?

2.3 What does SQL stand for, and what is SQL?

2.4 What does SKU stand for? What is an SKU?

2.5 Summarize how data were altered and filtered in creating the Cape Codd data extraction.

2.6 Explain, in general terms, the relationships among the RETAIL_ORDER, ORDER_ITEM,
and SKU_DATA tables.

2.7 Summarize the background of SQL.

2.8 What is SQL-92? How does it relate to the SQL statements in this chapter?

2.9 What features have been added to SQL in versions subsequent to the SQL-92?

2.10 Why is SQL described as a data sublanguage?

2.11 What does DML stand for? What are DML statements?

2.12 What does DDL stand for? What are DDL statements?

2.13 What is the SQL SELECT/FROM/WHERE framework?

2.14 Explain how Microsoft Access uses SQL.

2.15 Explain how enterprise-class DBMS products use SQL.

84 Part 1 Getting Started

The INVENTORY
table

The WAREHOUSE
table

Figure 2-23

The Cape Codd Database
with the WAREHOUSE and
INVENTORY tables

WarehouseID Integer Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

WAREHOUSE

WarehouseCity Text (30) Yes

WarehouseState Text (2) Yes

Manager Text (35) No No

SquareFeet Integer No No

Figure 2-24

Column Characteristics for
the WAREHOUSE Table

The Cape Codd Outdoor Sports sale extraction database has been modified to include
two additional tables, the INVENTORY table and the WAREHOUSE table. The table
schemas for these tables, together with the SKU table, are as follows:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
WAREHOUSE (WarehouseID, WarehouseCity, WarehouseState, Manager, Squarefeet)
INVENTORY (WarehouseID, SKU, SKU_Description, QuantityOnHand, QuantityOnOrder)

The five tables in the revised Cape Codd database schema are shown in Figure 2-23.
The column characteristics for the WAREHOUSE table are shown in Figure 2-24, and the
column characteristics for the INVENTORY table are shown in Figure 2-25. The data for
the WAREHOUSE table are shown in Figure 2-26, and the data for the INVENTORY table
are shown in Figure 2-27.

If at all possible, you should run your SQL solutions to the following questions
against an actual database. A Microsoft Access database named Cape-Codd.accdb is
available on our Web site (www.pearsonhighered.com/kroenke) that contains all the
tables and data for the Cape Codd Outdoor Sports sales data extract database. Also
available on our Web site are SQL scripts for creating and populating the tables for the
Cape Codd database in SQL Server, Oracle Database, and MySQL.

2.16 There is an intentional flaw in the design of the INVENTORY table used in these exer-
cises. This flaw was purposely included in the INVENTORY tables so that you can
answer some of the following questions using only that table. Compare the SKU and
INVENTORY tables, and determine what design flaw is included in INVENTORY.
Specifically, why did we include it?

Chapter 2 Introduction to Structured Query Language 85

WarehouseID Integer Primary Key,
Foreign Key

Yes Surrogate Key

Surrogate Key

Type Key Required RemarksColumn Name

INVENTORY

SKU Integer Primary Key,
Foreign Key

Yes

SKU_Description Text (35) No Yes

QuantityOnHand Integer No No

QuantityOnOrder Integer No No

Figure 2-25

Column Characteristics for
the INVENTORY Table

100 125,000

SquareFeetWarehouseID

200 100,000

300 150,000

400

Atlanta

Chicago

Bangor

Seattle 130,000

GA

WarehouseState

IL

MA

WA

WarehouseCity

Dave Jones

Manager

Lucille Smith

Bart Evans

Dale Rogers

Figure 2-26

Cape Codd Outdoor Sports
WAREHOUSE Data

Use only the INVENTORY table to answer Review Questions 2.17 through 2.40:

2.17 Write an SQL statement to display SKU and SKU_Description.

2.18 Write an SQL statement to display SKU_Description and SKU.

2.19 Write an SQL statement to display WarehouseID.

2.20 Write an SQL statement to display unique WarehouseIDs.

2.21 Write an SQL statement to display all of the columns without using the SQL asterisk
(*) wildcard character.

2.22 Write an SQL statement to display all of the columns using the SQL asterisk (*)
wildcard character.

2.23 Write an SQL statement to display all data on products having a QuantityOnHand
greater than 0.

2.24 Write an SQL statement to display the SKU and SKU_Description for products having
QuantityOnHand equal to 0.

2.25 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for
products having QuantityOnHand equal to 0. Sort the results in ascending order by
WarehouseID.

2.26 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for
products that have a QuantityOnHand greater than 0. Sort the results in descending
order by WarehouseID and in ascending order by SKU.

2.27 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than 0.
Sort the results in descending order by WarehouseID and in ascending order by SKU.

2.28 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0. Sort
the results in descending order by WarehouseID and in ascending order by SKU.

86 Part 1 Getting Started

Std. Scuba Tank, Yellow 250

SKU_Description QuantityOnHand

Std. Scuba Tank, Yellow 100

Std. Scuba Tank, Yellow 100

100

WarehouseID

200

300

400

100

200

300

400

100

200

300

400

100

200

300

400

100

200

300

400

100

200

300

400

100

200

300

400

100

200

300

400

Std. Scuba Tank, Yellow 200

Std. Scuba Tank, Magenta 200

Std. Scuba Tank, Magenta 75

Std. Scuba Tank, Magenta 100

Std. Scuba Tank, Magenta 250

Dive Mask, Small Clear 0

Dive Mask, Small Clear 0

Dive Mask, Small Clear 300

Dive Mask, Small Clear 450

0

QuantityOnOrder

50

0

0

30

75

100

0

500

500

200

0

Dive Mask, Med Clear 100

Dive Mask, Med Clear 50

Dive Mask, Med Clear 475

Dive Mask, Med Clear 250

Half-Dome Tent 2

Half-Dome Tent 10

Half-Dome Tent 250

Half-Dome Tent 0

Half-Dome Tent Vestibule 10

Half-Dome Tent Vestibule 1

Half-Dome Tent Vestibule 100

Half-Dome Tent Vestibule 0

500

500

0

250

100

250

0

250

250

250

0

200

Light Fly Climbing Harness 300

Light Fly Climbing Harness 250

Light Fly Climbing Harness 0

Light Fly Climbing Harness 0

Locking Carabiner, Oval 1000

Locking Carabiner, Oval 1250

Locking Carabiner, Oval 500

100100

SKU

100100

100100

100100

100200

100200

100200

100200

101100

101100

101100

101100

101200

101200

101200

101200

201000

201000

201000

201000

202000

202000

202000

202000

301000

301000

301000

301000

302000

302000

302000

302000 Locking Carabiner, Oval 0

250

250

250

250

0

00

500

1000

Figure 2-27

Cape Codd Outdoor Sports
INVENTORY Data

Chapter 2 Introduction to Structured Query Language 87

2.29 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Do not use the BETWEEN keyword.

2.30 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Use the BETWEEN keyword.

2.31 Write an SQL statement to show a unique SKU and SKU_Description for all products
having an SKU description starting with �Half-dome�.

2.32 Write an SQL statement to show a unique SKU and SKU_Description for all products
having a description that includes the word ’Climb’.

2.33 Write an SQL statement to show a unique SKU and SKU_Description for all products
having a �d� in the third position from the left in SKU_Description.

2.34 Write an SQL statement that uses all of the SQL built-in functions on the QuantityOn-
Hand column. Include meaningful column names in the result.

2.35 Explain the difference between the SQL built-in functions COUNT and SUM.

2.36 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouseID. Name the sum TotalItemsOnHand and display the results in
descending order of TotalItemsOnHand.

2.37 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalItemsOnHandLT3 and display the results in descend-
ing order of TotalItemsOnHandLT3.

2.38 Write an SQL statement to display the WarehouseID and the sum of QuantityOn-
Handgrouped by WarehouseID. Omit all SKU items that have 3 or more items on hand
from the sum, and name the sum TotalItemsOnHandLT3. Show WarehouseID only for
warehouses having fewer than 2 SKUs in their TotalItemesOnHandLT3 and display the
results in descending order of TotalItemsOnHandLT3.

2.39 In your answer to Review Question 2.39, was the WHERE clause or the HAVING clause
applied first? Why?

Use both the INVENTORY and WAREHOUSE tables to answer Review Questions 2.40
through 2.52:

2.40 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the IN keyword.

2.41 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Use the IN keyword.

2.42 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, Ware-
houseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the NOT IN keyword.

2.43 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, Ware-
houseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Use the NOT IN keyword.

2.44 Write an SQL statement to produce a single column called ItemLocation that com-
bines the SKU_Description, the phrase �is in a warehouse in�, and WarehouseCity. Do
not be concerned with removing leading or trailing blanks.

2.45 Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items
stored in a warehouse managed by �Lucille Smith�. Use a subquery.

88 Part 1 Getting Started

2.46 Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items
stored in a warehouse managed by �Lucille Smith�. Use a join.

2.47 Write an SQL statement to show the WarehouseID and average QuantityOnHand of all
items stored in a warehouse managed by �Lucille Smith�. Use a subquery.

2.48 Write an SQL statement to show the WarehouseID and average QuantityOnHand of all
items stored in a warehouse managed by �Lucille Smith�. Use a join.

2.49 Write an SQL statement to display the WarehouseID, the sum of QuantityOnOrder, and
the sum of QuantityOnHand, grouped by WarehouseID and QuantityOnOrder. Name the
sum of QuantityOnOrder as TotalItemsOnOrder and the sum of QuantityOnHand as
TotalItemsOnHand.

2.50 Write an SQL statement to show the WarehouseID, WarehouseCity, WarehouseState,
Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager of
�Lucille Smith�. Use a join.

2.51 Explain why you cannot use a subquery in your answer to Review Question 2.50.

2.52 Explain how subqueries and joins differ.

For this set of project questions, we will continue creating a Microsoft Access
database for the Wedgewood Pacific Corporation (WPC). Founded in 1957 in Seattle,
Washington, WPC has grown into an internationally recognized organization. The
company is located in two buildings. One building houses the Administration,
Accounting, Finance, and Human Resources departments, and the second houses the
Production, Marketing, and Information Systems departments. The company database
contains data about company employees, departments, company projects, company
assets such as computer equipment, and other aspects of company operations.

In the following project questions, we have already created the WPC.accdb
database with the following two tables (see Chapter 1 Project Questions)

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Now we will add in the following two tables:

PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The four tables in the revised WPC database schema are shown in Figure 2-28.
The column characteristics for the PROJECT table are shown in Figure 2-29, and the
column characteristics for the ASSIGNMENT table are shown in Figure 2-31. Data for
the PROJECT table are shown in Figure 2-30, and the data for the ASSSIGNMENT table
are shown in Figure 2-32.

2.53 Figure 2-29 shows the column characteristics for the WPC PROJECT table. Using the
column characteristics, create the PROJECT table in the WPC.accdb database.

2.54 Create the relationship and referential integrity constraint between PROJECT and
DEPARTMENT. Enable enforcing of referential integrity and cascading of data
updates, but do not enable cascading of data from deleted records.

2.55 Figure 2-30 shows the data for the WPC PROJECT table. Using the Datasheet view,
enter the data shown in Figure 2-30 into your PROJECT table.

2.56 Figure 2-31 shows the column characteristics for the WPC ASSIGNMENT table. Using
the column characteristics, create the ASSIGNMENT table in the WPC.accdb database.

Chapter 2 Introduction to Structured Query Language 89

The PROJECT
table

The ASSIGNMENT
table

Figure 2-28

The WPC Database with the
PROJECT and
ASSIGNMENT Tables

ProjectID Number Primary Key Yes

Type Key Required RemarksColumn Name

Name Text (50) No Yes

Department Text (35) Foreign Key Yes

MaxHours Number No Yes

StartDate Date/Time No No

EndDate Date/Time No No

Long Integer

Double

PROJECT

Figure 2-29

Column Characteristics for
the PROJECT Table

2.57 Create the relationship and referential integrity constraint between ASSIGNMENT
and EMPLOYEE. Enable enforcing of referential integrity, but do not enable either
cascading updates or the cascading of data from deleted records.

2.58 Create the relationship and referential integrity constraint between ASSIGNMENT
and PROJECT. Enable enforcing of referential integrity and cascading of deletes, but do
not enable cascading updates.

2.59 Figure 2-32 shows the data for the WPC ASSIGNMENT table. Using the Datasheet
view, enter the data shown in Figure 2-32 into your ASSIGNMENT table.

2.60 In Project Question 2.55, the table data was entered after referential integrity con-
straints were created in Project Question 2.54. In Project Question 2.59, the table data

1000 2011 Q3 Product Plan Marketing

Name DepartmentProjectID

1100 2011 Q3 Portfolio Analysis Finance

1200 2011 Q3 Tax Preparation Accounting

1300 2011 Q4 Product Plan Marketing

1400 2011 Q4 Portfolio Analysis Finance

135.00

MaxHours

120.00

145.00

150.00

05/10/11

StartDate

07/05/11

08/10/11

08/10/11

06/15/11

EndDate

07/25/11

10/25/11

09/15/11

140.00 10/05/11

Figure 2-30

Sample Data for the
PROJECT Table

90 Part 1 Getting Started

1000 1 30.0

EmployeeNumber HoursWorkedProjectID

1000 8 75.0

1000 10 55.0

1100 4 40.0

1100 6 45.0

1100 1 25.0

1200 2 20.0

1200 4 45.0

1200 5 40.0

1300 1 35.0

1300 8 80.0

1300 10 50.0

1400 4 15.0

1400 5 10.0

1400 6 27.5

Figure 2-32

Sample Data for the
ASSIGNMENT Table

was entered after referential integrity constraints were created in Project Questions 2.57
and 2.58. Why was the data entered after the referential integrity constraints were
created instead of before the constraints were created?

2.61 Using Microsoft Access SQL, create and run queries to answer the following questions.
Save each query using the query name format SQL-Query-02-##, where the ## sign is
replaced by the letter designator of the question. For example, the first query will be
saved as SQL-Query-02-A.
A. What projects are in the PROJECT table? Show all information for each project.
B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the

PROJECT table?

ProjectID Number Primary Key,
Foreign Key

Yes Long Integer

Type Key Required RemarksColumn Name

EmployeeNumber Number Primary Key,
Foreign Key

Yes

HoursWorked Number No No

Long Integer

Double

ASSIGNMENT

Figure 2-31

Column Characteristics for
the ASSIGNMENT Table

Chapter 2 Introduction to Structured Query Language 91

C. What projects in the PROJECT table started before August 1, 2010? Show all the
information for each project.

D. What projects in the PROJECT table have not been completed? Show all the infor-
mation for each project.

E. Who are the employees assigned to each project? Show ProjectID, EmployeeNumber,
LastName, FirstName, and Phone.

F. Who are the employees assigned to each project? Show ProjectID, Name, and
Department. Show EmployeeNumber, LastName, FirstName, and Phone.

G. Who are the employees assigned to each project? Show ProjectID, Name, Depart-
ment, and Department Phone. Show EmployeeNumber, LastName, FirstName, and
Employee Phone. Sort by ProjectID, in ascending order.

H. Who are the employees assigned to projects run by the marketing department? Show
ProjectID, Name, Department, and Department Phone. Show EmployeeNumber,
LastName, FirstName, and Employee Phone. Sort by ProjectID, in ascending order.

I. How many projects are being run by the marketing department? Be sure to assign
an appropriate column name to the computed results.

J. What is the total MaxHours of projects being run by the marketing department? Be
sure to assign an appropriate column name to the computed results.

K. What is the average MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

L. How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

2.62 Using Microsoft Access QBE, create and run new queries to answer the questions in
Project Question 2.61. Save each query using the query name format QBE-Query-02-##,
where the ## sign is replaced by the letter designator of the question. For example, the
first query will be saved as QBE-Query-02-A.

The following questions refer to the NDX table data as described starting on page 72.
You can obtain a copy of this data in the Microsoft Access database DBP-e12-
NDX.accdb from the text�s Web site (www.pearsonhighered.com/kroenke).

2.63 Write SQL queries to produce the following results:
A. The ChangeClose on Fridays.
B. The minimum, maximum, and average ChangeClose on Fridays.
C. The average ChangeClose grouped by TYear. Show TYear.
D. The average ChangeClose grouped by TYear and TMonth. Show TYear and TMonth.
E. The average ChangeClose grouped by TYear, TQuarter, TMonth shown in descend-

ing order of the average (you will have to give a name to the average in order to sort
by it). Show TYear, TQuarter, and TMonth. Note that months appear in alphabetical
and not calendar order. Explain what you need to do to obtain months in calendar
order.

F. The difference between the maximum ChangeClose and the minimum ChangeClose
grouped by TYear, TQuarter, TMonth shown in descending order of the difference
(you will have to give a name to the difference in order to sort by it). Show TYear,
TQuarter, and TMonth.

G. The average ChangeClose grouped by TYear shown in descending order of the
average (you will have to give a name to the average in order to sort by it). Show only
groups for which the average is positive.

H. Display a single field with the date in the form day/month/year. Do not be
concerned with trailing blanks.

2.64 It is possible that volume (the number of shares traded) has some correlation with
the direction of the stock market. Use the SQL you have learned in this chapter to
investigate this possibility. Develop at least five different SQL statements in your
investigation.

92 Part 1 Getting Started

The CUSTOMER
table

The INVOICE
table

The INVOICE_ITEM
table

Figure 2-33

The MDC Database

CustomerID AutoNumber Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

FirstName Text (25) No Yes

LastName Text (25) No Yes

Phone Text (12) No No

Email Text (100) No No

CUSTOMERFigure 2-34

Column
Characteristics for
the CUSTOMER
Table

Marcia Wilson owns and operates Marcia�s Dry Cleaning, which is an upscale dry
cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out
from the competition by providing superior customer service. She wants to keep track
of each of her customers and their orders. Ultimately, she wants to notify them that
their clothes are ready via e-mail. To provide this service, she has developed an initial
database with several tables. Three of those tables are the following:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerNumber, DateIn, DateOut, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)

In the database schema above, the primary keys are underlined and the foreign
keys are shown in italics. The database that Marcia has created is named MDC, and
the three tables in the MDC database schema are shown in Figure 2-33.

The column characteristics for the tables are shown in Figures 2-34, 2-35, and 2-36.
The relationship between CUSTOMER and INVOICE should enforce referential integrity,
but not cascade updates nor deletions, while the relationship between INVOICE and
INVOICE_ITEM should enforce referential integrity and cascade both updates and
deletions. The data for these tables are shown in Figures 2-37, 2-38, and 2-39.

We recommend that you create a Microsoft Access 2010 database named
MDC-CH02.accdb using the database schema, column characteristics, and data
shown above, and then use this database to test your solutions to the questions in this
section. Alternatively, SQL scripts for creating the MDC-CH02 database in SQL Server,
Oracle Database, and MySQL are available on our Web site at www.pearsonhighered.
com/kroenke.

Write SQL statements and show the results based on the MDC data for each of
the following:

A. Show all data in each of the tables.

B. List the Phone and LastName of all customers.

Chapter 2 Introduction to Structured Query Language 93

InvoiceNumber Number Primary Key Yes Long Integer

Type Key Required RemarksColumn Name

DateIn Date/Time No Yes

DateOut Date/Time No No

TotalAmount Currency No No Two Decimal Places

CustomerNumber Number Foreign Key Yes Long Integer

INVOICE

Figure 2-35

Column
Characteristics
for the INVOICE
Table

InvoiceNumber Number Primary Key,
Foreign Key

Yes Long Integer

Type Key Required RemarksColumn Name

ItemNumber Number Primary Key Yes Long Integer

Item Text (50) No Yes

Quantity Number No Yes

UnitPrice Currency No Yes

Long Integer

Two Decimal Places

INVOICE_ITEM

Figure 2-36

Column Characteristics for
the INVOICE_ITEM Table

1 Nikki Kaccaton

FirstName LastNameCustomerID

2 Brenda Catnazaro

3 Bruce LeCat

4 Betsy Miller

5 George Miller

723-543-1233

Phone

723-543-2344

723-543-3455

725-654-3211

Nikki.Kaccaton@somewhere.com

Email

Brenda.Catnazaro@somewhere.com

Bruce.LeCat@somewhere.com

Betsy.Miller@somewhere.com

725-654-4322 George.Miller@somewhere.com

6 Kathy Miller

7 Betsy Miller

723-514-9877 Kathy.Miller@somewhere.com

723-514-8766 Betsy.Miller@elsewhere.com

Figure 2-37

Sample Data for the
CUSTOMER Table

C. List the Phone and LastName for all customers with a FirstName of �Nikki�.

D. List the CustomerNumber, DateIn, and DateOut of all orders in excess of $100.00.

E. List the Phone and FirstName of all customers whose first name starts with �B�.

F. List the Phone and FirstName of all customers whose last name includes the characters �cat�.

G. List the Phone, FirstName, and LastName for all customers whose second and third
numbers of their phone number are 23.

H. Determine the maximum and minimum TotalAmount.

94 Part 1 Getting Started

2011001

InvoiceNumber

2011002

2011003

2011004

2011005

2011006

2011007

2011008

2011009

04-Oct-11

DateIn

04-Oct-11

06-Oct-11

06-Oct-11

07-Oct-11

11-Oct-11

11-Oct-11

12-Oct-11

12-Oct-11

06-Oct-11

DateOut

06-Oct-11

08-Oct-11

08-Oct-11

11-Oct-11

13-Oct-11

13-Oct-11

14-Oct-11

14-Oct-11

$158.50

TotalAmount

$25.00

$49.00

$17.50

$12.00

$152.50

$7.00

$140.50

$27.00

1

CustomerNumber

2

1

4

6

3

3

7

5

Figure 2-38

Sample Data for the
INVOICE Table

I. Determine the average TotalAmount.

J. Count the number of customers.

K. Group customers by LastName and then by FirstName.

L. Count the number of customers having each combination of LastName and FirstName.

M. Show the FirstName and LastName of all customers who have had an order with
TotalAmount greater than $100.00. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

N. Show the FirstName and LastName of all customers who have had an order with
TotalAmount greater than $100.00. Use a join. Present results sorted by LastName in
ascending order and then FirstName in descending order.

O. Show the FirstName and LastName, of all customers who have had an order with an
Item named �Dress Shirt�. Use a subquery. Present results sorted by LastName in ascend-
ing order and then FirstName in descending order.

P. Show the FirstName and LastName of all customers who have had an order with an Item
named �Dress Shirt�. Use a join. Present results sorted by LastName in ascending order
and then FirstName in descending order.

Q. Show the FirstName, LastName, and TotalAmount of all customers who have had an
order with an Item named �Dress Shirt�. Use a join with a subquery. Present results sorted
by LastName in ascending order and then FirstName in descending order.

Chapter 2 Introduction to Structured Query Language 95

2011001 1 Blouse

ItemNumber ItemInvoiceNumber

2011001 2 Dress Shirt

2011001 3 Formal Gown

2011001 4 Slacks-Mens

2011001 5 Slacks-Womens

2

Quantity

5

2

10

10

2011001 6 Suit-Mens

2011002 1 Dress Shirt

2011003 1 Slacks-Mens

2011003 2 Slacks-Womens

1

10

5

4

2011004 1 Dress Shirt

2011005 1 Blouse

2011005 2 Dress Shirt

2011006 1 Blouse

2011006 2 Dress Shirt

7

2

2

5

10

2011006 3 Slacks-Mens

2011006 4 Slacks-Womens

2011007 1 Blouse

2011008 1 Blouse

10

10

2

3

2011008 2 Dress Shirt

2011008 3 Slacks-Mens

2011008 4 Slacks-Womens

12

8

2011009 1 Suit-Mens 3

$3.50

UnitPrice

$2.50

$10.00

$5.00

$6.00

$9.00

$2.50

$5.00

$6.00

$2.50

$3.50

$2.50

$3.50

$2.50

$5.00

$6.00

$3.50

$3.50

$2.50

$5.00

$9.00

$6.0010

Figure 2-39

Sample Data for the
INVOICE_ITEM Table

James Morgan owns and operates Morgan Importing, which purchases antiques and
home furnishings in Asia, ships those items to a warehouse facility in Los Angeles, and
then sells these items in the United States. James tracks the Asian purchases and
subsequent shipments of these items to Los Angeles by using a database to keep a
list of items purchased, shipments of the purchased items, and the items in each
shipment. His database includes the following tables:

96 Part 1 Getting Started

The ITEM
table

The SHIPMENT
table

The SHIPMENT_ITEM
table

Figure 2-40

The MDC Database

ItemID AutoNumber Primary Key Yes Surrogate Key

Long Integer

Type Key Required RemarksColumn Name

Description Text (255) No Yes

PurchaseDate Date/Time No Yes

Store Text (50) No Yes

City Text (35) No Yes

Long Integer

Decimal, 18 Auto

Quantity Number No Yes

LocalCurrencyAmount Number No Yes

ExchangeRate Number No Yes Decimal, 12 Auto

ITEMFigure 2-41

Column
Characteristics
for the ITEM
Table

ITEM (ItemID, Description, PurchaseDate, Store, City, Quantity, LocalCurrencyAmount,
ExchangeRate)
SHIPMENT (ShipmentID, ShipperName, ShipperInvoiceNumber, DepartureDate,
ArrivalDate, InsuredValue)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, Value)

In the database schema above, the primary keys are underlined and the foreign
keys are shown in italics. The database that James has created is named MI, and the
three tables in the MI database schema are shown in Figure 2-40.

The column characteristics for the tables are shown in Figures 2-41, 2-42, and
2-43. The data for the tables are shown in Figures 2-44, 2-45, and 2-46. The
relationship between ITEM and SHIPMENT_ITEM should enforce referential integrity,
and although it should cascade updates, it should not cascade deletions. The
relationship between SHIPMENT and SHIPMENT_ITEM should enforce referential
integrity and cascade both updates and deletions.

We recommend that you create a Microsoft Access 2010 database named
MI-Ch02.accdb using the database schema, column characteristics, and data shown
above, and then use this database to test your solutions to the questions in this section.
Alter-natively, SQL scripts for creating the MI-CH02 database in SQL Server, Oracle Data-
base, and MySQL are available on our Web site at www.pearsonhighered.com/kroenke.

Chapter 2 Introduction to Structured Query Language 97

ShipmentID AutoNumber Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

ShipperName Text (35) No Yes

Long IntegerShipperInvoiceNumber Number No Yes

DepartureDate Date/Time No No

ArrivalDate Date/Time No No

InsuredValue Currency No No Two Decimal Places

SHIPMENT

Figure 2-42

Column
Characteristics
for the SHIPMENT
Table

ShipmentID Number Primary Key,
Foreign Key

Yes Long Integer

Long Integer

Type Key Required RemarksColumn Name

ShipmentItemID Number Primary Key Yes

Long IntegerItemID Number Foreign Key Yes

Value Currency No Yes Two Decimal Places

SHIPMENT_ITEM

Figure 2-43

Column Characteristics for
the SHIPMENT_ITEM Table

1 QE Dining Set 07-Apr-11

Description PurchaseDateItemID

2 Willow Serving
Dishes

15-Jul-11

3 Large Bureau 17-Jul-11

Eastern
Treasures

Store

Jade
Antiques

Eastern
Sales

Manila

City

Singapore

4 Brass Lamps 20-Jul-11 Jade
Antiques

Singapore

Singapore

2

Quantity

75

40

8

403405

LocalCurrencyAmount

102

50

2000

0.01774

ExchangeRate

0.5903

0.5903

0.5903

Figure 2-44

Sample Data for the ITEM
Table

Write SQL statements and shown the results based on the MDC data for each of
the following:

A. Show all data in each of the tables.
B. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shipments.
C. List the ShipmentID, ShipperName, and ShipperInvoiceNumber for all shipments that

have an insured value greater than $10,000.00.
D. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shippers whose

name starts with �AB�.
E. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the

ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all shipments
that departed in December.

98 Part 1 Getting Started

1 ABC Trans-Oceanic 2008651

ShipperName ShipperInvoiceNumberShipmentID

2 ABC Trans-Oceanic 2009012

3 Worldwide 49100300

4 International 399400

5 Worldwide 84899440

10-Dec-11

DepartureDate

10-Jan-11

05-May-11

02-Jun-11

10-Jul-11

6 International 488955 05-Aug-11

15-Mar-11

ArrivalDate

20-Mar-11

17-Jun-11

17-Jul-11

28-Jul-11

11-Sep-11

$15,000.00

InsuredValue

$12,000.00

$20,000.00

$17,500.00

$25,000.00

$18,000.00

Figure 2-45

Sample Data for the
SHIPMENT Table

3 1 1

ShipmentItemID ItemIDShipmentID

$15,000.00

Value

4 1 4

4 2 3

4 3 2

$1,200.00

$9,500.00

$4,500.00

Figure 2-46

Sample Data for the
SHIPMENT_ITEM Table

F. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all shipments
that departed on the tenth day of any month.

G. Determine the maximum and minimum InsuredValue.
H. Determine the average InsuredValue.
I. Count the number of shipments.
J. Show ItemID, Description, Store, and a calculated column named USCurrencyAmount

that is equal to LocalCurrencyAmountt multiplied by the ExchangeRate for all rows of
ITEM.

K. Group item purchases by City and Store.
L. Count the number of purchases having each combination of City and Store.
M. Show the ShipperName and DepartureDate of all shipments that have an item with a

value of $1,000.00 or more. Use a subquery. Present results sorted by ShipperName in
ascending order and then DepartureDate in descending order.

N. Show the ShipperName and DepartureDate of all shipments that have an item with a
value of $1,000.00 or more. Use a join. Present results sorted by ShipperName in ascend-
ing order and then DepartureDate in descending order.

O. Show the ShipperName and DepartureDate of all shipments that have an item that was
purchased in Singapore. Use a subquery. Present results sorted by ShipperName in
ascending order and then DepartureDate in descending order.

P. Show the ShipperName and DepartureDate of all shipments that have an item that was
purchased in Singapore. Use a join. Present results sorted by ShipperName in ascending
order and then DepartureDate in descending order.

Q. Show the ShipperName, DepartureDate of shipment, and Value for items that were pur-
chased in Singapore. Use a combination of a join and a subquery. Present results sorted
by ShipperName in ascending order and then DepartureDate in descending order.

The four chapters in Part 2 discuss database design principles and
techniques. Chapters 3 and 4 describe the design of databases that
arise from existing data sources, such as spreadsheets, text files, and
database extracts. We begin in Chapter 3 by defining the relational
model and discussing normalization, a process that transforms relations
with modification problems. Then, in Chapter 4, we use normalization
principles to guide the design of databases from existing data.

Chapters 5 and 6 examine the design of databases that arise from
the development of new information systems. Chapter 5 describes the
entity-relationship data model, a tool used to create plans for
constructing database designs. As you will learn, such data models are
developed by analysis of forms, reports, and other information
systems requirements. Chapter 6 concludes this part by describing
techniques for transforming entity-relationship data models into
relational database designs.

D atabase Design

2

99

As we discussed in Chapter 1, databases arise from three sources: from
existing data, from the development of new information systems, and from
the redesign of existing databases. In this chapter and the next, we consider
the design of databases from existing data, such as data from spreadsheets
or extracts of existing databases.

The premise of Chapters 3 and 4 is that you have received one or more
tables of data from some source that are to be stored in a new database.
The question is: Should this data be stored as is, or should it be transformed
in some way before it is stored? For example, consider the two tables in the
top part of Figure 3-1. These are the SKU_DATA and ORDER_ITEM tables
extracted from the Cape Codd Outdoor Sports database as used in the
database in Chapter 2.

� To understand basic relational terminology

� To understand the characteristics of relations

� To understand alternative terminology used in
describing the relational model

� To be able to identify functional dependencies,
determinants, and dependent attributes

� To identify primary, candidate, and composite keys

Chapter Objectives

The Relational
Model and
Normalization3

� To be able to identify possible insertion, deletion, and
update anomalies in a relation

� To be able to place a relation into BCNF normal form

� To understand the special importance of domain/key
normal form

� To be able to identify multivalued dependencies

� To be able to place a relation in fourth normal form

100

Chapter 3 The Relational Model and Normalization 101

You can design the new database to store this data as two separate
tables, or you can join the tables together and design the database with just
one table. Each alternative has advantages and disadvantages. When you
make the decision to use one design, you obtain certain advantages at the
expense of certain costs. The purpose of this chapter is to help you under-
stand those advantages and costs.

Such questions do not seem difficult, and you may be wondering why
we need two chapters to answer them. In truth, even a single table can have
surprising complexity. Consider, for example, the table in Figure 3-2, which

ORDER_ITEM

SKU_DATA

SKU_ITEM

Figure 3-1

How Many Tables?

PRODUCT_BUYERFigure 3-2

PRODUCT_BUYER�A Very
Strange Table

102 Part 2 Database Design

shows sample data extracted from a corporate database. This simple table
has three columns: the buyer�s name, the SKU of the products that the buyer
purchases, and the names of the buyer�s college major(s). Buyers manage
more than one SKU, and they can have multiple college majors.

To understand why this is an odd table, suppose that Nancy Meyers is
assigned a new SKU, say 101300. What addition should we make to this
table? Clearly, we need to add a row for the new SKU, but if we add just one
row, say the row (�Nancy Meyers�, 101300, �Art�), it will appear that she
manages product 101300 as an Art major, but not as an Info Systems major.
To avoid such an illogical state, we need to add two rows: (�Nancy Meyers�,
101300, �Art�) and (�Nancy Meyers�, 101300, �Info Systems�).

This is a strange requirement. Why should we have to add two rows of
data simply to record the fact that a new SKU has been assigned to a buyer?
Further, if we assign the product to Pete Hansen instead, we would only
have to add one row, but if we assigned the product to a buyer who had four
majors, we would have to add four new rows.

The more one thinks about the table in Figure 3-2, the more strange it
becomes. What changes should we make if SKU 101100 is assigned to Pete
Hansen? What changes should we make if SKU 100100 is assigned to
Nancy Meyers? What should we do if all the SKU values in Figure 3-2 are
deleted? Later in this chapter, you will learn that these problems arise
because this table has a problem called a multivalued dependency. Even
better, you will learn how to remove that problem.

Tables can have many different patterns; some patterns are susceptible
to serious problems and other patterns are not. Before we can address this
question, however, you need to learn some basic terms.

Relational Model Terminology

Figure 3-3 lists the most important terms used by the relational model. By the time you finish
Chapters 3 and 4, you should be able to define each of these terms and explain how each pertains
to the design of relational databases. Use this list of terms as a check on your comprehension.

� Relation
� Functional dependency
� Determinant
� Candidate key
� Composite key
� Primary key
� Surrogate key
� Foreign key
� Referential integrity constraint
� Normal form
� Multivalued dependency

Figure 3-3

Important Relational Model
Terms

Chapter 3 The Relational Model and Normalization 103

Relations

So far, we have used the terms table and relation interchangeably. In fact, a relation is a special
case of a table. This means that all relations are tables, but not all tables are relations. Codd
defined the characteristics of a relation in his 1970 paper that laid the foundation for the rela-
tional model.1 Those characteristics are summarized in Figure 3-4.

In Figure 3-4 and in this discussion, we use the term entity to mean some
identifiable thing. A customer, a salesperson, an order, a part, and a lease

are all examples of what we mean by an entity. When we introduce the entity-relationship
model in Chapter 5, we will make the definition of entity more precise. For now, just think
of an entity as some identifiable thing that users want to track.

Characteristics of Relations

A relation has a specific definition, as shown in Figure 3-4, and for a table to be a rela-
tion the criteria of this definition must be met. First, the rows of the table must store
data about an entity and the columns of the table must store data about the character-
istics of those entities. Further, in a relation all of the values in a column are of the same
kind. If, for example, the second column of the first row of a relation has FirstName,
then the second column of every row in the relation has FirstName. Also, the names of
the columns are unique; no two columns in the same relation may have the same name.
The EMPLOYEE table shown in Figure 3-5 meets these criteria and is a relation.

Rows contain data about an entity.

Characteristics of Relations

Columns contain data about attributes of the entities.

All entries in a column are of the same kind.

Each column has a unique name.

Cells of the table hold a single value.

The order of the columns is unimportant.

The order of the rows is unimportant.

No two rows may be identical.
Figure 3-4

Characteristics of Relations

1 E. F. Codd, �A Relational Model of Data for Large Shared Databanks,� Communications of the ACM, June 1970,
pp. 377�387. A downloadable copy of this paper in PDF format is available at portal.acm.org/citation.cfm?id=362685

Columns in different relations may have the same name. In Chapter 2, for
example, two relations had a column named SKU. When there is risk of

confusion, we precede the column name with the relation name followed by a period.
Thus, the name of the SKU column in the SKU_DATA relation is SKU_DATA.SKU, and
column C1 of relation R1 is named R1.C1. Because relation names are unique within a
database, and because column names are unique within a relation, the combination of
relation name and column name uniquely identifies every column in the database.

104 Part 2 Database Design

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102,
834-1191,
834-1192

834-4101Production TJ@somewhere.com

600 Eleanore Caldera

700 Richard Bandalone

Legal EC@somewhere.com 834-3101

834-3102,
834-3191

Legal RB@somewhere.com

Figure 3-6

Nonrelational Table�
Multiple Entries per Cell

Do not fall into a common trap. Even though every cell of a relation must
have a single value, this does not mean that all values must have the same

length. The table in Figure 3-8 is a relation even though the length of the Comment
column varies from row to row. It is a relation because, even though the comments have
different lengths, there is only one comment per cell.

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102

834-4101Production TJ@somewhere.com

600 Eleanore Caldera

700 Richard Bandalone

Legal EC@somewhere.com 834-3101

834-3102Legal RB@somewhere.com

Figure 3-5

Sample EMPLOYEE Relation

Each cell of a relation has only a single value or item; multiple entries are not allowed. The
table in Figure 3-6 is not a relation, because the Phone values of employees Caruthers and
Bandalone store multiple phone numbers.

In a relation, the order of the rows and the order of the columns are immaterial. No
information can be carried by the ordering of rows or columns. The table in Figure 3-7 is not
a relation, because the entries for employees Caruthers and Caldera require a particular row
arrangement. If the rows in this table were rearranged, we would not know which employee
has the indicated Fax and Home numbers.

Finally, according to the last characteristic in Figure 3-4, for a table to be a relation no two
rows can be identical. As you learned in Chapter 2, some SQL statements do produce tables
with duplicate rows. In such cases, you can use the DISTINCT keyword to force uniqueness.
Such row duplication only occurs as a result of SQL manipulation. Tables that you design to be
stored in the database should never contain duplicate rows.

Chapter 3 The Relational Model and Normalization 105

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102

834-4101Production TJ@somewhere.com

600 Eleanore Caldera Legal EC@somewhere.com 834-3101

834-9911

Home: 723-8795

834-9912Fax:

700 Richard Bandalone

Home:

TC@somewhere.com

Fax:

723-7654

834-3102Legal RB@somewhere.com

Figure 3-7

Nonrelational Table�Order
of Rows Matters and Kind of
Column Entries Differs in Email

Alternative Terminology

As defined by Codd, the columns of a relation are called attributes, and the rows of a relation
are called tuples (rhymes with �couples�). Most practitioners, however, do not use these aca-
demic-sounding terms and instead use the terms column and row. Also, even though a table is
not necessarily a relation, most practitioners mean relation when they say table. Thus, in most
conversations the terms relation and table are synonymous. In fact, for the rest of this book
table and relation will be used synonymously.

Additionally, a third set of terminology also is used. Some practitioners use the terms file, field,
and record for the terms table, column, and row, respectively. These terms arose from traditional

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102

834-4101Production TJ@somewhere.com

600 Eleanore Caldera

700 Richard Bandalone

Legal EC@somewhere.com 834-3101

834-3102Legal RB@somewhere.com

Joined the
Accounting
Department in
March after
completing his
MBA. Will take the
CPA exam this fall.

Comment

Is a full-time
consultant to Legal
on a retainer basis.

Figure 3-8

Relation with Variable-
Length Column Values

106 Part 2 Database Design

File Field Record

Relation Attribute Tuple

Table Column Row

Figure 3-9

Three Sets of Equivalent
Terms

data processing and are common in connection with legacy systems. Sometimes, people mix
and match these terms. You might hear someone say, for example, that a relation has a certain
column and contains 47 records. These three sets of terms are summarized in Figure 3-9.

Functional Dependencies

Functional dependencies are the heart of the database design process, and it is vital for you to
understand them. We first explain the concept in general terms and then examine two examples.
We begin with a short excursion into the world of algebra. Suppose you are buying boxes of
cookies and someone tells you that each box costs $5.00. With this fact, you can compute the
cost of several boxes with the formula:

CookieCost � NumberOfBoxes � $5

A more general way to express the relationship between CookieCost and NumberOfBoxes
is to say that CookieCost depends on NumberOfBoxes. Such a statement tells us the character
of the relationship between CookieCost and NumberOfBoxes, even though it doesn�t give us
the formula. More formally, we can say that CookieCost is functionally dependent on Num-
berOfBoxes. Such a statement can be written as:

NumberOfBoxes : CookieCost

This expression can be read as �NumberOfBoxes determines CookieCost.� The variable on
the left, here NumberOfBoxes, is called the determinant.

Using another formula, we can compute the extended price of a part order by multiplying
the quantity of the item times its unit price, or:

ExtendedPrice � Quantity � UnitPrice

In this case, we say that ExtendedPrice is functionally dependent on Quantity and UnitPrice, or:

(Quantity, UnitPrice) : ExtendedPrice

Here, the determinant is the composite (Quantity, UnitPrice).

Functional Dependencies That Are Not Equations
In general, a functional dependency exists when the value of one or more attributes determines
the value of another attribute. Many functional dependencies exist that do not involve equations.

Consider an example. Suppose you know that a sack contains either red, blue, or yellow
objects. Further, suppose you know that the red objects weigh 5 pounds, the blue objects weigh
5 pounds, and the yellow objects weigh 7 pounds. If a friend looks into the sack, sees an object, and
tells you the color of the object, you can tell her the weight of the object. We can formalize this as:

ObjectColor : Weight

Thus, we can say that Weight is functionally dependent on ObjectColor and that ObjectColor
determines Weight. The relationship here does not involve an equation, but the functional
dependency holds. Given a value for ObjectColor, you can determine the object�s weight.

If we also know that the red objects are balls, the blue objects are cubes, and the yellow
objects are cubes, we can also say:

ObjectColor : Shape

Chapter 3 The Relational Model and Normalization 107

Thus, ObjectColor determines Shape. We can put these two together to state:

ObjectColor : (Weight, Shape)

Thus, ObjectColor determines Weight and Shape.
Another way to represent these facts is to put them into a table:

Object Color Weight Shape

Red

Blue

5

5

Ball

Cube

Yellow 7 Cube

This table meets all of the conditions listed in Figure 3-4, and therefore it is a relation. You
may be thinking that we performed a trick or sleight of hand to arrive at this relation, but, in
truth, the only reason for having relations is to store instances of functional dependencies. If
there were a formula by which we could take ObjectColor and somehow compute Weight and
Shape, then we would not need the table. We would just make the computation. Similarly, if
there were a formula by which we could take EmployeeNumber and compute EmployeeName
and HireDate, then we would not need an EMPLOYEE relation. However, because there is no
such formula, we must store the combinations of EmployeeNumber, EmployeeName, and
HireDate in the rows of a relation.

Composite Functional Dependencies
The determinant of a functional dependency can consist of more than one attribute. For
example, a grade in a class is determined by both the student and the class, or:

(StudentNumber, ClassNumber) : Grade

In this case, the determinant is called a composite determinant.
Notice that both the student and the class are needed to determine the grade. In general,

if (A, B) : C, then neither A nor B will determine C by itself. However, if A : (B, C), then it is
true that A : B and A : C. Work through examples of your own for both of these cases so
that you understand why this is true.

Finding Functional Dependencies

To fix the idea of functional dependency in your mind, consider what functional dependencies
exist in the SKU_DATA and ORDER_ITEM tables in Figure 3-1.

Functional Dependencies in the SKU_DATA Table
To find functional dependencies in a table, we must ask �Does any column determine the value
of another column?� For example, consider the values of the SKU_DATA table in Figure 3-1:

108 Part 2 Database Design

Consider the last two columns. If we know the value of Department, can we determine a
unique value of Buyer? No, we cannot, because a Department may have more than one Buyer.
In this sample data, �Water Sports� is associated with Pete Hansen and Nancy Meyers. There-
fore, Department does not functionally determine Buyer.

What about the reverse? Does Buyer determine Department? In every row, for a given value of
Buyer, do we find the same value of Department? Every time Jerry Martin appears, for example, is
he paired with the same department? The answer is yes. Further, every time Cindy Lo appears, she
is paired with the same department. The same is true for the other buyers. Therefore, assuming
that these data are representative, Buyer does determine Department, and we can write:

Buyer : Department

Does Buyer determine any other column? If we know the value of Buyer, do we know the
value of SKU? No, we do not, because a given buyer has many SKUs assigned to him or her.
Does Buyer determine SKU_Description? No, because a given value of Buyer occurs with many
values of SKU_Description.

As stated, for the Buyer : Department functional dependency a Buyer is
paired with one and only one value of Department. Notice that a buyer can

appear more than once in the table, but, if so, that buyer is always paired with the same
department. This is true for all functional dependencies. If A : B, then each value of
A will be paired with one and only one value of B. A particular value of A may appear
more than once in the relation, but, if so, it is always paired with the same value of B.
Note, too, that the reverse is not necessarily true. If A : B, then a value of B may be
paired with many values of A.

What about the other columns? It turns out that if we know the value of SKU, we also
know the values of all of the other columns. In other words:
SKU : SKU_Description

because a given value of SKU will have just one value of SKU_Description. Next,
SKU : Department

because a given value of SKU will have just one value of Department. And, finally,
SKU : Buyer

because a given value of SKU will have just one value of Buyer.

We can combine these three statements as:
SKU : (SKU_Description, Department, Buyer)

For the same reasons, SKU_Description determines all of the other columns, and we can write:

SKU_Description : (SKU, Department, Buyer)

In summary, the functional dependencies in the SKU_DATA table are:
SKU : (SKU_Description, Department, Buyer)
SKU_Description : (SKU, Department, Buyer)
Buyer : Department

You cannot always determine functional dependencies from sample data.
You may not have any sample data, or you may have just a few rows that

are not representative of all of the data conditions. In such cases, you must ask the users
who are experts in the application that creates the data. For the SKU_DATA table, you
would ask questions such as, �Is a Buyer always associated with the same Department?�
and �Can a Department have more than one Buyer?� In most cases, answers to such
questions are more reliable than sample data. When in doubt, trust the users.

Chapter 3 The Relational Model and Normalization 109

Functional Dependencies in the ORDER_ITEM Table
Now consider the ORDER_ITEM table in Figure 3-1. For convenience, here is a copy of the data
in that table:

What are the functional dependencies in this table? Start on the left. Does OrderNumber
determine another column? It does not determine SKU, because several SKUs are associated with
a given order. For the same reasons, it does not determine Quantity, Price, or ExtendedPrice.

What about SKU? SKU does not determine OrderNumber because several OrderNumbers are
associated with a given SKU. It does not determine Quantity or ExtendedPrice for the same reason.

What about SKU and Price? From this data, it does appear that

SKU : Price

but that might not be true in general. In fact, we know that prices can change after an order
has been processed. Further, an order might have special pricing due to a sale or promotion. To
keep an accurate record of what the customer actually paid, we need to associate a particular
SKU price with a particular order. Thus:

(OrderNumber, SKU) : Price

Considering the other columns, Quantity, Price, and ExtendedPrice do not determine anything
else. You can decide this by looking at the sample data. You can reinforce this conclusion by think-
ing about the nature of sales. Would a Quantity of 2 ever determine an OrderNumber or a SKU?
This makes no sense. At the grocery store, if I tell you I bought two of something, you have no rea-
son to conclude that my OrderNumber was 1010022203466 or that I bought carrots. Quantity does
not determine OrderNumber or SKU.

Similarly, if I tell you that the price of an item was $3.99, there is no logical way to conclude
what my OrderNumber was or that I bought a jar of green olives. Thus, Price does not determine
OrderNumber or SKU. Similar comments pertain to ExtendedPrice. It turns out that no single
column is a determinant in the ORDER_ITEM table.

What about pairs of columns? We already know that

(OrderNumber, SKU) : Price

Examining the data, (OrderNumber, SKU) determines the other two columns as well. Thus:

(OrderNumber, SKU) : (Quantity, Price, ExtendedPrice)

This functional dependency makes sense. It means that given a particular order and a particular
item on that order, there is only one quantity, one price, and one extended price.

Notice, too, that because ExtendedPrice is computed from the formula ExtendedPrice =
(Quantity * Price) we have:

(Quantity, Price) : ExtendedPrice

In summary, the functional dependencies in ORDER_ITEM are:

(OrderNumber, SKU) : (Quantity, Price, ExtendedPrice)
(Quantity, Price) : ExtendedPrice

No single skill is more important for designing databases than the ability to identify functional
dependencies. Make sure you understand the material in this section. Work problems 3.58 and 3.59

110 Part 2 Database Design

and the Marcia�s Dry Cleaning and Morgan Importing projects at the end of the chapter. Ask your
instructor for help if necessary. You must understand functional dependencies and be able to work
with them.

When Are Determinant Values Unique?
In the previous section, you may have noticed an irregularity. Sometimes the determinants of
a functional dependency are unique in a relation, and sometimes they are not. Consider the
SKU_DATA relation, with determinants SKU, SKU_Description, and Buyer. In SKU_DATA, the
values of both SKU and SKU_Description are unique in the table. For example, the SKU value
100100 appears just once. Similarly, the SKU_Description value �Half-dome Tent� occurs just
once. From this, it is tempting to conclude that values of determinants are always unique in a
relation. However, this is not true.

For example, Buyer is a determinant, but it is not unique in SKU_DATA. The buyer �Cindy
Lo� appears in two different rows. In fact, for this sample data all of the buyers occur in two
different rows.

In truth, a determinant is unique in a relation only if it determines every other
column in the relation. For the SKU_DATA relation, SKU determines all of the other columns.
Similarly, SKU_Description determines all of the other columns. Hence, they both are unique.
Buyer, however, only determines the Department column. It does not determine SKU or
SKU_Description.

The determinants in ORDER_ITEM are (OrderNumber, SKU) and (Quantity, Price). Because
(OrderNumber, SKU) determines all of the other columns, it will be unique in the relation. The
composite (Quantity and Price) only determines ExtendedPrice. Therefore, it will not be unique
in the relation.

This fact means that you cannot find the determinants of all functional dependencies
simply by looking for unique values. Some of the determinants will be unique, but some will not
be. Instead, to determine if column A determines column B, look at the data and ask, �Every time
that a value of column A appears is it matched with the same value of Column B?� If so, it can be
a determinant of B. Again, however, sample data can be incomplete, so the best strategies are to
think about the nature of the business activity from which the data arise and to ask the users.

Keys

The relational model has more keys than a locksmith. There are candidate keys, composite
keys, primary keys, surrogate keys, and foreign keys. In this section, we will define each of
these types of keys. Because key definitions rely on the concept of functional dependency,
make sure you understand that concept before reading on.

In general, a key is a combination of one or more columns that is used to identify particular
rows in a relation. Keys that have two columns or more are called composite keys.

Candidate Keys
A candidate key is a determinant that determines all of the other columns in a relation. The
SKU_DATA relation has two candidate keys: SKU and SKU_Description. Buyer is a determinant,
but it is not a candidate key because it only determines Department.

The ORDER_ITEM table has just one candidate key: (OrderNumber, SKU). The other
determinant in this table, (Quantity, Price), is not a candidate key because it determines only
ExtendedPrice.

Candidate keys identify a unique row in a relation. Given the value of a candidate key, we can
find one and only one row in the relation that has that value. For example, given the SKU value of
100100, we can find one and only one row in SKU_DATA. Similarly, given the OrderNumber and
SKU values (2000, 101100), we can find one and only one row in ORDER_ITEM.

Primary Keys
When designing a database, one of the candidate keys is selected to be the primary key. This
term is used because this key will be defined to the DBMS, and the DBMS will use it as its
primary means for finding rows in a table. A table has only one primary key. The primary key
can have one column or it can be a composite.

In this text, to clarify discussions we will sometimes indicate table structure by showing
the name of a table followed by the names of the table�s columns enclosed in parentheses.

Chapter 3 The Relational Model and Normalization 111

When we do this, we will underline the column(s) that comprise the primary key. For example,
we can show the structure of SKU_DATA and ORDER_ITEM as follows:

SKU_DATA (SKU, SKU_Description, Department, Buyer)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

This notation indicates that SKU is the primary key of SKU_DATA and that (OrderNumber,
SKU) is the primary key of ORDER_ITEM.

What do you do if a table has no candidate keys? In that case, define the
primary key as the collection of all of the columns in the table. Because

there are no duplicate rows in a stored relation, the combination of all of the columns of the
table will always be unique. Again, although tables generated by SQL manipulation may
have duplicate rows, the tables that you design to store data should never be constructed
to have data duplication. Thus, the combination of all columns is always a candidate key.

Surrogate Keys
A surrogate key is an artificial column that is added to a table to serve as the primary key.
The DBMS assigns a unique value to a surrogate key when the row is created. The assigned value
never changes. Surrogate keys are used when the primary key is large and unwieldy. For example,
consider the relation RENTAL_PROPERTY:

RENTAL_PROPERTY (Street, City, State/Province, Zip/PostalCode, Country, Rental_Rate)

The primary key of this table is (Street, City, State/Province, Zip/PostalCode, Country). As you
will learn in Chapter 6, for good performance a primary key should be short and, if possible,
numeric. The primary key of RENTAL_PROPERTY is neither.

In this case, the designers of the database would likely create a surrogate key. The structure
of the table would then be:

RENTAL_PROPERTY (PropertyID, Street, City, State/Province, Zip/PostalCode, Country,
Rental_Rate)

The DBMS will assign a numeric value to PropertyID when a row is created. Using that key will
result in better performance than using the original key. Note that surrogate key values are
artificial and have no meaning to the users. In fact, surrogate key values are normally hidden in
forms and reports.

Foreign Keys
A foreign key is a column or composite of columns that is the primary key of a table other
than the one in which it appears. The term arises because it is a key of a table foreign to the one
in which it appears. In the following two tables, DEPARTMENT.DepartmentName is the
primary key of DEPARTMENT, and EMPLOYEE.DepartmentName is a foreign key. In this text,
we will show foreign keys in italics:

DEPARTMENT (DepartmentName, BudgetCode, ManagerName)
EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName, DepartmentName)

Foreign keys express relationships between rows of tables. In this example, the foreign key
EMPLOYEE.DepartmentName stores the relationship between an employee and his or her
department.

Consider the SKU_DATA and ORDER_ITEM tables. SKU_DATA.SKU is the primary key of
SKU_DATA, and ORDER_ITEM.SKU is a foreign key.

SKU_DATA (SKU, SKU_Description, Department, Buyer)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

Notice that ORDER_ITEM.SKU is both a foreign key and also part of the primary key of
ORDER_ITEM. This condition sometimes occurs, but it is not required. In the example above,

112 Part 2 Database Design

Normal Forms

All relations are not equal. Some are easy to process, and others are problematic. Relations are
categorized into normal forms based on the kinds of problems that they have. Knowledge of
these normal forms will help you create appropriate database designs. To understand normal
forms, we need first to define modification anomalies.

Modification Anomalies

Consider the EQUIPMENT_REPAIR relation in Figure 3-10, which stores data about manufac-
turing equipment and equipment repairs. Suppose we delete the data for repair number 2100.
When we delete this row (the second one in Figure 3-10), we remove not only data about
the repair, but also data about the machine itself. We will no longer know, for example, that the
machine was a Lathe and that its AcquisitionPrice was 4750.00. When we delete one row, the
structure of this table forces us to lose facts about two different things, a machine and a repair.
This condition is called a deletion anomaly.

Now suppose we want to enter the first repair for a piece of equipment. To enter repair
data, we need to know not just RepairNumber, RepairDate, and RepairCost, but also
ItemNumber, EquipmentType, and AcquisitionCost. If we work in the repair department, this
is a problem, because we are unlikely to know the value of AcquisitionCost. The structure of
this table forces us to enter facts about two entities when we just want to enter facts about
one. This condition is called an insertion anomaly.

Finally, suppose we want to change existing data. If we alter a value of RepairNumber,
RepairDate, or RepairCost, there is no problem. But if we alter a value of ItemNumber,
EquipmentType, or AcquisitionCost, we may create a data inconsistency. To see why, suppose
we update the last row of the table in Figure 3-10 using the data (100, �Drill Press�, 5500, 2500,
�08/17/09�, 275).

Figure 3-11 shows the table after this erroneous update. The drill press has two different
AcquisitionCosts. Clearly, this is an error. Equipment cannot be acquired at two different costs.
If there were, say, 10,000 rows in the table, however, it might be very difficult to detect this error.
This condition is called an update anomaly.Figure 3-10

The EQUIPMENT_REPAIR
Table

EMPLOYEE.DepartmentName is a foreign key, but it is not part of the EMPLOYEE primary
key. You will see some uses for foreign keys later in this chapter and the next, and you will
study them at length in Chapter 6.

In most cases, we need to ensure that the values of a foreign key match a valid value of a
primary key. For the SKU_DATA and ORDER_ITEM tables, we need to ensure that all of the
values of ORDER_ITEM.SKU match a value of SKU_DATA.SKU. To accomplish this, we create
a referential integrity constraint, which is a statement that limits the values of the foreign
key. In this case, we create the constraint:

SKU in ORDER_ITEM must exist in SKU in SKU_DATA

This constraint stipulates that every value of SKU in ORDER_ITEM must match a value of
SKU in SKU_DATA.

Chapter 3 The Relational Model and Normalization 113

Figure 3-11

The EQUIPMENT_REPAIR
Table After an Incorrect
Update

Notice that the EQUIPMENT_REPAIR table in Figures 3-10 and 3-11 dupli-
cates data. For example, the AcquisitionCost of the same item of equipment

appears several times. Any table that duplicates data is susceptible to update anomalies
like the one in Figure 3-11. A table that has such inconsistencies is said to have data
integrity problems.

As you will learn in Chapter 4, to improve query speed we sometimes design a table
to have duplicated data. Be aware, however, that any time we design a table this way
we open the door to data integrity problems.

2 E. F. Codd and A. L. Dean, �Proceedings of 1971 ACM-SIGFIDET Workshop on Data Description,� Access and
Control, San Diego, California, November 11�12, 1971 ACM 1971.
3 R. Fagin, �A Normal Form for Relational Databases That Is Based on Domains and Keys,� ACM Transactions on
Database Systems, September 1981, pp. 387�414.

A Short History of Normal Forms

When Codd defined the relational model, he noticed that some tables had modification anomalies.
In his second paper,2 he defined first normal form, second normal form, and third normal form. He
defined first normal form (1NF) as the set of conditions for a relation shown in Figure 3-4. Any table
meeting the conditions in Figure 3-4 is therefore a relation in 1NF. Codd also noted that some tables
(or, interchangeably in this book, relations) in 1NF had modification anomalies. He found that he
could remove some of those anomalies by applying certain conditions. A relation that met those
conditions, which we will discuss later in this chapter, was said to be in second normal form (2NF).
He also observed, however, that relations in 2NF could also have anomalies, and so he defined third
normal form (3NF), which is a set of conditions that removes even more anomalies, and which we
will also discuss later in this chapter. As time went by, other researchers found still other ways that
anomalies can occur, and the conditions for Boyce-Codd Normal Form (BCNF) were defined.

These normal forms are defined so that a relation in BCNF is in 3NF, a relation in 3NF is in
2NF, and a relation in 2NF is in 1NF. Thus, if you put a relation into BCNF, it is automatically in
the lesser normal forms.

Normal forms 2NF through BCNF concern anomalies that arise from functional depend-
encies. Other sources of anomalies were found later. They led to the definition of fourth normal
form (4NF) and fifth normal form (5NF), both of which we will discuss later in this chapter.
So it went, with researchers chipping away at modification anomalies, each one improving on
the prior normal form.

In 1982, Fagin published a paper that took a different tack.3 Instead of looking for just
another normal form, Fagin asked, �What conditions need to exist for a relation to have no
anomalies?� In that paper, he defined domain/key normal form (DK/NF). Fagin ended the
search for normal forms by showing that a relation in DK/NF has no modification anomalies
and, further, that a relation that has no modification anomalies is in DK/NF. DK/NF is
discussed in more detail later in this chapter.

Normalization Categories

As shown in Figure 3-12, normalization theory can be divided into three major categories.
Some anomalies arise from functional dependencies, some arise from multivalued dependen-
cies, and some arise from data constraints and odd conditions.

114 Part 2 Database Design

BCNF, 3NF, and 2NF, are all concerned with anomalies that are caused by functional depend-
encies. A relation that is in BCNF has no modification anomalies from functional dependencies. It
is also automatically in 2NF and 3NF, and, therefore, we will focus on transforming relations into
BCNF. However, it is instructive to work through the progression of normal forms from 1NF to
BCNF in order to understand how each normal form deals with specific anomalies, and we will do
this later in this chapter.4

As shown in the second row of Figure 3-12, some anomalies arise because of another kind
of dependency called a multivalued dependency. Those anomalies can be eliminated by placing
each multivalued dependency in a relation of its own, a condition known as 4NF. You will see
how to do that in the last section of this chapter.

The third source of anomalies is esoteric. These problems involve specific, rare, and even
strange data constraints. Accordingly, we will not discuss them in this text.

From First Normal Form to Boyce-Codd Normal Form Step-by-Step

Any table that meets the definition of a relation in Figure 3-4 is defined as being in 1NF. This
means that the following must hold: The cells of a table must be a single value, and neither
repeating groups nor arrays are allowed as values; all entries in a column must be of the
same data type; each column must have a unique name, but the order of the columns in the
table is not significant; no two rows in a table may be identical, but the order of the rows is
not significant.

Second Normal Form
When Codd discovered anomalies in 1NF tables, he defined 2NF to eliminate some of these
anomalies. A relation is 2NF if and only if it is in 1NF and all non-key attributes are
determined by the entire primary key. This means that if the primary key is a composite
primary key, then no non-key attribute can be determined by an attribute or set of attrib-
utes that make up only part of the key. Thus, if you have a relation R (A, B, N, O, P) with the
composite key (A, B), then none of the non-key attributes N, O, or P can be determined by
just A or just B.

Note that the only way a non-key attribute can be dependent on part of the primary key is
if there is a composite primary key. This means that relations with single-attribute primary
keys are automatically in 2NF.

For example, consider the STUDENT_ACTIVITY relation:

STUDENT_ACTIVITY (StudentID, Activity, ActivityFee)

The STUDENT_ACTIVITY relation is shown with sample data in Figure 3-13. Note that
STUDENT_ACTIVITY has the composite primary key (StudentID, Activity), which allows us
to determine the fee a particular student will have to pay for a particular activity. However,
because fees are determined by activities, Fee is also functionally dependent on just Activity

4 See C. J. Date, An Introduction to Database Systems, 8th ed. (New York: Addison-Wesley, 2003), for a complete
discussion of normal forms.

Source of Anomaly Normal Forms Design Principles

Data constraints and oddities

Functional dependencies

Multivalued dependencies

5NF, DK/NF

1NF, 2NF,
3NF, BCNF

4NF

DK/NF: Make every constraint a
logical consequence of candidate
keys and domains.

BCNF: Design tables so that every
determinant is a candidate key.

4NF: Move each multivalued
dependency to a table of its own.

Figure 3-12

Summary of Normalization
Theory

Chapter 3 The Relational Model and Normalization 115

itself, and we can say that Fee is partially dependent on the key of the table. The set of
functional dependencies is therefore:

(StudentID, Activity) : (ActivityFee)
(Activity) : (ActivityFee)

Thus, there is a non-key attribute determined by part of the composite primary key, and
the STUDENT_ACTIVITY relation is not in 2NF. What do we do in this case? We will have to
move the columns of the functional dependency based on the partial primary key attribute
into a separate relation while leaving the determinant in the original relation as a foreign key.
We will end up with two relations:

STUDENT_ACTIVITY (StudentID, Activity)

ACTIVITY_FEE (Activity, ActivityFee)

The Activity column in STUDENT_ACTIVITY becomes a foreign key. The new relations
are shown in Figure 3-14. Now, are the two new relations in 2NF? Yes. STUDENT_ACTIVITY
still has a composite primary key, but now has no attributes that are dependent on only a part
of this composite key. ACTIVITY _FEE has a set of attributes (just one each in this case) that
are dependent on the entire primary key.

Third Normal Form
However, the conditions necessary for 2NF do not eliminate all anomalies. To deal with addi-
tional anomalies, Codd defined 3NF. A relation is in 3NF if and only if it is in 2NF and there are
no non-key attributes determined by another non-key attribute. The technical name for a non-
key attribute determined by another non-key attribute is transitive dependency. We can
therefore restate the definition of 3NF: A relation is in 3NF if and only if it is in 2NF and it has
no transitive dependencies. Thus, in order for our relation R (A, B, N, O, P) to be in 3NF, none
of the non-key attributes N, O, or P can be determined by N, O, or P.

STUDENT_ACTIVITY
Figure 3-13

The STUDENT_ACTIVITY
Relation

STUDENT_ACTIVITY ACTIVITY_FEE

Figure 3-14

The 2NF
STUDENT_ACTIVITY and
ACTIVITY_FEE Relations

116 Part 2 Database Design

For example, consider the relation STUDENT_HOUSING (StudentID, Building, Fee)
shown in Figure 3-15. The STUDENT_HOUSING schema is:

STUDENT_HOUSING (StudentID, Building, HousingFee)

Here, we have a single-attribute primary key, StudentID, so the relation is in 2NF because there
is no possibility of a non-key attribute being dependent on only part of the primary key.
Furthermore, if we know the student, we can determine the building where he or she is residing, so:

(StudentID) : Building

However, the building fee is independent of which student is housed in the building, and,
in fact, the same fee is charged for every room in a building. Therefore, Building determines
HousingFee:

(Building) : (HousingFee)

Thus, a non-key attribute (HousingFee) is functionally determined by another non-key
attribute (Building), and the relation is not in 3NF.

To put the relation into 3NF, we will have to move the columns of the functional depend-
ency into a separate relation while leaving the determinant in the original relation as a foreign
key. We will end up with two relations:

STUDENT_HOUSING (StudentID, Building)

BUILDING_FEE (Building, HousingFee)

The Building column in STUDENT_HOUSING becomes a foreign key. The two relations
are now in 3NF (work through the logic yourself to make sure you understand 3NF), and are
shown in Figure 3-16.

Boyce-Codd Normal Form
Some database designers normalize their relations to 3NF. Unfortunately, there are still anom-
alies due to functional dependences in 3NF. Together with Raymond Boyce, Codd defined

STUDENT_HOUSING

Figure 3-15

The STUDENT_HOUSING
Relation

STUDENT_HOUSING HOUSING_FEEFigure 3-16

The 3NF
STUDENT_HOUSING and
HOUSING_FEE Relations

Chapter 3 The Relational Model and Normalization 117

BCNF to fix this situation. A relation is in BCNF if and only if it is in 3NF and every determinant
is a candidate key.

For example, consider the relation STUDENT_ADVISIOR shown in 3-17, where a
student (StudentID) can have one or more majors (Major), a major can have one or more fac-
ulty advisors (AdvisorName), and a faculty member advises in only one major area. Note that
the figure shows two students (StudentIDs 700 and 800) with double majors (both students
show Majors of Math and Psychology), and two Subjects (Math and Psychology) with two
Advisors.

Because students can have several majors, StudentID does not determine Major. Moreover,
because students can have several advisers, StudentID does not determine AdvisorName.
Therefore, StudentID by itself cannot be a key. However, the composite key (StudentID, Major)
determines AdvisorName, and the composite key (StudentID, AdvisorName) determines Major.
This gives us (StudentID, Major) and (StudentId, AdvisorName) as two candidate keys. We can
select either of these as the primary key for the relation. Thus, two STUDENT_ADVISOR
schemas with different candidate keys are possible:

STUDENT_ADVISOR (StudentID, Major, AdvisorName)

and

STUDENT_ADVISOR (StudentID, Major, AdvisorName)

Note that STUDENT_ADVISOR is in 2NF because it has no non-key attributes in the
sense that every attribute is a part of at least one candidate key. This is a subtle condition,
based on the fact that technically the definition of 2NF states that no non-prime attribute can
be partially dependent on a candidate key, where a non-prime attribute is an attribute that is
not contained in any candidate key. Furthermore, STUDENT_ADVISOR is in 3NF because
there are no transitive dependencies in the relation.

The two candidate keys for this relation are overlapping candidate keys, because
they share the attribute StudentID. When a table in 3NF has overlapping candidate keys,
it can still have modification anomalies based on functional dependencies. In the
STUDENT_ADVISOR relation, there will be modification anomalies because there is one
other functional dependency in the relation. Because a faculty member can be an advisor for
only one major area, AdvisorName determines Major. Therefore, AdvisorName is a determi-
nant, but not a candidate key.

Suppose that we have a student (StudentID = 300) majoring in psychology (Major =
Psychology) with faculty advisor Perls (AdvisorName = Perls). Further, assume that this row is
the only one in the table with the AdvisorName value of Perls. If we delete this row, we will lose
all data about Perls. This is a deletion anomaly. Similarly, we cannot insert the data to represent
the Economics advisor Keynes until a student majors in Economics. This is an insertion anom-
aly. Situations like this led to the development of BCNF.

STUDENT_ADVISOR

Figure 3-17

The STUDENT_ADVISOR
Relation

118 Part 2 Database Design

What do we do with the STUDENT_ADVISOR relation? As before, we move the func-
tional dependency creating the problem to another relation while leaving the determinant in
the original relation as a foreign key. In this case, we will create the relations:

STUDENT_ADVISOR (StudentID, AdvisorName)
ADVISOR_SUBJECT (AdvisorName, Major)

The AdvisorName column in STUDENT_ADVISOR is the foreign key, and the two final
relations are shown in Figure 3-18.

Eliminating Anomalies from Functional Dependencies with BCNF

Most modification anomalies occur because of problems with functional dependencies. You
can eliminate these problems by progressively testing a relation for 1NF, 2NF, 3NF and the
BCNF using the definitions of these normal forms given previously. We will refer to this as the
�Step-by-Step� method.

You can also eliminate such problems by simply designing (or redesigning) your tables so
that every determinant is a candidate key. This condition, which, of course, is the definition of
BCNF, will eliminate all anomalies due to functional dependencies. We will refer to this
method as the �Straight-to-BNCF� or �general normalization� method.

We prefer the �Straight-to-BNCF� general normalization strategy, and will use it exten-
sively, but not exclusively, in this book. However, this is merely our preference�either method
produces the same results, and you (or your professor) may prefer the �Step-by-Step� method.

The general normalization method is summarized in Figure 3-19. Identify every functional
dependency in the relation, then identify the candidate keys. If there are determinants that are not
candidate keys, then the relation is not in BCNF, and it is subject to modification anomalies. To put
the relation into BCNF, follow the procedure in step 3. To fix this procedure in your mind, we will
illustrate it with five different examples. We will also compare it to the �Step-by-Step� approach.

STUDENT_ADVISOR ADVISOR_SUBJECT

Figure 3-18

The BCNF
STUDENT_ADVISOR and
ADVISOR_SUBJECT
Relations

Our process rule that a relation is in BCNF if and only if every determinant
is a candidate key is summed up in a widely known phrase:

I swear to construct my tables so that all non-key columns are dependent on the key, the
whole key, and nothing but the key, so help me Codd!

The goal of the normalization process is to create relations that are in
BCNF. It is sometimes stated that the goal is to create relations that are in

3NF, but after the discussion in this chapter you should understand why BCNF is
preferred to 3NF.

Note that there are some problems that are not resolved by even BNCF, and we will
discuss those after we discuss our examples of normalizing to BNCF.

Chapter 3 The Relational Model and Normalization 119

1. Identify every functional dependency.

Process for Putting a Relation into BCNF

2. Identify every candidate key.

3. If there is a functional dependency that has a
 determinant that is not a candidate key:

 A. Move the columns of that functional
 dependency into a new relation.
 B. Make the determinant of that functional
 dependency the primary key of the new relation.
 C. Leave a copy of the determinant as a foreign
 key in the original relation.
 D. Create a referential integrity constraint between
 the original relation and the new relation.

4. Repeat step 3 until every determinant of every
 relation is a candidate key.

Note: In step 3, if there is more than one such functional dependency,
start with the one with the most columns.

Figure 3-19

Process for Putting a
Relation into BCNF

Normalization Example 1
Consider the SKU_DATA table:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

As discussed earlier, this table has three functional dependencies:

SKU : (SKU_Description, Department, Buyer)
SKU_Description : (SKU, Department, Buyer)
Buyer : Department

Normalization Example 1: The �Step-by-Step� Method
Both SKU and SKU_Descripion are candidate keys. Logically, SKU makes more sense as the
primary key because it is a surrogate key, so our relation, which is shown in Figure 3-20, is:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

Checking the relation against Figure 3-4, we find that SKU_DATA is in 1NF.
Is the SKU_DATA relation in 2NF? A relation is 2NF if and only if it is in 1NF and all non-

key attributes are determined by the entire primary key. Because the primary key SKU is a sin-
gle attribute key, all the non-key attributes are therefore dependent on the entire primary key.
Thus, the SKU_DATA relation is in 2NF.

SKU_DATAFigure 3-20

The SKU_DATA Relation

120 Part 2 Database Design

Is the SKU_DATA relation in 3NF? A relation is in 3NF if and only if it is in 2NF and there
are no non-key attributes determined by another non-key attribute. Because we seem to have
two non-key attributes (SKU_Description and Buyer) that determine non-key attributes, the
relation is not in 3NF!

However, this is where things get a bit tricky. A non-key attribute is an attribute that is neither
(1) a candidate key itself , nor (2) part of a composite candidate key. SKU_Description, therefore, is
not a non-key attribute (sorry about the double negative). The only non-key attribute is Buyer!

Therefore, we must remove only the functional dependency

Buyer : Department

We will now have two relations:

SKU_DATA_2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Is SKU_DATA_2 in 3NF? Yes, it is�there are no non-key attributes that determine
another non-key attribute.

Is the SKU_DATA relation in BNCF? A relation is in BCNF if and only if it is in 3NF and every
determinant is a candidate key. The determinants in SKU_DATA_2 are SKU and SKU_Description:

SKU : (SKU_Description, Buyer)
SKU_Description : (SKU, Buyer)

Both determinants are candidate keys (they both determine all the other attributes in the
relation). Thus, every determinant is a candidate key, and the relationship is in BNCF.

At this point, we need to check the BUYER relation to determine if it is in BNCF. Work
through the steps yourself for BUYER to check your understanding of the �Step-by-Step�
method. You will find that BUYER is in BNCF, and therefore our normalized relations, as
shown with the sample data in Figure 3-21, are:

SKU_DATA_2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Both of these tables are now in BCNF and will have no anomalies due to functional
dependencies. For the data in these tables to be consistent, however, we also need to define a
referential integrity constraint (note that this is step 3D in Figure 3-17):

SKU_DATA_2.Buyer must exist in BUYER.Buyer

SKU_DATA_2

BUYER

Figure 3-21

The Normalized BUYER and
SKU_DATA_2 Relations

Chapter 3 The Relational Model and Normalization 121

This statement means that every value in the Buyer column of SKU_DATA_2 must also
exist as a value in the Buyer column of BUYER.

Normalization Example 1: The �Straight-to-BNCF� Method
Now let�s rework this example using the �Straight-to-BNCF� method. SKU and SKU_Description
determine all of the columns in the table, so they are candidate keys. Buyer is a determinant, but
it does not determine all of the other columns, and hence it is not a candidate key. Therefore,
SKU_DATA has a determinant that is not a candidate key and is therefore not in BCNF. It will
have modification anomalies.

To remove such anomalies, in step 3A in Figure 3-17 we move the columns of functional
dependency whose determinant is not a candidate key into a new table. In this case, we place
Buyer and Department into a new table:

BUYER (Buyer, Department)

Next, in step 3B in Figure 3-17, we make the determinant of the functional dependency the
primary key of the new table. In this case, Buyer becomes the primary key:

BUYER (Buyer, Department)

Next, following step 3C in Figure 3-17, we leave a copy of the determinant as a foreign key in
the original relation. Thus, SKU_DATA becomes SKU_DATA_2:

SKU_DATA_2 (SKU, SKU_Description, Buyer)

The resulting tables are thus:

SKU_DATA_2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

where SKU_DATA_2.Buyer is a foreign key to the BUYER table.
Both of these tables are now in BCNF and will have no anomalies due to functional

dependencies. For the data in these tables to be consistent, however, we also need to define the
referential integrity constraint in step 3D in Figure 3-17:

SKU_DATA_2.Buyer must exist in BUYER.Buyer

This statement means that every value in the Buyer column of SKU_DATA_2 must also exist
as a value in the Buyer column of BUYER. Sample data for the resulting tables is the same as
shown in Figure 3-21.

Note that both the �Step-by-Step� method and the �Straight-to-BCNF� method produced
exactly the same results. Use the method you prefer, the results will be the same. To keep this
chapter reasonably short, we will use only the �Straight-to-BNCF� method for the rest of the
normalization examples.

Normalization Example 2
Now consider the EQUIPMENT_REPAIR relation in Figure 3-10. The structure of the table is:

EQUIPMENT_REPAIR (ItemNumber, EquipmentType, AcquisitionCost, RepairNumber,
RepairDate, RepairCost)

Examining the data in Figure 3-10, the functional dependencies are:

ItemNumber : (EquipmentType, AcquisitionCost)
RepairNumber : (ItemNumber, EquipmentType, AcquisitionCost, RepairDate, RepairCost)

Both ItemNumber and RepairNumber are determinants, but only RepairNumber is a can-
didate key. Accordingly, EQUIPMENT_REPAIR is not in BCNF and is subject to modification
anomalies. Following the procedure in Figure 3-19, we place the columns of the problematic
functional dependency into a separate table, as follows:

EQUIPMENT_ITEM (ItemNumber, EquipmentType, AcquisitionCost)

122 Part 2 Database Design

and remove all but ItemNumber from EQUIPMENT_REPAIR (and rearrange the columns so
that the primary key RepairNumber is the first column in the relation) to create:

REPAIR (RepairNumber, ItemNumber, RepairDate, RepairCost)

We also need to create the referential integrity constraint:

REPAIR.ItemNumber must exist in EQUIPMENT_ITEM.ItemNumber

Data for these two new relations are shown in Figure 3-22.

EQUIPMENT_ITEM

REPAIR

Figure 3-22

The Normalized
EQUIPMENT_ITEM and
REPAIR Relations

There is another, more intuitive way to think about normalization. Do you
remember your eighth grade English teacher? She said that every para-

graph should have a single theme. If you write a paragraph that has two themes, you
should break it up into two paragraphs, each with a single theme.

The problem with the EQUIPMENT_REPAIR relation is that it has two themes: one
about repairs and a second about items. We eliminated modification anomalies by break-
ing that single table with two themes into two tables, each with a single theme. Some-
times, it is helpful to look at a table and ask, �How many themes does it have?� If it has
more than one, then redefine the table so that it has a single theme.

Normalization Example 3
Consider now the Cape Codd database ORDER_ITEM relation with the structure:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

with functional dependencies:

(OrderNumber, SKU) : (Quantity, Price, ExtendedPrice)
(Quantity, Price) : ExtendedPrice

This table is not in BCNF because the determinant (Quantity, Price) is not a candidate key.
We can follow the same normalization practice as illustrated in examples 1 and 2, but in this
case, because the second functional dependency arises from the formula ExtendedPrice =
(Quantity * Price), we reach a silly result.

To see why, we follow the procedure in Figure 3-19 to create tables such that every deter-
minant is a candidate key. This means that we move the columns Quantity, Price, and Extended-
Price to tables of their own, as follows:

EXTENDED_PRICE (Quantity, Price, ExtendedPrice)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price)

Chapter 3 The Relational Model and Normalization 123

Notice that we left both Quantity and Price in the original relation as a composite foreign key.
These two tables are in BCNF, but the values in the EXTENDED_PRICE table are ridiculous. They
are just the results of multiplying Quantity by Price. The simple fact is that we do not need to
create a table to store these results. Instead, any time we need to know ExtendedPrice we will just
compute it. In fact, we can define this formula to the DBMS and let the DBMS compute the value
of ExtendedPrice when necessary. You will see how to do this with Microsoft SQL Server 2008
R2, Oracle�s Oracle Database 11g, and Oracle MySQL in Chapters 10, 10A, and 10B, respectively.

Using the formula, we can remove ExtendedPrice from the table. The resulting table is in
BCNF:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price)

Note that Quantity and Price are no longer foreign keys. The ORDER_ITEM table with
sample data now appears as shown in Figure 3-23.

Normalization Example 4
Consider the following table that stores data about student activities:

STUDENT_ACTIVITY (StudentID, StudentName, Activity, ActivityFee, AmountPaid)

where StudentID is a student identifier, StudentName is student name, Activity is the name of a
club or other organized student activity, ActivityFee is the cost of joining the club or participat-
ing in the activity, and AmountPaid is the amount the student has paid toward the ActivityFee.
Figure 3-24 shows sample data for this table.

StudentID is a unique student identifier, so we know that:

StudentID : StudentName

However, does the functional dependency

StudentID : Activity

exist? It does if a student belongs to just one club or participates in just one activity, but it does not
if a student belongs to more than one club or participates in more than one activity. Looking at the
data, student Davis with StudentID 200 participates in both Skiing and Swimming, so StudentID
does not determine Club. StudentID does not determine ActivityFee or AmountPaid, either.

ORDER_ITEM

Figure 3-23

The Normalized
ORDER_ITEM Relation

STUDENT_ACTIVITYFigure 3-24

Sample Data for the
STUDENT_ACTIVITY
Relation

124 Part 2 Database Design

Both StudentID and Activity are part of the candidate key (StudentID, Activity).
This, however, is not good enough. A determinant must have all of the

same columns to be the same as a candidate key. Remember, as we stated previously:

I swear to construct my tables so that all non-key columns are dependent on the key, the
whole key, and nothing but the key, so help me Codd.

Now consider the StudentName column. Does StudentName determine StudentID?
Is, for example, the value �Jones� always paired with the same value of StudentID? No, there are
two students named �Jones�, and they have different StudentID values. StudentName does not
determine any other column in this table either.

Considering the next column, Activity, we know that many students can belong to a
club. Therefore, Activity does not determine StudentID or StudentName. Does Activity
determine ActivityFee? Is the value �Skiing�, for example, always paired with the same value
of ActivityFee? From this data, it appears so, and using just this sample data we can conclude
that Activity determines ActivityFee.

However, this data is just a sample. Logically, it is possible for students to pay different
costs, perhaps because they select different levels of activity participation. If that were the
case, then we would say that

(StudentID, Activity) : ActivityFee

To find out, we need to check with the users. Here, assume that all students pay the same
fee for a given activity. The last column is AmountPaid, and it does not determine anything.

So far, we have two functional dependencies:

StudentID : StudentName
Activity : ActivityFee

Are there other functional dependencies with composite determinants? No single column
determines AmountPaid, so consider possible composite determinants for it. AmountPaid is
dependent on both the student and the club the student has joined. Therefore, it is determined
by the combination of the determinants StudentID and Activity. Thus, we can say

(StudentID, Activity) : ActivityFee

So far we have three determinants: StudentID, Activity, and (StudentID, Activity). Are any
of these candidate keys? Do any of these determinants identify a unique row? From the data, it
appears that (StudentID, Activity) identifies a unique row and is a candidate key. Again, in real
situations, we would need to check this assumption out with the users.

STUDENT_ACTIVITY is not in BCNF because columns StudentID and Activity are both
determinants, but neither is a candidate key. StudentID and Activity are only part of the candidate
key (StudentID, Activity).

To normalize this table, we need to construct tables so that every determinant is a
candidate key. We can do this by creating a separate table for each functional dependency as we
did before. The result is:

STUDENT (StudentID, StudentName)
ACTIVITY (Activity, ActivityFee)
PAYMENT (StudentID, Activity, AmountPaid)

with referential integrity constraints:

PAYMENT.StudentID must exist in STUDENT.StudentID

and

PAYMENT.Activity must exist in ACTIVITY.Activity

Chapter 3 The Relational Model and Normalization 125

SKU_DATA_3Figure 3-26

Sample Data for the
SKU_DATA_3 Relation

STUDENT

ACTIVITY

PAYMENT

Figure 3-25

The Normalized STUDENT,
ACTIVITY, and PAYMENT
Relations

These tables are in BCNF and will have no anomalies from functional dependencies. The
sample data for the normalized tables are shown in Figure 3-25.

Normalization Example 5
Now consider a normalization process that requires two iterations of step 3 in the procedure
in Figure 3-19. To do this, we will extend the SKU_DATA relation by adding the budget code
of each department. We call the revised relation SKU_DATA_3 and define it as follows:

SKU_DATA_3 (SKU, SKU_Description, Department, DeptBudgetCode, Buyer)

Sample data for this relation are shown in Figure 3-26.
SKU_DATA_3 has the following functional dependencies:

SKU : (SKU_Description, Department, DeptBudgetCode, Buyer)
SKU_Description : (SKU, Department, DeptBudgetCode, Buyer)
Buyer : (Department, DeptBudgetCode)
Department : DeptBudgetCode

126 Part 2 Database Design

Of the four determinants, both SKU and SKU_Description are candidate keys, but neither
Department nor Buyer is a candidate key. Therefore, this relation is not in BCNF.

To normalize this table, we must transform this table into two or more tables that are in BCNF.
In this case, there are two problematic functional dependencies. According to the note at the end
of the procedure in Figure 3-19, we take the functional dependency whose determinant is not a
candidate key and has the largest number of columns first. In this case, we take the columns of

Buyer : (Department, DeptBudgetCode)

and place them in a table of their own.
Next, we make the determinant the primary key of the new table, remove all columns

except Buyer from SKU_DATA_3, and make Buyer a foreign key of the new version of
SKU_DATA_3, which we will name SKU_DATA_4. We can also now assign SKU as the primary
key of SKU_DATA_4. The results are:

BUYER (Buyer, Department, DeptBudgetCode)
SKU_DATA_4 (SKU, SKU_Description, Buyer)

We also create the referential integrity constraint:

SKU_DATA_4.Buyer must exist in BUYER.Buyer

The functional dependencies from SKU_DATA_4 are:

SKU : (SKU_Description, Buyer)

SKU_Description : (SKU, Buyer)

Because every determinant of SKU_DATA_4 is also a candidate key, the relationship is
now in BCNF. Looking at the functional dependencies from BUYER we find:

Buyer : (Department, DeptBudgetCode)
Department : DeptBudgetCode

BUYER is not in BCNF because Department is a determinant that is not a candidate key. In
this case, we must move (Department, DeptBudgetCode) into a table of its own. Following the
procedure in Figure 3-19 and breaking BUYER into two tables (DEPARTMENT and BUYER_2)
gives us a set of three tables:

DEPARTMENTBUYER_2 (Department, DeptBudgetCode)
BUYER_2 (Buyer, Department)
SKU_DATA_4 (SKU, SKU_Description, Buyer)

with referential integrity constraints:

SKU_DATA_4.Buyer must exist in BUYER_2.Buyer
BUYER_2.Department must exist in DEPARTMENT.Department

The functional dependencies from all three of these tables are:

Department : DeptBudgetCode
Buyer : Department
SKU : (SKU_Description, Buyer)
SKU_Description : (SKU, Buyer)

At last, every determinant is a candidate key, and all three of the tables are in BCNF. The resulting
relations from these operations are shown in Figure 3-27.

Eliminating Anomalies from Multivalued Dependencies

All of the anomalies in the last section were due to functional dependencies, and when we
normalize relations to BNCF we eliminate these anomalies. However, anomalies can also arise
from another kind of dependency�the multivalued dependency. A multivalued dependency
occurs when a determinant is matched with a particular set of values.

Chapter 3 The Relational Model and Normalization 127

DEPARTMENT

BUYER_2

SKU_DATA_4

Figure 3-27

The Normalized
DEPARTMENT, BUYER_2,
and SKU_DATA_4 Relations

Examples of multivalued dependencies are:

EmployeeName : : EmployeeDegree
EmployeeName : : EmployeeSibling
PartKitName : : Part

In each case, the determinant is associated with a set of values, and example data for each of
these multivalued dependencies are shown in Figure 3-28. Such expressions are read as
�EmployeeName multidetermines EmployeeDegree� and �EmployeeName multidetermines
EmployeeSibling� and �PartKitName multidetermines Part.� Note that multideterminants are
shown with a double arrow rather than a single arrow.

Employee Jones, for example, has degrees AA and BS. Employee Greene has degrees
BS, MS, and PhD. Employee Chau has just one degree, BS. Similarly, employee Jones has
siblings (brothers and sisters) Fred, Sally, and Frank. Employee Greene has sibling Nikki,
and employee Chau has siblings Jonathan and Eileen. Finally, PartKitName Bike
Repair has parts Wrench, Screwdriver, and Tube Fix. Other kits have parts as shown in
Figure 3-28.

Unlike functional dependencies, the determinant of a multivalued dependency can never be
the primary key. In all three of the tables in Figure 3-28, the primary key consists of the composite
of the two columns in each table. For example, the primary key of the EMPLOYEE_DEGREE table
is the composite key (EmployeeName, EmployeeDegree).

Multivalued dependencies pose no problem as long as they exist in tables of their own.
None of the tables in Figure 3-28 have modification anomalies. However, if A : : B, then
any relation that contains A, B, and one or more additional columns will have modification
anomalies.

For example, consider the situation if we combine the employee data in Figure 3-28 into
a single EMPLOYEE_DEGREE_SIBLING table with three columns (EmployeeName,
EmployeeDegree, EmployeeSibling), as shown in Figure 3-29.

128 Part 2 Database Design

EMPLOYEE_DEGREE

EMPLOYEE_SIBLING

PARTKIT_PART

Figure 3-28

Three Examples of
Dependencies

Now, what actions need to be taken if employee Jones earns an MBA? We must add three
rows to the table. If we do not, if we only add the row (�Jones�, �MBA�, �Fred�), it will appear as if
Jones is an MBA with her brother Fred, but not with her sister Sally or her other brother Frank.
However, suppose Greene earns an MBA. Then we need only add one row (�Greene�, �MBA�,
�Nikki�). But, if Chau earns an MBA, we need to add two rows. These are insertion anomalies.
There are equivalent modification and deletion anomalies as well.

In Figure 3-29, we combined two multivalued dependencies into a single table and obtained
modification anomalies. Unfortunately, we will also get anomalies if we combine a multivalued
dependency with any other column, even if that other column has no multivalued dependency.

Figure 3-30 shows what happens when we combine the multivalued dependency

PartKitName : : Part

with the functional dependency

PartKitName : PartKitPrice

For the data to be consistent, we must repeat the value of price for as many rows as each
kit has parts. For this example, we must add three rows for the Bike Repair kit and four rows
for the First Aid kit. The result is duplicated data that can cause data integrity problems.

Chapter 3 The Relational Model and Normalization 129

Now you also know the problem with the relation in Figure 3-2. Anomalies exist in that
table because it contains two multivalued dependencies:

BuyerName : : SKU_Managed
BuyerName : : CollegeMajor

Fortunately, it is easy to deal with multivalued dependencies: Put them into a table of their
own. None of the tables in Figure 3-28 has modification anomalies, because each table consists
of only the columns in a single, multivalued dependency. Thus, to fix the table in Figure 3-2, we
must move BuyerName and SKU_Managed into one table and BuyerName and CollegeMajor
into a second table:

PRODUCT_BUYER_SKU (BuyerName, SKU_Managed)
PRODUCT_BUYER_MAJOR (BuyerName, CollegeMajor)

The results are shown in Figure 3-31. If we want to maintain strict equivalence between these
tables, we would also add the referential integrity constraint:

PRODUCT_BUYER_SKU.BuyerName must be identical to
PRODUCT_BUYER_MAJOR.BuyerName

This referential integrity constraint may not be necessary, depending on the requirements of
the application.

Notice that when you put multivalued dependencies into a table of their own, they disappear.
The result is just a table with two columns, and the primary key (and sole candidate key) is the

EMPLOYEE_DEGREE_SIBLING

Figure 3-29

EMPLOYEE_DEGREE_
SIBLING Relation with Two
Multivalued Dependencies

PARTKIT_PART_PRICEFigure 3-30

PARTKIT_PART_PRICE
Relation with a Functional
Dependency and a
Multivalued Dependency

130 Part 2 Database Design

composite of those two columns. When multivalued dependencies have been isolated in this way,
the table is said to be in fourth normal form (4NF).

The hardest part of multivalued dependencies is finding them. Once you know they exist
in a table, just move them into a table of their own. Whenever you encounter tables with odd
anomalies, especially anomalies that require you to insert, modify, or delete different numbers
of rows to maintain integrity, check for multivalued dependencies.

PRODUCT_BUYER_SKU

PRODUCT_BUYER_MAJOR

Figure 3-31

Placing the Two Multivalued
Dependencies in Figure 3-2
into Separate Relations

You will sometimes hear people use the term normalize in phrases like,
�that table has been normalized� or �check to see if those tables are

normalized.� Unfortunately, not everyone means the same thing with these words. Some
people do not know about BCNF, and they will use it to mean tables in 3NF, which is a
lesser form of normalization, one that allows for anomalies from functional dependen-
cies that BCNF does not allow. Others use it to mean tables that are both BCNF and 4NF.
Others may mean something else. The best choice is to use the term normalize to mean
tables that are in both BCNF and 4NF.

Fifth Normal Form

There is a fifth normal form (5NF), also known as Project-Join Normal Form (PJ/NF), which
involves an anomaly where a table can be split apart but not correctly joined back together.
However, the conditions under which this happens are complex, and generally if a relation is in
4NF it is in 5NF. We will not deal with 5NF in this book. For more information about 5NF, start
with the works cited earlier in this chapter and the Wikipedia article at http://en.wikipedia.org/
wiki/Fifth_normal_form.

Domain/Key Normal Form

As discussed earlier in this chapter, in 1982 R. Fagin published a paper that defined
domain/key normal form (DK/NF). Fagin asked, �What conditions need to exist for a relation
to have no anomalies?� He showed that a relation in DK/NF has no modification anomalies
and, further, that a relation that has no modification anomalies is in DK/NF.

Chapter 3 The Relational Model and Normalization 131

But what does this mean? Basically, DK/NF requires that all the constraints on the data values
be logical implications of the definitions of domains and keys. To the level of detail in this text, and
to the level of detail experienced by 99 percent of all database practitioners, this can be restated as
follows: Every determinant of a functional dependency must be a candidate key. This, of course, is
simply our definition of BCNF, and, for practical purposes, relations in BCNF are in DK/NF as well.

Databases arise from three sources: from existing data, from
new systems development, and from the redesign of existing
databases. This chapter and the next are concerned with
databases that arise from existing data. Even though a table
is a simple concept, certain tables can lead to surprisingly
difficult processing problems. This chapter uses the concept
of normalization to understand and possibly solve those
problems. Figure 3-3 lists terms you should be familiar with.

A relation is a special case of a table; all relations are
tables, but not all tables are relations. Relations are tables
that have the properties listed in Figure 3-4. Three sets of
terms are used to describe relation structure: (relation,
attribute, tuple); (table, column, row); and (file, field, and
record). Sometimes these terms are mixed and matched. In
practice, the terms table and relation are commonly used
synonymously, and we will do so for the balance of this text.

In a functional dependency, the value of one attribute, or
attributes, determines the value of another. In the functional
dependency A : B, attribute A is called the determinant. Some
functional dependencies arise from equations, but many others
do not. The purpose of a database is, in fact, to store instances
of functional dependencies that do not arise from equations.

Determinants that have more than one attribute are called
composite determinants. If A : (B, C), then A : B and A : C.
However, if (A, B) : C, then, in general, neither A : C nor B : C.

If A : B, the values of A may or may not be unique in a
relation. However, every time a given value of A appears, it
will be paired with the same value of B. A determinant is
unique in a relation only if it determines every other attrib-
ute of the relation. You cannot always rely on determining
functional dependencies from sample data. The best idea is
to verify your conclusions with the users of the data.

A key is a combination of one or more columns used to
identify one or more rows. A composite key is a key with two
or more attributes. A determinant that determines every

other attribute is called a candidate key. A relation may have
more than one candidate key. One of them is selected to be
used by the DBMS for finding rows and is called the primary
key. A surrogate key is an artificial attribute used as a pri-
mary key. The value of a surrogate key is supplied by the
DBMS and has no meaning to the user. A foreign key is a key
in one table that references the primary key of a second
table. A referential integrity constraint is a limitation on data
values of a foreign key that ensures that every value of the
foreign key has a match to a value of a primary key.

The three kinds of modification anomalies are insert,
update, and delete. Codd and others defined normal forms
for describing different table structures that lead to anom-
alies. A table that meets the conditions listed in Figure 3-4 is
in 1NF. Some anomalies arise from functional dependencies.
Three forms, 2NF, 3NF, and BCNF, are used to treat such
anomalies.

In this text, we are only concerned with the best of these
forms, BCNF. If a relation is in BCNF, then no anomalies from
functional dependencies can occur. A relation is in BCNF if
every determinant is a candidate key.

Relations can be normalized using either a �Step-by-
Step� method or a �Straight-to-BNCF� method. Which
method to use is a matter of personal preference, and both
methods produce the same results

Some anomalies arise from multivalued dependencies.
A multidetermines B, or A : : B, if A determines a set of
values. If A multidetermines B, then any relation that contains
A, B, and one or more other columns will have modification
anomalies. Anomalies due to multivalued dependencies can
be eliminated by placing the multivalued dependency in a
table of its own. Such tables are in 4NF.

There is a 5NF, but generally tables in 4NF are in 5NF.
DK/NF has been defined, but in practical terms the defini-
tion of DK/NF is the same as the definition of BCNF.

attribute
Boyce-Codd Normal Form (BCNF)
candidate key
composite determinant
composite key

data integrity problems
deletion anomaly
determinant
domain/key normal form (DK/NF)
entity

132 Part 2 Database Design

fifth normal form (5NF)
first normal form (1NF)
foreign key
fourth normal form (4NF)
functional dependency
functionally dependent
insertion anomaly
key
multivalued dependency
non-prime attribute
normal forms
overlapping candidate key

partially dependent
primary key
Project-Join Normal Form (PJ/NF)
referential integrity constraint
relation
second normal form (2NF)
surrogate key
third normal form (3NF)
transitive dependency
tuple
update anomaly

3.1 Name three sources for databases.

3.2 What is the basic premise of this and the next chapter?

3.3 Explain what is wrong with the table in Figure 3-2.

3.4 Define each of the terms listed in Figure 3-3.

3.5 Describe the characteristics of a table that make it a relation.

3.6 Give an example of two tables that are not relations.

3.7 Suppose that two columns in two different tables have the same column name. What
convention is used to give each a unique name?

3.8 Must all the values in the same column of a relation have the same length?

3.9 Explain the three different sets of terms used to describe tables, columns, and rows.

3.10 Explain the difference between functional dependencies that arise from equations and
those that do not.

3.11 Intuitively, what is the meaning of the functional dependency

PartNumber : PartWeight

3.12 Explain the following statement: �The only reason for having relations is to store
instances of functional dependencies.�

3.13 Explain the meaning of the expression:

(FirstName, LastName) : Phone

3.14 What is a composite determinant?

3.15 If (A, B) : C , then can we also say that A : C?

3.16 If A : (B, C), then can we also say that A : B?

3.17 For the SKU_DATA table in Figure 3-1, explain why Buyer determines Department, but
Department does not determine Buyer.

3.18 For the SKU_DATA table in Figure 3-1, explain why:

SKU_Description : (SKU, Department, Buyer).

3.19 If it is true that

PartNumber : PartWeight

does that mean that PartNumber will be unique in a relation?

Chapter 3 The Relational Model and Normalization 133

3.20 Under what conditions will a determinant be unique in a relation?

3.21 What is the best test for determining whether a determinant is unique?

3.22 What is a composite key?

3.23 What is a candidate key?

3.24 What is a primary key?

3.25 Explain the difference between a candidate key and a primary key.

3.26 What is a surrogate key?

3.27 Where does the value of a surrogate key come from?

3.28 When would you use a surrogate key?

3.29 What is a foreign key?

3.30 The term domestic key is not used. If it were used, however, what do you think it would
mean?

3.31 What is a normal form?

3.32 Illustrate deletion, modification, and insertion anomalies on the STUDENT_ACTIVITY
relation in Figure 3-24.

3.33 Explain why duplicated data leads to data integrity problems.

3.34 What relations are in 1NF?

3.35 Which normal forms are concerned with functional dependencies?

3.36 What conditions are required for a relation to be in 2NF?

3.37 What conditions are required for a relation to be in 3NF?

3.38 What conditions are required for a relation to be in BCNF?

3.39 If a relation is in BCNF, what can we say about it with regard to 2NF and 3NF?

3.40 What normal form is concerned with multivalued dependencies?

3.41 What is the premise of Fagin�s work on DK/NF?

3.42 Summarize the three categories of normalization theory.

3.43 In general, how can you transform a relation not in BCNF into ones that are in BCNF?

3.44 What is a referential integrity constraint?

3.45 Explain the role of referential integrity constraints in normalization.

3.46 Why is an un-normalized relation like a paragraph with multiple themes?

3.47 In normalization Example 3, why is the EXTENDED_PRICE relation �silly�?

3.48 In normalization Example 4, under what conditions is

(StudentID, Activity) : ActivityFee

more accurate than

Activity : ActivityFee

3.49 If a determinant is part of a candidate key, is that good enough for BCNF?

3.50 In normalization Example 5, why are the following two tables not correct?

DEPARTMENT (Department, DeptBudgetCode, Buyer)
SKU_DATA_4 (SKU, SKU_Description, Department)

3.51 How does a multivalued dependency differ from a functional dependency?

134 Part 2 Database Design

3.52 Consider the relation:

PERSON (Name, Sibling, ShoeSize)

Assume that the following functional dependencies exist:

Name : : Sibling
Name : ShoeSize

Describe deletion, modification, and insertion anomalies for this relation.

3.53 Place the PERSON relation into 4NF.

3.54 Consider the relation:

PERSON_2 (Name, Sibling, ShoeSize, Hobby)

Assume that the following functional dependencies exist:

Name : : Sibling
Name : ShoeSize
Name : : Hobby

Describe deletion, modification, and insertion anomalies for this relation.

3.55 Place the PERSON_2 relation into 4NF.

3.56 What is 5NF?

3.57 How do the conditions for DK/NF correspond to the conditions for BCNF?

3.58 Consider the table:

STAFF_MEETING (EmployeeName, ProjectName, Date)

The rows of this table record the fact that an employee from a particular project
attended a meeting on a given date. Assume that a project meets at most once per day.
Also, assume that only one employee represents a given project, but that employees
can be assigned to multiple projects.
A. State the functional dependencies in STAFF_MEETING.
B. Transform this table into one or more tables in BCNF. State the primary keys,

candidate keys, foreign keys, and referential integrity constraints.
C. Is your design in part B an improvement over the original table? What advantages

and disadvantages does it have?

3.59 Consider the table:

STUDENT (StudentNumber, StudentName, Dorm, RoomType, DormCost, Club,
ClubCost, Sibling, Nickname)

Assume that students pay different dorm costs, depending on the type of room they
have, but that all members of a club pay the same cost. Assume that students can have
multiple nicknames.
A. State any multivalued dependencies in STUDENT.
B. State the functional dependencies in STUDENT.
C. Transform this table into two or more tables such that each table is in BCNF and in

4NF. State the primary keys, candidate keys, foreign keys, and referential integrity
constraints.

Chapter 3 The Relational Model and Normalization 135

A. Assume that Marcia keeps a table of data about her customers. Consider just the follow-
ing part of that table:

CUSTOMER (Phone, FirstName, LastName)

Explain the conditions under which each of the following are true:
1. Phone : (FirstName, LastName)
2. (Phone, FirstName) : LastName
3. (Phone, LastName) : FirstName
4. (LastName, FirstName) : Phone
5. Phone : : LastName
6. Phone : : FirstName
7. Phone : : (FirstName, LastName)

B. Is condition A.7 the same as conditions A.5 and A.6? Why or why not?

C. State an appropriate referential integrity constraint for the tables:

CUSTOMER (Phone, FirstName, LastName)
INVOICE (InvoiceNumber, DateIn, DateOut, Phone)

D. Consider the tables:

CUSTOMER (Phone, FirstName, LastName)
INVOICE (InvoiceNumber, DateIn, DateOut, FirstName, LastName)

What does the following referential integrity constraint mean?

INVOICE.(FirstName, LastName) must be in CUSTOMER.(FirstName, LastName)

Is this constraint the same as the set of referential integrity constraints:

INVOICE.FirstName must be in CUSTOMER.FirstName
INVOICE.LastName must be in CUSTOMER.LastName

Explain why or why not.

E. Do you prefer the design in C or the design in D? Explain your reasoning.

F. Transform the following table into two or more tables in BCNF and 4NF. Indicate the
primary keys, candidate keys, foreign keys, and referential integrity constraints. Make
and state assumptions as necessary.

INVOICE (CustomerNumber, FirstName, LastName, Phone, InvoiceNumber, DateIn,
DateOut, ItemType, Quantity, ItemPrice, ExtendedPrice, SpecialInstructions)

G. Explain how your answer to question F changes depending on whether you assume that

CustomerNumber : (FirstName, LastName)

or

CustomerNumber : : (FirstName, LastName)

136 Part 2 Database Design

A. Morgan keeps a table of data about the stores from which he purchases. The stores are
located in different countries and have different specialties. Consider the following relation:

STORE (StoreName, City, Country, OwnerName, Specialty)

Explain the conditions under which each of the following are true:
1. StoreName : City
2. City : StoreName
3. City : Country
4. (StoreName, Country) : (City, OwnerName)
5. (City, Specialty) : StoreName
6. OwnerName : : StoreName
7. StoreName : : Specialty

B. With regard to the relation in part A:
1. Specify which of the dependencies in part A seem most appropriate for a small

import�export business.
2. Given your assumptions in B.1, transform the STORE table into a set of tables that

are in both 4NF and BCNF. Indicate the primary keys, candidate keys, foreign keys,
and referential integrity constraints.

C. Consider the relation:

SHIPMENT (ShipmentNumber, ShipperName, ShipperContact, ShipperFax,
DepartureDate, ArrivalDate, CountryOfOrigin, Destination, ShipmentCost,
InsuranceValue, Insurer)

1. Write a functional dependency that expresses the fact that the cost of a shipment
between two cities is always the same.

2. Write a functional dependency that expresses the fact the insurance value is always
the same for a given shipper.

3. Write a functional dependency that expresses the fact the insurance value is always
the same for a given shipper and country of origin.

4. Describe two possible multivalued dependencies in SHIPMENT.
5. State what you believe are reasonable functional dependencies for the SHIPMENT

relation for a small import�export business.
6. State what you believe are reasonable multivalued dependencies for the SHIPMENT

relation.
7. Using your assumptions in 5 and 6, transform SHIPMENT into a set of tables in BCNF

and 4NF. Indicate the primary keys, candidate keys, foreign keys, and referential
integrity constraints.

In Chapter 3, we defined the relational model, described modification
anomalies, and discussed normalization using BCNF and 4NF. In this
chapter, we apply those concepts to the design of databases that are
created from existing data.

The premise of this chapter is that you have received, from some source,
one or more tables of data that are to be stored in a new database. The
question is, should that data be stored as is, or should it be transformed in
some way before it is stored? Normalization theory plays an important role,
as you will see.

� To design updatable databases to store data received
from another source

� To use SQL to access table structure

� To understand the advantages and disadvantages of
normalization

� To understand denormalization

� To design read-only databases to store data from
updatable databases

Chapter Objectives

Database Design
Using Normalization4

� To recognize and be able to correct common design
problems:
� The multivalue, multicolumn problem
� The inconsistent values problem
� The missing values problem
� The general-purpose remarks column problem

137

138 Part 2 Database Design

Assess Table Structure

When someone gives you a set of tables and asks you to construct a database to store them,
your first step should be to assess the tables� structure and content. General guidelines for
assessing a table�s structure are summarized in Figure 4-1.

As shown in Figure 4-1, you should examine the data and determine the functional
dependencies, multivalued dependencies, candidate keys, and each table�s primary key. Also,
look for possible foreign keys. Again, you can base your conclusions on sample data, but that
data might not have all of the possible data cases. Therefore, verify your assumptions and
conclusions with the users.

For example, suppose you receive data for the following SKU_DATA and BUYER tables:

SKU_DATA (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Begin by counting the number of rows in each table using the SQL COUNT(*) function.
Then, to determine the number and type of the table�s columns, use an SQL SELECT * statement.
If your table has thousands or millions of rows, however, a full query will take considerable time.
One way to limit the results of this query is to use the SQL TOP {numberofRows} expression.
For example, to obtain all columns for the first 10 rows of the SKU_DATA table, you would code:

/* *** SQL-Query-CH04-01 *** */

SELECT TOP 10 *

FROM SKU_DATA;

This query will show you all columns and data for 10 rows. If you want the top 50 rows, just use
TOP 50 instead of TOP 10, and so on.

With regard to foreign keys, it is risky to assume that referential integrity constraints have
been enforced on the data. Instead, check it yourself.

After investigation, you learn that SKU is the primary key of SKU_DATA, and that Buyer is the
primary key of BUYER. You also think that SKU_DATA.Buyer is likely a foreign key linking to
BUYER.Buyer. The question is whether the following referential integrity constraint holds:

SKU_DATA.Buyer must exist in BUYER.Buyer

You can use SQL to determine whether this is true. The following query will return any values
of the foreign key that violate the constraint:

/* *** SQL-Query-CH04-02 *** */

SELECT Buyer

FROM SKU_DATA

WHERE Buyer NOT IN

(SELECT SKU_DATA.Buyer

FROM SKU_DATA, BUYER

WHERE SKU_DATA.Buyer = BUYER.Buyer);

� Count rows and examine columns
� Examine data values and interview users to determine:
 Multivalued dependencies
 Functional dependencies
 Candidate keys
 Primary keys
 Foreign keys
� Assess validity of assumed referential integrity constraints

Figure 4-1

Guidelines for Assessing
Table Structure

Chapter 4 Database Design Using Normalization 139

The subquery finds all values of Buyer for which there is a match between SKU_DATA.Buyer
and BUYER.Buyer. If there is any value of Buyer that is not in this subquery, then that value will
be displayed in the results of the main query. All such values violate the referential integrity
constraint. If we run this query using the data shown in Figure 3-14 (where SKU_DATA
appears with the table name SKU_DATA_2), the query result will be an empty set showing that
there are no referential integrity constraint violations.

After you have assessed the input tables, your next steps depend on whether you are creating
an updatable database or a read-only database. We will consider updatable databases first.

Designing Updatable Databases

If you are constructing an updatable database, then you need to be concerned about modifica-
tion anomalies and inconsistent data. Consequently, you must carefully consider normalization
principles. Before we begin, let�s first review the advantages and disadvantages of normalization.

Advantages and Disadvantages of Normalization

Figure 4-2 summarizes the advantages and disadvantages of normalization. On the positive
side, normalization eliminates modification anomalies and reduces data duplication. Reduced
data duplication eliminates the possibility of data integrity problems due to inconsistent data
values. It also saves file space.

Why do we say reduce data duplication rather than eliminate data
duplication? The answer is that we cannot eliminate all duplicated data

because we must duplicate data in foreign keys. We cannot eliminate Buyer, for example,
from the SKU_DATA table, because we would then not be able to relate BUYER and
SKU_DATA rows. Values of Buyer are thus duplicated in the BUYER and SKU_DATA tables.

This observation leads to a second question: If we only reduce data duplication,
how can we claim to eliminate inconsistent data values? Data duplication in foreign keys
will not cause inconsistencies, because referential integrity constraints prohibit them.
As long as we enforce such constraints, the duplicate foreign key values will cause no
inconsistencies.

� Advantages
 Eliminate modification anomalies
 Reduce duplicated data
 � Eliminate data integrity problems
 � Save file space
� Disadvantages
 More complicated SQL required for multitable

subqueries and joins
 Extra work for DBMS can mean slower applications

Figure 4-2

Advantages and
Disadvantages of
Normalization

On the negative side, normalization requires application programmers to write more
complex SQL. To recover the original data, they must write subqueries and joins to connect
data stored in separate tables. Also, with normalized data, the DBMS must read two or more
tables, and this can mean slower application processing.

Functional Dependencies

As you learned in Chapter 3, we can eliminate anomalies due to functional dependencies by
placing all tables in BCNF. Most of the time, the problems of modification anomalies are so
great that you should put your tables into BCNF. There are exceptions, however, as you will see.

140 Part 2 Database Design

EQUIPMENT_REPAIR

Figure 4-3

The EQUIPMENT_REPAIR
Table

EQUIPMENT_ITEM

REPAIR

Figure 4-4

The Normalized
EQUIPMENT_ITEM and
REPAIR Relations

Normalizing with SQL

As we discussed in Chapter 3, a table is in BCNF if all determinants are candidate keys. If any
determinant is not a candidate key, we must break the table into two or more tables. Consider
an example. Suppose you are given the EQUIPMENT_REPAIR table in Figure 4-3 (the same
table shown in Figure 3-10). In Chapter 3, we found that ItemNumber is a determinant, but not
a candidate key. Consequently, we created the EQUIPMENT_ITEM and REPAIR tables shown
in Figure 4-4. In these tables, ItemNumber is a determinant and a candidate key of
EQUIPMENT_ITEM, and RepairNumber is a determinant and primary key of REPAIR; thus
both tables are in BCNF.

Now, as a practical matter, how do we transform the data in the format in Figure 4-3 to
that in Figure 4-4? To answer that question, we need to use the SQL INSERT statement. You
will learn the particulars of the INSERT statement in Chapter 7. For now, we will jump ahead
and use one version of it to illustrate the practical side of normalization.

First, we need to create the structure for the two new tables in Figure 4-4. If you are using
Microsoft Access, you can follow the procedure in Appendix A to create the tables. Later, in
Chapter 7, you will learn how to create tables using SQL, a process that works for all DBMS
products.

Once the tables are created, you can fill them using the SQL INSERT command. To fill the
ITEM table, we use:

/* *** SQL-INSERT-CH04-01 *** */

INSERT INTO EQUIPMENT_ITEM

SELECT DISTINCT ItemNumber, EquipmentType, AcquisitionCost

FROM EQUIPMENT_REPAIR;

Notice that we must use the DISTINCT keyword because the combination (ItemNumber,
EquipmentType, AcquisitionCost) is not unique in the EQUIPMENT_REPAIR table. Once we

Chapter 4 Database Design Using Normalization 141

have created the rows in EQUIPMENT_ITEM, we can then use the following INSERT com-
mand to fill the rows of REPAIR:

/* *** SQL-INSERT-CH04-02 *** */

INSERT INTO REPAIR

SELECT RepairNumber, ItemNumber, RepairDate, RepairCost

FROM EQUIPMENT_REPAIR;

As you can see, the SQL statements for normalizing tables are relatively simple. After this
transformation, we should probably remove the EQUIPMENT_REPAIR table. For now, you can
do this using the graphical tools in Microsoft Access, SQL Server, Oracle Database, or MySQL.
In Chapter 7, you will learn how to remove tables using the SQL DROP TABLE statement.
You will also learn how to use SQL to create the referential integrity constraint:

REPAIR.ItemNumber must exist in ITEM.ItemNumber

If you want to try out this example, download the Microsoft Access 2010 database
Equipment-Repair-Database.accdb from the text�s Web site at www.pearsonhighered.com/
kroenke. This database has the EQUIPMENT_REPAIR table with data. Create the new tables (see
Appendix A) and then do the normalization by executing the SQL INSERT statements illustrated.

This process can be extended to any number of tables. We will consider richer examples of
it in Chapter 7. For now, however, you should have the gist of the process.

Choosing Not to Use BCNF

Although in most cases the tables in an updatable database should be placed in BCNF, in some
situations BCNF is just too pure. The classic example of unneeded normalization involves zip
and similar postal codes (although, in fact, zip codes may not always determine city and state).
Consider the following table for customers in the United States:

CUSTOMER (CustomerID, LastName, FirstName, Street, City, State, Zip)

The functional dependencies of this table are:

CustomerID : (LastName, FirstName, Street, City, State, Zip)

Zip : (City, State)

This table is not in BCNF because Zip is a determinant that is not a candidate key. We can nor-
malize this table as follows:

CUSTOMER_2 (CustomerID, LastName, FirstName, Street, Zip)

ZIP_CODE (Zip, City, State)

with referential integrity constraint:

CUSTOMER_2.Zip must exist in ZIP_CODE.Zip

The tables CUSTOMER_2 and ZIP_CODE are in BCNF, but consider these tables in light of the
advantages and disadvantages of normalization listed in Figure 4-2. Normalization eliminates
modification anomalies, but how often does zip code data change? How often does the post office
change the city and state assigned to a zip code value? Almost never. The consequences on every
business and person would be too severe. So, even though the design allows anomalies to occur, in
practice, they will not occur because the data never change. Consider the second advantage:
Normalization reduces data duplication, and hence improves data integrity. In fact, data integrity
problems can happen in the single-table example if someone enters the wrong value for City, State,
or Zip. In that case, the database will have inconsistent Zip values. But, normal business processes
will cause zip code errors to be noticed, and they will be corrected without problem.

142 Part 2 Database Design

Now consider the disadvantages of normalization. Two separate tables require application
programs to write more complex SQL. They also require the DBMS to process two tables,
which may make the applications slow. Weighing the advantages and disadvantages, most
practitioners would say that the normalized data are just too pure. Zip code data would there-
fore be left in the original table.

In summary, when you design an updatable database from existing tables, examine every
table to determine if it is in BCNF. If it is not, then the table is susceptible to modification
anomalies and inconsistent data. In almost all cases, transform the table into tables that are in
BCNF. However, if the data are never modified and if data inconsistencies will be easily
corrected via the normal operation of business activity, then you may choose not to place the
table into BCNF.

Multivalued Dependencies

Unlike functional dependencies, the anomalies from multivalued dependencies are so serious
that multivalued dependencies should always be eliminated. Unlike BCNF, there is no gray
area. Just place the columns of a multivalued dependency in tables of their own.

As shown in the last section, normalization is not difficult. It does mean that application
programmers will have to write subqueries and joins to re-create the original data. Writing
subqueries and joins, however, is nothing compared with the complexity of code that must be
written to handle the anomalies due to multivalued dependencies.

Some experts might object to such a hard and fast rule, but it is justifiable. Although there
may be a few rare, obscure, and weird cases in which multivalued dependencies are not
problematic, such cases are not worth remembering. Until you have years of database design
experience, always eliminate multivalued dependencies from any updatable table.

Designing Read-Only Databases

In the course of your career, you will likely be given tables of data and asked to create a read-
only database. In fact, this task is commonly assigned to beginning database administrators.

Read-only databases are used in business intelligence (BI) systems for querying, reporting,
and data mining applications, as you will learn in Chapter 13. Because such databases are
updated by carefully controlled and timed procedures, the design guidelines and design
priorities are different than those for operational databases that are frequently updated.

For several reasons, normalization is seldom an advantage for a read-only database. For
one, if a database is never updated, then no modification anomalies can occur. Hence, consid-
ering Figure 4-2, the only reason to normalize a read-only database is to reduce data duplica-
tion. However, with no update activity, there is no risk of data integrity problems, so the only
remaining reason to avoid duplicated data is to save file space.

Today, however, file space is exceedingly cheap, nearly free. So unless the database is
enormous, the cost of storage is minimal. It is true that the DBMS will take longer to find and
process data in large tables, so data might be normalized to speed up processing. But even that
advantage is not clear-cut. If data are normalized, then data from two or more tables may need
to be read, and the time required for the join may overwhelm the time savings of searching
in small tables. In almost all cases, normalization of the tables in a read-only database is a
bad idea.

Denormalization

Often the data for a read-only database are extracted from operational databases. Because
such databases are updatable, they are probably normalized. Hence, you will likely receive the
extracted data in normalized form. In fact, if you have a choice, ask for normalized data. For
one, normalized data are smaller in size and can be transmitted to you more quickly. Also, if
the data are normalized, it will be easier for you to reformat the data for your particular needs.

According to the last section, you probably do not want to leave the data in normalized
form for a read-only database. If that is the case, you will need to denormalize, or join, the
data prior to storage.

STUDENT

ACTIVITY

PAYMENT

Figure 4-5

The Normalized STUDENT,
ACTIVITY, and PAYMENT
Relations

Chapter 4 Database Design Using Normalization 143

Consider the example in Figure 4-5. This is a copy of the normalized STUDENT,
ACTIVITY, and PAYMENT data in Figure 3-18. Suppose that you are creating a read-only
database that will be used to report amounts due for student activity payments. If you store
the data in this three-table form, every time someone needs to compare AmountPaid with
ActivityFee, he or she must join the three tables together. To do this, that person will need to
know how to write a three-table join, and the DBMS will need to perform the join every time
the report is prepared.

You can reduce the complexity of the SQL required to read these data and also reduce
DBMS processing by joining the tables once and storing the joined result as a single table.
The following SQL statement will join the three tables together and store them in a new table
named STUDENT_ACTIVITY_PAYMENT_DATA:

/* *** SQL-INSERT-CH04-03 *** */

INSERT INTO STUDENT_ACTIVITY_PAYMENT_DATA

SELECT STUDENT.StudentID, StudentName, ACTIVITY.Activity,
ActivityFee, AmountPaid

FROM STUDENT, PAYMENT, ACTIVITY

WHERE STUDENT.StudentID = PAYMENT.StudentID

AND PAYMENT.Activity = ACTIVITY.Activity;

As shown in Figure 4-6, the STUDENT_ACTIVITY_PAYMENT_DATA table that results from
this join has the same data as the original STUDENT_ACTIVITY table shown in Figure 3-24.

As you can see, denormalization is simple. Just join the data together and store the joined
result as a table. By doing this when you place the data into the read-only database, you save
the application programmers from having to code joins for each application, and you also save
the DBMS from having to perform joins and subqueries every time the users run a query or
create a report.

144 Part 2 Database Design

Customized Duplicated Tables

Because there is no danger of data integrity problems in a read-only database, and because the
cost of storage today is miniscule, read-only databases are often designed with many copies of
the same data, each copy customized for a particular application.

For example, suppose a company has a large PRODUCT table with the columns listed in
Figure 4-7. The columns in this table are used by different business processes. Some are used
for purchasing, some are used for sales analysis, some are used for displaying parts on a Web
site, some are used for marketing, and some are used for inventory control.

The values of some of these columns, such as those for the picture images, are large. If the
DBMS is required to read all of these data for every query, processing is likely to be slow.
Accordingly, the organization might create several customized versions of this table for use by
different applications. In an updatable database, so much duplicated data would risk severe
data integrity problems, but for a read-only database there is no such risk.

Suppose for this example that the organization designs the following tables:

PRODUCT_PURCHASING (SKU, SKU_Description, VendorNumber,
VendorName, VendorContact_1, VendorContact_2, VendorStreet, VendorCity, VendorState,
VendorZip)

PRODUCT_USAGE (SKU, SKU_Description, QuantitySoldPastYear,
QuantitySoldPastQuarter, QuantitySoldPastMonth)

STUDENT_ACTIVITY_PAYMENT_DATA

Figure 4-6

The Denormalized
STUDENT_ACTIVITY_
PAYMENT_DATA Relation

� SKU (Primary Key)
� PartNumber (Candidate key)
� SKU_Description (Candidate key)
� VendorNumber
� VendorName
� VendorContact_1
� VendorContact_2
� VendorStreet
� VendorCity
� VendorState
� VendorZip
� QuantitySoldPastYear
� QuantitySoldPastQuarter
� QuantitySoldPastMonth
� DetailPicture
� ThumbNailPicture
� MarketingShortDescription
� MarketingLongDescription
� PartColor
� UnitsCode
� BinNumber
� ProductionKeyCode

Figure 4-7

Columns in the PRODUCT
Table

Chapter 4 Database Design Using Normalization 145

PRODUCT_WEB (SKU, DetailPicture, ThumbnailPicture,
MarketingShortDescription, MarketingLongDescription,
PartColor)

PRODUCT_INVENTORY (SKU, PartNumber, SKU_Description, UnitsCode,
BinNumber, ProductionKeyCode)

You can create these tables using the graphical design facilities of Access or another DBMS.
Once the tables are created, they can be filled using INSERT commands similar to those
already discussed. The only tricks are to watch for duplicated data and to use DISTINCT where
necessary. See Review Question 4.10.

Common Design Problems

Although normalization and denormalization are the primary considerations when designing
databases from existing data, there are four additional practical problems to consider. These
are summarized in Figure 4-8.

The Multivalue, Multicolumn Problem

The table in Figure 4-7 illustrates the first common problem. Notice the columns VendorContact_1
and VendorContact_2. These columns store the names of two contacts at the part vendor. If the
company wanted to store the names of three or four contacts using this strategy, it would add
columns VendorContact_3, VendorContact_4, and so forth.

Consider another example for an employee parking application. Suppose the
EMPLOYEE_AUTO table includes basic employee data plus columns for license numbers for
up to three cars. The following is the typical table structure:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,Email,
Auto1_LicenseNumber, Auto2_LicenseNumber, Auto3_LicenseNumber)

Other examples of this strategy are to store employees� children�s names in columns such as
Child_1, Child_2, Child_3, and so forth, for as many children as the designer of the table thinks
appropriate, to store a picture of a house in a real estate application in columns labeled
Picture_1, Picture_2, Picture_3, and so forth.

Storing multiple values in this way is convenient, but it has two serious disadvantages. The
more obvious one is that the number of possible items is fixed. What if there are three contacts
at a particular vendor? Where do we put the third name if only columns VendorContact_1 and
VendorContact_2 are available? Or, if there are only three columns for child names, where do we
put the name of the fourth child? And so forth.

The second disadvantage occurs when querying the data. Suppose we have the following
EMPLOYEE table:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,

Email, Child_1, Child_2, Child_3, . . . {other data})

� Multivalue, Multicolumn Problem
� Inconsistent Values
� Missing Values
� General-Purpose Remarks Column

Figure 4-8

Practical Problems in
Designing Databases from
Existing Data

146 Part 2 Database Design

Further, suppose we want to know the names of employees who have a child with the first
name Gretchen. If there are three child name columns as shown in our EMPLOYEE table, we
must write:

/* *** EXAMPLE CODE-DO NOT RUN *** */

/* *** SQL-Query-CH04-03 *** */

SELECT *

FROM EMPLOYEE

WHERE Child_1 = ’Gretchen’

OR Child_2 = ’Gretchen’

OR Child_3 = ’Gretchen’;

Of course, if there are seven child names . . . well, you get the picture.
These problems can be eliminated by using a second table to store the multivalued attribute.

For the employee�child case, the tables are:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
Email, . . . {other data})

CHILD (EmployeeNumber, ChildFirstName, . . . {other data})

Using this second structure, employees can have an unlimited number of children, and storage
space will be saved for employees who have no children at all. Additionally, to find all of the
employees who have a child named Gretchen, we can code:

/* *** EXAMPLE CODE-DO NOT RUN *** */

/* *** SQL-Query-CH04-04 *** */

SELECT *

FROM EMPLOYEE

WHERE EmployeeNumber IN

(SELECT EmployeeNumber

FROM CHILD

WHERE ChildFirstName = ’Gretchen’);

This second query is easier to write and understand and will work regardless of the number of
children that an employee has.

The alternate design does require the DBMS to process two tables, and if the tables are
large and performance is a concern one can argue that the original design is better. In such
cases, storing multivalues in multiple columns may be preferred. Another, less valid objection
to the two-table design is as follows: �We only need space for three cars because university
policy restricts each employee to registering no more than three cars.� The problem with this
statement is that databases often outlive policies. Next year that policy may change, and, if it
does, the database will need to be redesigned. As you will learn in Chapter 8, database redesign
is tricky, complex, and expensive. It is better to avoid the need for a database redesign.

A few years ago, people argued that only three phone number columns
were needed per person: Home, Office, and Fax. Later they said, �Well,

OK, maybe we need four: Home, Office, Fax, and Mobile.� Today, who would want to
guess the maximum number of phone numbers a person might have? Rather than
guess, just store Phone in a separate table; such a design will allow each person to have
from none to an unlimited number of phone numbers.

You are likely to encounter the multivalue, multicolumn problem when creating databases
from nondatabase data. It is particularly common in spreadsheet and text data files.
Fortunately, the preferred two-table design is easy to create, and the SQL for moving the data
to the new design is easy to write.

Chapter 4 Database Design Using Normalization 147

The multivalue, multicolumn problem is just another form of a multivalued
dependency. For the parking application, for example, rather than store

multiple rows in EMPLOYEE for each auto, multiple named columns are created in the
table. The underlying problem is the same, however.

Inconsistent Values

Inconsistent values are a serious problem when creating databases from existing data.
Inconsistencies occur because different users or different data sources may use slightly
different forms of the same data value. These slight differences may be hard to detect and will
create inconsistent and erroneous information.

One of the hardest such problems occurs when different users have coded the same
entries differently. One user may have coded a SKU_Description as Corn, Large Can; another
may have coded the same item as Can, Corn, Large; and another may have coded the entry as
Large Can Corn. Those three entries all refer to the same SKU, but they will be exceedingly
difficult to reconcile. These examples are not contrived; such problems frequently occur,
especially when combining data from different database, spreadsheet, and file sources.

A related, but simpler, problem occurs when entries are misspelled. One user may enter
Coffee, another may enter Coffeee. They will appear as two separate products.

Inconsistent data values are particularly problematic for primary and foreign key columns.
Relationships will be missing or wrong when foreign key data are coded inconsistently or
misspelled.

Two techniques can be used to find such problems. One is the same as the check for refer-
ential integrity shown on page 138. This check will find values for which there is no match and
will find misspellings and other inconsistencies.

Another technique is to use GROUP BY on the suspected column. For example, if we sus-
pect that there are inconsistent values on SKU_Description in the SKU_DATA table (and note
that here we are discussing and using the original SKU_DATA table with four columns as shown
in Figure 2-5, not the three column version discussed in this chapter on page 138, even though
the query would actually run correctly on either version of the table), we can use the SQL query:

/* *** SQL-Query-CH04-05 *** */

SELECT SKU_Description, COUNT(*) as SKU_NameCount

FROM SKU_DATA

GROUP BY SKU_Description;

The result of this query for the SKU_DATA values we have been using is:

In this case, there are no inconsistent values, but if there were, they would stand out. If the
list resulting from the select is too long, groups can be selected that have just one or two elements
using HAVING. Neither check is foolproof. Sometimes, you just have to read the data.

When working with such data, it is important to develop an error reporting and tracking
system to ensure that inconsistencies that users do find are recorded and fixed. Users grow
exceedingly impatient with data errors that persist after they have been reported.

148 Part 2 Database Design

Missing Values

Missing values are a third problem that occurs when creating databases from existing data.
A missing value, or null value, is a value that has never been provided. It is not the same as a
blank value, because a blank value is a value that is known to be blank. A null value is not
known to be anything.

The problem with null values is ambiguity. A null value can indicate one of three conditions:
The value is inappropriate; the value is appropriate but unknown; or the value is appropriate and
known, but no one has entered it into the database. Unfortunately, we cannot tell from a null
value which of these conditions is true.

Consider, for example, a null value for the column DateOfLastChildbirth in a PATIENT
table. If a row represents a male patient, then the null occurs because the value is inappropriate;
a male cannot give birth. Alternatively, if the patient is a female, but the patient has never
been asked for the data, then the value is appropriate, but unknown. Finally, the null value could
also mean that a date value is appropriate and known, but no one has recorded it into the
database.

You can use the SQL term IS NULL to check for null values. For example, to find the
number of null values of Quantity in the ORDER_ITEM table, you can code:

/* *** SQL-Query-CH04-05 *** */

SELECT COUNT (*) as QuantityNullCount

FROM ORDER_ITEM

WHERE Quantity IS NULL;

The result of this query for the ORDER_ITEM values we have been using is:

In this case, there are no NULL values, but if there were, we would know how many, and then
we could use a SELECT * statement to find the data of any row that has a null value.

When creating a database from existing data, if you try to define a column that has null
values as the primary key, the DBMS will generate an error message. You will have to remove
the nulls before creating the primary key. Also, you can tell the DBMS that a given column is
not allowed to have null values, and when you import the data, if any row has a null value in
that column, the DBMS will generate an error message. The particulars depend on the DBMS
in use. See Chapter 10 for Microsoft SQL Server 2008 R2, Chapter 10A for Oracle�s Oracle
Database 11g, and Chapter 10B for Oracle MySQL 5.5. You should form the habit of checking
for null values in all foreign keys. Any row with a null foreign key will not participate in the
relationship. That may or may not be appropriate; you will need to ask the users to find out.
Also, null values can be problematic when joining tables together. You will learn how to deal
with this problem in Chapter 7.

The General-Purpose Remarks Column

The general-purpose remarks column problem is common, serious, and very difficult to solve.
Columns with names such as Remarks, Comments, and Notes often contain important data
that are stored in an inconsistent, verbal, and verbose manner. Learn to be wary of columns
with any such names.

To see why, consider customer data for a company that sells expensive items such as air-
planes, rare cars, boats, or paintings. In a typical setting, someone has used a spreadsheet to
track customer data. That person used a spreadsheet not because it was the best tool for such
a problem, but rather because he or she had a spreadsheet program and knew how to use it.

The typical spreadsheet has columns like LastName, FirstName, Email, Phone, Address,
and so forth. It almost always includes a column entitled Remarks, Comments, Notes, or some-
thing similar. The problem is that needed data are usually buried in such columns and nearly

Chapter 4 Database Design Using Normalization 149

impossible to dig out. Suppose you want to create a database for a customer contact application
for an airplane broker. Assume your design contains the two tables:

CONTACT (ContactID, ContactLastName, ContactFirstName,
Address, . . . {other data}, Remarks, AirplaneModelID)

AIRPLANE_MODEL (AirplaneModelID, AirplaneModelName
AirplaneModelDescription, . . . {other airplane model data})

where CONTACT.AirplaneModelID is a foreign key to AIRPLANE_MODEL.AirplaneModelID.
You want to use this relationship to determine who owns, has owned, or is interested in buying
a particular model of airplane.

In the typical situation, the data for the foreign key has been recorded in the Remarks column.
If you read the Remarks column data in CONTACT, you will find entries like: �Wants to buy a Piper
Seneca II�, �Owner of a Piper Seneca II�, and �Possible buyer for a turbo Seneca�. All three of these rows
should have a value of AirplaneModelID (the foreign key in CONTACT) that equals the value of
AIRPLANE_MODEL.AirplaneModeID for the AirplaneModelName of �Piper Seneca II�, but you will
pull your hair out making that determination.

Another problem with general-purpose remarks columns is that they are used inconsis-
tently and contain multiple data items. One user may have used it to store the name of the
spouse of the contact, another may have used it to store airplane models as just described, and
a third may have used it to store the date the customer was last contacted. Or, the same user
may have used it for all three purposes at different times!

The best solution in this case is to identify all of the different purposes of the remarks
column, create new columns for each of those purposes, and then extract the data and store it
into the new columns as appropriate. However, this solution can seldom be automated.

In practice, all solutions require patience and hours of labor. Learn to be wary of such
columns, and don�t take such jobs on a fixed-price basis!

When constructing a database from existing data, the first step
is to assess the structure and content of the input tables. Count
the number of rows and use the SQL SELECT TOP 10 * phrase
to learn the columns in the data. Then, examine the data and
determine functional dependencies, multivalued dependencies,
candidate keys, each table�s primary key, and foreign keys. Check
out the validity of possible referential integrity constraints.

Design principles differ depending on whether an updat-
able or read-only database is being constructed. If the former,
then modification anomalies and inconsistent data are
concerns. The advantages of normalization are elimination of
modification anomalies, reduced data duplication, and the
elimination of data inconsistencies. The disadvantages are
that more complex SQL will be required and application
performance may be slower.

For updatable databases, most of the time the problems
of modification anomalies are so great that all tables should
be placed in BCNF. SQL for normalization is easy to write. In
some cases, if the data will be updated infrequently and if
inconsistencies are readily corrected by business processes,
then BCNF may be too pure and the tables should not be
normalized. The problems of multivalued dependencies are
so great that they should always be removed.

Read-only databases are created for reporting, querying,
and data mining applications. Creating such a database is
a task commonly assigned to beginners. When designing

read-only databases, normalization is less desired. If input
data is normalized, it frequently needs to be denormalized
by joining it together and storing the joined result. Also,
sometimes many copies of the same data are stored in tables
customized for particular applications.

Four common problems occur when creating databases
from existing data. The multivalue, multicolumn design sets a
fixed number of repeating values and stores each in a column
of its own. Such a design limits the number of items allowed
and results in awkward SQL query statements. A better design
results from putting multiple values in a table of their own.

Inconsistent values result when data arise from different
users and applications. Inconsistent foreign key values create
incorrect relationships. Data inconsistencies can be detected
using SQL statements, as illustrated in this chapter. A null
value is not the same as a blank. A null value is not known to be
anything. Null values are a problem because they are ambigu-
ous. They can mean that a value is inappropriate, unknown, or
known, but not yet been entered into the database.

The general-purpose remarks column is a column that
is used for different purposes. It collects data items in an
inconsistent and verbose manner. Such columns are espe-
cially problematic if they contain data needed for a foreign
key. Even if they do not, they often contain data for several
different columns. Automated solutions are not possible,
and the correction requires patience and labor.

150 Part 2 Database Design

denormalize
null value
SQL COUNT(*) function
SQL DROP TABLE statement

SQL INSERT statement
SQL SELECT * statement
SQL TOP {numberOfRows} expression

4.1 Summarize the premise of this chapter.

4.2 When you receive a set of tables, what steps should you take to assess their structure
and content?

4.3 Show SQL statements to count the number of rows and to list the top 15 rows of the
RETAIL_ORDER table.

4.4 Suppose you receive the following two tables:

DEPARTMENT (DepartmentName, BudgetCode)
EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
Email, DepartmentName)

and you conclude that EMPLOYEE.DepartmentName is a foreign key to DEPARTMENT.
DepartmentName. Show SQL for determining whether the following referential integrity
constraint has been enforced:

DepartmentName in EMPLOYEE must exist in DepartmentName in DEPARTMENT

4.5 Summarize how database design principles differ with regards to the design of
updatable databases and the design of read-only databases.

4.6 Describe two advantages of normalized tables.

4.7 Why do we say that data duplication is only reduced? Why is it not eliminated?

4.8 If data duplication is only reduced, how can we say that the possibility of data inconsis-
tencies has been eliminated?

4.9 Describe two disadvantages of normalized tables.

4.10 Suppose you are given the table:

EMPLOYEE_DEPARTMENT (EmployeeNumber, EmployeeLastName,
EmployeeFirstName, Email, DepartmentName, BudgetCode)

and you wish to transform this table into the two tables:

DEPARTMENT (DepartmentName, BudgetCode)
EMPLOYEE (EmplyeeNumber, EmployeeLastName, EmployeeFirstName,
Email, DepartmentName)

Write the SQL statements needed for filling the EMPLOYEE and DEPARTMENT tables
with data from EMPLOYEE_DEPARTMENT.

4.11 Summarize the reasons explained in this chapter for not placing zip code values into
BCNF.

Chapter 4 Database Design Using Normalization 151

4.12 Describe a situation, other than the one for zip codes, in which one would choose not
to place tables into BCNF. Justify your decision not to use BCNF.

4.13 According to this text, under what situations should you choose not to remove
multivalued dependencies from a relation?

4.14 Compare the difficulty of writing subqueries and joins with the difficulty of dealing
with anomalies caused by multivalued dependencies.

4.15 Describe three uses for a read-only database.

4.16 How does the fact that a read-only database is never updated influence the reasons for
normalization?

4.17 For read-only databases, how persuasive is the argument that normalization reduces
file space?

4.18 What is denormalization?

4.19 Suppose you are given the DEPARTMENT and EMPLOYEE tables in Review Question 4.10
and asked to denormalize them into the EMPLOYEE_DEPARTMENT relation. Show the
design of the EMPLOYEE_DEPARTMENT relation. Write an SQL statement to fill this
table with data.

4.20 Summarize the reasons for creating customized duplicated tables.

4.21 Why are customized duplicated tables not used for updatable databases?

4.22 List four common design problems when creating databases from existing data.

4.23 Give an example of a multivalue, multicolumn table other than one discussed in this
chapter.

4.24 Explain the problems in your example in Review Question 4.23.

4.25 Show how to represent the relation in your answer to Review Question 4.23 with two
tables.

4.26 Show how the tables in your answer to Review Question 4.25 solve the problems you
identified in Review Question 4.22.

4.27 Explain the following statement: �The multivalue, multicolumn problem is just
another form of multivalued dependency.� Show how this is so.

4.28 Explain ways in which inconsistent values arise.

4.29 Why are inconsistent values in foreign keys particularly troublesome?

4.30 Describe two ways to identify inconsistent values. Are these techniques certain to find
all inconsistent values? What other step can be taken?

4.31 What is a null value?

4.32 How does a null value differ from a blank value?

4.33 What are three interpretations of null values? Use an example in your answer.

4.34 Show SQL for determining the number of null values in the column EmployeeFirstName
of the table EMPLOYEE.

4.35 Describe the general-purpose remarks column problem.

4.36 Give an example in which the general-purpose remarks column makes it difficult to
obtain values for a foreign key.

4.37 Give an example in which the general-purpose remarks column causes difficulties
when multiple values are stored in the same column. How is this problem solved?

4.38 Why should one be wary of general-purpose remarks columns?

152 Part 2 Database Design

The Elliot Bay Sports Club owns and operates three sports club facilities in Houston,
Texas. Each facility has a large selection of modern exercise equipment, weight
rooms, and rooms for yoga and other exercise classes. Elliot Bay offers 3-month and
1-year memberships. Members can use the facilities at any of the three club locations.

Elliot Bay maintains a roster of personal trainers who operate as independent
consultants. Approved trainers can schedule appointments with clients at Elliot Bay
facilities, as long as their client is a member of the club. Trainers also teach yoga,
Pilates, and other classes. Answer the following questions, assuming you have been
provided the following three tables of data (PT stands for personal trainer):

PT_SESSION (Trainer, Phone, Email, Fee, ClientLastName, ClientFirstName,
ClientPhone, ClientEmail, Date, Time)
CLUB_MEMBERSHIP (ClientNumber, ClientLastName, ClientFirstName, ClientPhone,
ClientEmail, MembershipType, EndingDate, Street, City, State, Zip)
CLASS (ClassName, Trainer, StartDate, EndDate, Time, DayOfWeek, Cost)

4.39 Identify possible multivalued dependencies in these tables.

4.40 Identify possible functional dependencies in these tables.

4.41 Determine whether each table is in either BCNF or in 4NF. State your assumptions.

4.42 Modify each of these tables so that every table is in BCNF and 4NF. Use the assumptions
you made in your answer to Project Question 4.41.

4.43 Using these tables and your assumptions, recommend a design for an updatable database.

4.44 Add a table to your answer to Project Question 4.43 that would allow Elliot Bay to assign
members to particular classes. Include an AmountPaid column in your new table.

4.45 Recommend a design for a read-only database that would support the following needs:
A. Enable trainers to ensure that their clients are members of the club.
B. Enable the club to assess the popularity of various trainers.
C. Enable the trainers to determine if they are assisting the same client.
D. Enable class instructors to determine if the attendees to their classes have paid.

Marcia Wilson, the owner of Marcia�s Dry Cleaning, is in the process of creating
databases to support the operation and management of her business. For the past
year, she and her staff have been using a cash register system that collects the
following data:

SALE (InvoiceNumber, DateIn, DateOut, Total, Phone, FirstName,
LastName)

Unfortunately, during rush times, not all of the data are entered, and there are
many null values in Phone, FirstName, and LastName. In some cases all three are null,
in other cases one or two are null. InvoiceNumber, DateIn, and Total are never null.
DateOut has a few null values. Also, occasionally during a rush, phone number and
name data have been entered incorrectly. To help create her database, Marcia
purchased a mailing list from a local business bureau. The mailing list includes the
following data:

HOUSEHOLD (Phone, FirstName, LastName, Street, City, State, Zip, Apartment)

In some cases, a phone number has multiple names. The primary key is thus the
composite (Phone, FirstName, LastName). There are no null values in Phone,
FirstName, and LastName, but there are some null values in the address data.

Chapter 4 Database Design Using Normalization 153

There are many names in SALE that are not in HOUSEHOLD, and there are many
names in HOUSEHOLD that are not in SALE.

A. Design an updatable database for storing customer and sales data. Explain how to deal
with the problems of missing data. Explain how to deal with the problems of incorrect
phone and name data.

B. Design a read-only database for storing customer and sales data. Explain how to deal
with the problems of missing data. Explain how to deal with the problems of incorrect
phone and name data.

Phillip Morgan, the owner of Morgan Importing, makes periodic buying trips to various
countries. During the trips, he keeps notes about the items he purchases and basic
data about their shipments. He hired a college student as an intern, and she
transformed his notes into the spreadsheets in Figure 4-9. This is just sample data.
Phillip has purchased hundreds of items over the years, and they have been shipped in
dozens of different shipments.

Phillip wants to enter the information age, thus he has decided to develop a
database of his inventory. He wants to keep track of the items he has purchased, their
shipments, and eventually customers and sales. To get started, he has asked you to
create a database for the data in Figure 4-9.

A. Follow the procedure shown in Figure 4-1 to assess these data.
1. List all functional dependencies.
2. List any multivalued dependencies.
3. List all candidate keys.
4. List all primary keys
5. List all foreign keys.
6. State any assumptions you make as you list these components.

B. List questions you would ask Phillip to verify your assumptions.

C. If there are any multivalued dependencies, create the tables needed to eliminate these
dependencies.

D. The relationship between shipment and item data could possibly be inferred by matching
values in the From cells to values in the City cells. Describe two problems with that
strategy.

E. Describe a change to this spreadsheet that does express the shipment�item relationship.

F. Assume that Phillip wishes to create an updatable database from these data. Design
tables you think are appropriate. State all referential integrity constraints.Figure 4-9

Spreadsheets from Morgan
Importing

154 Part 2 Database Design

G. Assume that Phillip wishes to create a read-only database from these data. Design tables
you think are appropriate. State all referential integrity constraints.

H. Do these data have the multivalue, multicolumn problem? If so, how will you deal
with it?

I. Do these data have the inconsistent data problem? If so, how will you deal with it?

J. Do these data have a null value data problem? If so, how will you deal with it?

K. Do these data have the general-purpose remarks problem? If so, how will you deal
with it?

In this chapter and the next, we consider the design of databases that
arise from the development of new information systems. As you will learn,
such databases are designed by analyzing requirements and creating a data
model, or blueprint, of a database that will meet those requirements. The
data model is then transformed into a database design.

� To understand the two-phase data modeling/database
design process

� To understand the purpose of the data modeling process

� To understand entity-relationship (E-R) diagrams

� To be able to determine entities, attributes, and
relationships

� To be able to create entity identifiers

� To be able to determine minimum and maximum
cardinalities

� To understand variations of the E-R model

� To understand and be able to use ID-dependent and
other weak entities

� To understand and be able to use supertype/subtype
entities

Chapter Objectives

Data Modeling
with the Entity-
Relationship Model5

� To understand and be able to use strong entity patterns

� To understand and be able to use the ID-dependent
association pattern

� To understand and be able to use the ID-dependent
multivalued attribute pattern

� To understand and be able to use the ID-dependent
archetype/instance pattern

� To understand and be able to use the line-item pattern

� To understand and be able to use the for-use-by
pattern

� To understand and be able to use recursive patterns

� To understand the iterative nature of the data modeling
process

� To be able to use the data modeling process

155

156 Part 2 Database Design

This chapter addresses the creation of data models using the entity-
relationship data model, the most popular modeling technique. This chapter
consists of three major sections. First, we explain the major elements of the
entity-relationship model and briefly describe several variations on that model.
Next, we examine a number of patterns in forms, reports, and data models that
you will encounter when data modeling. We then illustrate the data modeling
process using the example of a small database at a university. Before starting,
however, you need to understand the purpose of a data model.

Data modeling is a part of the systems analysis and design process. For
an introduction to systems analysis and design, see Appendix B.

The Purpose of a Data Model

A data model is a plan, or blueprint, for a database design. By analogy, consider the construction
of your dorm or apartment building. The contractor did not just buy some lumber, call for the
concrete trucks, and start work. Instead, an architect constructed plans and blueprints for that
building long before construction began. If, during the planning stage, it was determined that a
room was too small or too large, the blueprint could be changed simply by redrawing the lines. If,
however, the need for change occurs after the building is constructed, the walls, electrical system,
plumbing, and so on will need to be rebuilt, at great expense and loss of time. It is easier, simpler,
and faster to change the plan than it is to change a constructed building.

The same argument applies to data models and databases. Changing a relationship during
the data modeling stage is just a matter of changing the diagram and related documentation.
Changing a relationship after the database and applications have been constructed, however,
is much more difficult. Data must be migrated to the new structure, SQL statements will need
to be changed, forms and reports will need to be altered, and so forth.

The Entity-Relationship Model

Dozens of different tools and techniques for constructing data models have been defined over
the years. They include the hierarchical data model, the network data model, the ANSI/SPARC
data model, the entity-relationship data model, the semantic object model, and many others.
Of these, the entity-relationship data model has emerged as the standard data model, and we
will consider only that data model in this chapter.

The entity-relationship (E-R) model was first published by Peter Chen in 1976.1 In this
paper, Chen set out the basic elements of the model. Subtypes (discussed later) were added to
the E-R model to create the extended E-R model,2 and today it is the extended E-R model
that most people mean when they use the term E-R model. In this text, we will use the
extended E-R model.

Entities

An entity is something that users want to track. It is something that is readily identified in the
users� work environment. Example entities are EMPLOYEE Mary Lai, CUSTOMER 12345,
SALES-ORDER 1000, SALESPERSON Wally Smith, and PRODUCT A4200. Entities of a given
type are grouped into an entity class. Thus, the EMPLOYEE entity class is the collection of all
EMPLOYEE entities. In this text, entity classes are shown in capital letters.

1 Peter P. Chen, �The Entity-Relationship Model�Towards a Unified View of Data,� ACM Transactions on Data-
base Systems, January 1976, pp. 9�36. For information on Peter Chen see http://en.wikipedia.org/wiki/
Peter_Chen, and for a copy of the article see http://csc.lsu.edu/news/erd.pdf.
2 T. J. Teorey, D. Yang, and J. P. Fry, �A Logical Design Methodology for Relational Databases Using the Extended
Entity-Relationship Model,� ACM Computing Surveys, June 1986, pp. 197�222.

Chapter 5 Data Modeling with the Entity-Relationship Model 157

It is important to understand the differences between an entity class and an entity
instance. An entity class is a collection of entities and is described by the structure of the
entities in that class. An entity instance of an entity class is the occurrence of a particular
entity, such as CUSTOMER 12345. An entity class usually has many instances of an entity. For
example, the entity class CUSTOMER has many instances�one for each customer represented
in the database. The CUSTOMER entity class and two of its instances are shown in Figure 5-1.

Attributes

Entities have attributes that describe their characteristics. Examples of attributes are
EmployeeNumber, EmployeeName, Phone, and Email. In this text, attributes are written in
both uppercase and lowercase letters. The E-R model assumes that all instances of a given
entity class have the same attributes.

Figure 5-2 shows two different ways of displaying the attributes of an entity. Figure 5-2(a)
shows attributes in ellipses that are connected to the entity. This style was used in the original
E-R model, prior to the advent of data modeling software products. Figure 5-2(b) shows the
rectangle style that is commonly used by data modeling software products today.

CUSTOMER Entity

CustomerNumber
CustomerName
Street
City
State
Zip
ContactName
Email

Two CUSTOMER Instances

99890
Jones Brothers
434 10th Street
Boston
MA
01234
Fritz Billingsley
Fritz@JB.com

1234
Ajax Manufacturing
123 Elm Street
Memphis
TN
32455
P_Schwartz
P_S@Ajax.com

CUSTOMER

Figure 5-1

CUSTOMER Entity and Two
Entity Instances

EMPLOYEE

EMPLOYEE

(b) Attributes in Rectangle(a) Attributes in Ellipses

EmployeeNumber

EmployeeName

Phone

Email

HireDate
ReviewDate

EmployeeName
Phone
Email
HireDate
ReviewDate

EmployeeNumber

Figure 5-2

Variations on Entity Diagram
Attribute Displays

158 Part 2 Database Design

Notice the correspondence of identifiers and keys. The term identifier is
used in a data model, and the term key (which we have already introduced

in our discussion of relational databases in Chapter 3) is used in a database design.
Thus, entities have identifiers, and tables (or relations) have keys. Identifiers serve the
same role for entities that keys serve for tables.

As shown in Figure 5-3, entities are portrayed in three levels of detail in a data model. As
shown in Figure 5-3(a), sometimes the entity and all of its attributes are displayed. In such cases,
the identifier of the attribute is shown at the top of the entity and a horizontal line is drawn after
the identifier. However, in a large data model, so much detail can make the data model diagrams
unwieldy. In those cases, the entity diagram is abbreviated by showing just the identifier, as in
Figure 5-3(b), or by showing just the name of the entity in a rectangle, as shown in Figure 5-3(c).
All three techniques are used in practice; the more abbreviated form in Figure 5-3(c) is used to
show the big picture and overall entity relationships. The more detailed view in Figure 5-3(a) is
frequently used during database design. Most data modeling software products have the ability
to show all three displays.

Relationships

Entities can be associated with one another in relationships. The E-R model contains both
relationship classes and relationship instances.3 Relationship classes are associations among
entity classes, and relationship instances are associations among entity instances. In the
original E-R model, relationships could have attributes. Today, that feature is no longer used.

Relationships are given names that describe the nature of the relationship, as shown in
Figure 5-4. In Figure 5-4(a), the Qualification relationship shows which employees have which
skills. In Figure 5-4(b), the Assignment relationship shows which combinations of clients,
architects, and projects have been created. To avoid unnecessary complexity, in this chapter
we will show the names of relationships only if there is a chance of ambiguity.

3 For brevity, we sometimes drop the word instance when the context makes it clear that an instance rather
than an entity class is involved.

EMPLOYEE

EmployeeNumber

(a) Entity with All
 Attributes

(b) Entity with Identifier
 Attribute Only

(c) Entity with No
Attributes

EMPLOYEE

EMPLOYEE

EmployeeName
Phone
Email
HireDate
ReviewDate

EmployeeNumber

Figure 5-3

Variations on Level of Entity
Attribute Displays

Identifiers

Entity instances have identifiers, which are attributes that name, or identify, entity instances. For
example, EMPLOYEE instances can be identified by EmployeeNumber, SocialSecurityNumber, or
EmployeeName. EMPLOYEE instances are not likely to be identified by attributes such as Salary
or HireDate because these attributes are not normally used in a naming role. Similarly, customers
can be identified by CustomerNumber or CustomerName, and sales orders can be identified by
OrderNumber.

The identifier of an entity instance consists of one or more of the entity�s attributes.
Identifiers that consist of two or more attributes are called composite identifiers. Examples are
(AreaCode, LocalNumber), (ProjectName, TaskName), and (FirstName, LastName, DateOfHire).

Chapter 5 Data Modeling with the Entity-Relationship Model 159

EMPLOYEE SKILL

Qualification

(a) Example Binary Relationship

CLIENT ARCHITECT

PROJECT

Assignment
(b) Example Ternary Relationship

Figure 5-4

Binary Versus Ternary
Relationships

Your instructor may believe that it is important to always show the name of
a relationship. If so, be aware that you can name a relationship from the

perspective of either of the entities or both. For example, you can name the relationship
between DEPARTMENT and EMPLOYEE as Department Consists Of; or you can name
it as Employee Works In; or you can name it both ways, using a slash between the two
names, Department Consists Of/Employee Works In. Relationship names are a necessity
when there are two different relationships between the same two entities.

A relationship class can involve two or more entity classes. The number of entity classes in the
relationship is the degree of the relationship. In Figure 5-4(a), the Qualification relationship is of
degree two because it involves two entity classes: EMPLOYEE and SKILL. In Figure 5-4(b), the
Assignment relationship is of degree three because it involves three entity classes: CLIENT,
ARCHITECT, and PROJECT. Relationships of degree two are referred to as binary relationships.
Similarly, relationships of degree three are called ternary relationships.

When transforming a data model into a relational database design, relationships of all
degrees are treated as combinations of binary relationships. The Assignment relationship in
Figure 5-4(b), for example, is decomposed into three binary relationships (can you spot them?).
Most of the time, this strategy is not a problem. However, some nonbinary relationships need
additional work, as you will learn in Chapter 6. All data modeling software products require
you to express relationships as binary relationships.

At this point, you may be wondering, �What�s the difference between an entity
and a table?� So far, they seem like different terms for the same thing. The

principle difference between an entity and a table is that you can express a relationship
between entities without using foreign keys. In the E-R model, you can specify a relation-
ship just by drawing a line connecting two entities. Because you are doing logical data
modeling and not physical database design, you need not worry about primary and foreign
keys, referential integrity constraints, and the like. Most data modeling products will allow
you to consider such details if you choose to, but they do not require it.

This characteristic makes entities easier to work with than tables, especially early
in a project when entities and relationships are fluid and uncertain. You can show
relationships between entities before you even know what the identifiers are. For
example, you can say that a DEPARTMENT relates to many EMPLOYEEs before you
know any of the attributes of either EMPLOYEE or DEPARTMENT. This characteristic
enables you to work from the general to the specific. First identify the entities, then think
about relationships, and, finally, determine the attributes.

160 Part 2 Database Design

In the entity-relationship model, relationships are classified by their cardinality, a word
that means �count.� The maximum cardinality is the maximum number of entity instances
that can participate in a relationship instance. The minimum cardinality is the minimum
number of entity instances that must participate in a relationship instance.

Maximum Cardinality

In Figure 5-5, the maximum cardinality is shown inside the diamond that represents the
relationship. The three parts of this figure show the three basic maximum cardinalities in the
E-R model.

Figure 5-5(a) shows a one-to-one (abbreviated 1:1) relationship. In a 1:1 relationship, an
entity instance of one type is related to at most one entity instance of the other type. The
Employee_Identity relationship in Figure 5-5(a) associates one EMPLOYEE instance with one
BADGE instance. According to this diagram, no employee has more than one badge, and no
badge is assigned to more than one employee.

The Computer_Assignment relationship in Figure 5-5(b) illustrates a one-to-many
(abbreviated 1:N) relationship. Here, a single instance of EMPLOYEE can be associated with
many instances of COMPUTER, but a COMPUTER instance is associated with just one
instance of EMPLOYEE. According to this diagram, an employee can be associated with
several computers, but a computer is assigned to just one employee.

The positions of the 1 and the N are significant. The 1 is close to the line connecting
EMPLOYEE, which means that the 1 refers to the EMPLOYEE side of the relationship. The N is
close to the line connecting COMPUTER, which means that the N refers to the COMPUTER
side of the relationship. If the 1 and the N were reversed and the relationship were written N:1,
an EMPLOYEE would have one COMPUTER, and a COMPUTER would be assigned to many
EMPLOYEEs.

When discussing one-to-many relationships, the terms parent and child are sometimes
used. The parent is the entity on the 1 side of the relationship, and the child is the entity on the
many side of the relationship. Thus, in a 1:N relationship between DEPARTMENT and
EMPLOYEE, DEPARTMENT is the parent and EMPLOYEE is the child (one DEPARTMENT
has many EMPLOYEEs).

Figure 5-5(c) shows a many-to-many (abbreviated N:M) relationship. According to the
Qualification relationship, an EMPLOYEE instance can be associated with many SKILL
instances, and a SKILL instance can be associated with many EMPLOYEE instances. This
relationship documents that fact that an employee may have many skills, and a skill may be
held by many employees.

Sometimes students wonder why we do not write many-to-many relationships as N:N or
M:M. The reason is that cardinality in one direction may be different than the cardinality in the
other direction. In other words, in an N:M relationship, N need not equal M. An EMPLOYEE

EMPLOYEE 1:1

Employee_Identity

Computer_Assignment

Qualification

BADGE

(a) One-to-One Relationship

EMPLOYEE 1:N COMPUTER

(b) One-to-Many Relationship

EMPLOYEE N:M SKILL

(c) Many-to-Many Relationship

Figure 5-5

Three Types of Maximum
Cardinality

Chapter 5 Data Modeling with the Entity-Relationship Model 161

can have five skills, for example, but one of those skills can have three employees. Writing the
relationship as N:M highlights the possibility that the cardinalities may be different.

Sometimes the maximum cardinality is an exact number. For example, for a sports team, the
number of players on the roster is limited to some fixed number, say, 15. In that case, the maximum
cardinality between TEAM and PLAYER would be set to 15 rather than to the more general N.

Relationships like those in Figure 5-5 are sometimes called HAS-A
relationships. This term is used because each entity instance has a

relationship to a second entity instance. An employee has a badge, and a badge has
an employee. If the maximum cardinality is greater than one, then each entity has a set
of other entities. An employee has a set of skills, for example, and a skill has a set of
employees who have that skill.

Minimum Cardinality

The minimum cardinality is the number of entity instances that must participate in a relationship.
Generally, minimums are stated as either zero or one. If zero, then participation in the relationship
is optional. If one, then at least one entity instance must participate in the relationship, which is
called mandatory participation. In E-R diagrams, an optional relationship is represented by a
small circle on the relationship line; a mandatory relationship is represented by a hash mark or
line across the relationship line.

To better understand these terms, consider Figure 5-6. In the Employee_Identity relationship
in Figure 5-6(a), the hash marks indicate that an EMPLOYEE is required to have a BADGE, and a
BADGE must be allocated to an EMPLOYEE. Such a relationship is referred to as a mandatory-
to-mandatory (M-M) relationship, because entities are required on both sides. The complete
specification for the Employee_Identity relationship is that it is a 1:1, M-M relationship.

In Figure 5-6(b), the two small circles indicate that the Computer_Assignment relation-
ship is an optional-to-optional (O-O) relationship. This means that an EMPLOYEE need
not have a COMPUTER, and a COMPUTER need not be assigned to an EMPLOYEE. The Com-
puter_Assignment relationship is thus a 1:N, O-O relationship.

Finally, in Figure 5-6(c) the combination of a circle and a hash mark indicates an
optional-to-mandatory (O-M) relationship. Here, an EMPLOYEE must be assigned to at
least one SKILL, but a SKILL may not necessarily be related to any EMPLOYEE. The complete
specification for the Qualification relationship is thus an N:M, O-M relationship. The position
of the circle and the hash mark are important. Because the circle is in front of EMPLOYEE, it
means that the employee is optional in the relationship.

EMPLOYEE 1:1

Employee_Identity

Computer_Assignment

Qualification

BADGE

(a) Mandatory-to-Mandatory (M-M) Relationship

EMPLOYEE 1:N COMPUTER

(b) Optional-to-Optional (O-O) Relationship

EMPLOYEE N:M SKILL

(c) Optional-to-Mandatory (O-M) Relationship

Figure 5-6

Minimum Cardinality
Examples

162 Part 2 Database Design

Sometimes when interpreting diagrams like Figure 5-6(c) students become
confused about which entity is optional and which is required. An easy way

to clarify this situation is to imagine that you are standing in the diamond on the relation-
ship line. Imagine looking toward one of the entities. If you see an circle in that direction,
then that entity is optional; if you see a hash mark, then that entity is required. Thus, in
Figure 5-6(c), if you stand on the diamond and look toward SKILL, you see a hash mark.
This means that SKILL is required in the relationship.

A fourth option, a mandatory-to-optional (M-O) relationship is not shown in Figure 5-6.
But, if we exchange the circle and the hash mark in Figure 5-6(c), then Qualification becomes an
M-O relationship. In that case, an EMPLOYEE need not have a SKILL, but a SKILL must have at
least one EMPLOYEE.

As with maximum cardinalities, in rare cases the minimum cardinality is a specific
number. To represent the relationship between PERSON and MARRIAGE, for example, the
minimum cardinality would be 2:Optional.

Entity-Relationship Diagrams and Their Versions

The diagrams in Figures 5-5 and 5-6 are sometimes referred to as entity-relationship (E-R)
diagrams. The original E-R model specified that such diagrams use diamonds for relationships,
rectangles for entities, and connected ellipses for attributes, as shown in Figure 5-2. You may
still see examples of such E-R diagrams, and it is important for you to be able to interpret them.

For two reasons, however, this original notation is seldom used today. First, there are a
number of different versions of the E-R model, and these versions use different symbols.
Second, data modeling software products use different techniques. For example, Computer
Associates� ERwin product uses one set of symbols, and Microsoft Visio uses a second set.

Variations of the E-R Model

At least three different versions of the E-R model are in use today. One of them, the
Information Engineering (IE) model, was developed by James Martin in 1990. This model
uses crow�s feet to show the many side of a relationship, and it is called the IE Crow�s Foot
model. It is easy to understand, and we will use it throughout this text. In 1993, the National
Institute of Standards and Technology announced another version of the E-R model as a
national standard. This version is called Integrated Definition 1, Extended (IDEF1X).4 This
standard incorporates the basic ideas of the E-R model, but uses different graphical symbols.
Although this model is a national standard, it is difficult to understand and use. As a national
standard, however, it is used in government, and thus it may become important to you.
Therefore, the fundamentals of the IDEF1X model are described in Appendix C.

Meanwhile, to add further complication, a new object-oriented development methodology
called the Unified Modeling Language (UML) adopted the E-R model, but introduced its
own symbols while putting an object-oriented programming spin on it. UML notation is
summarized in Appendix D.

In addition to differences due to different versions of the E-R model, there
also are differences due to software products. For example, two products

that both implement the IE Crow�s Foot model may do so in different ways. The result is a
mess. When creating a data model diagram, you need to know not just the version of the
E-R model you are using, but also the idiosyncrasies of the data modeling product you use.

4 Integrated Definition for Information Modeling (IDEF1X), Federal Information Processing Standards Publication
184, 1993.

Chapter 5 Data Modeling with the Entity-Relationship Model 163

E-R Diagrams Using the IE Crow�s Foot Model

Figure 5-7 shows two versions of a one-to-many, optional-to-mandatory relationship. Figure 5-7(a)
shows the original E-R model version. Figure 5-7(b) shows the crow�s foot model using common
crow�s foot symbols. Notice that the relationship is drawn as a dashed line. The reason for this will
be explained later in this chapter. For now, notice the crow�s foot symbol used to show the many
side of the relationship.

The crow�s foot model uses the notation shown in Figure 5-8 to indicate the relationship
cardinality. The symbol closest to the entity shows the maximum cardinality, and the other
symbol shows the minimum cardinality. A hash mark indicates one (and therefore also
mandatory), a circle indicates zero (and thus optional), and the crow�s foot symbol indicates
many. Thus, the diagram in Figure 5-7(b) means that a DEPARTMENT has one or more
EMPLOYEEs (the symbol shows many and mandatory), and an EMPLOYEE belongs to zero or
one DEPARTMENTs (the symbol shows one and optional).

A 1:1 relationship would be drawn in a similar manner, but the line connecting to each entity
should be similar to the connection shown for the one side of the 1:N relationship in Figure 5-7(b).

Figure 5-9 shows two versions of an N:M, optional-to-mandatory relationship. Modeling
N:M relationships presents some complications. According to the original E-R model diagram
shown in Figure 5-9(a), an EMPLOYEE must have at least one SKILL and may have several.
At the same time, although a SKILL may or may not be held by any EMPLOYEE, a SKILL may
also be held by several EMPLOYEEs. The crow�s foot version in Figure 5-9(b) shows the N:M

DEPARTMENT 1:N EMPLOYEE

(a) Original E-R Model Version

DEPARTMENT EMPLOYEE

(b) Crow�s Foot Version

Figure 5-7

Two Versions of a 1:N
Relationship

Symbol Meaning

Mandatory�One

Mandatory�Many

Optional�One

Optional�Many

Figure 5-8

Crow�s Foot Notation

EMPLOYEE N:M SKILL

(a) Original E-R Model Version

EMPLOYEE SKILL

(b) Crow�s Foot Version

Figure 5-9

Two Versions of a N:M
Relationship

164 Part 2 Database Design

maximum cardinalities using the notation in Figure 5-8. The crow�s foot symbols again
indicate the minimum cardinalities for the N:M relationship.

Except for Appendices C and D, for the rest of this text we will use the IE Crow�s Foot model
for E-R diagrams. There are no completely standard symbols for the crow�s foot notation, and
we explain our symbols and notation when we first use it. You can obtain various modeling
products that will produce crow�s foot models, and they are easily understood and related to the
original E-R model. Be aware that those other products may use the oval, hash mark, crow�s foot,
and other symbols in slightly differently ways. Further, your instructor may have a favorite
modeling tool for you to use. If that tool does not support crow�s feet, you will have to adapt the
data models in this text to your tool. Making these adaptations is a good learning exercise. See,
for example, Project Questions 5.57 and 5.58.

A number of modeling products are available, and each will have its own
idiosyncrasies. Computer Associates produces ERwin, a commercial data

modeling product that handles both data modeling and database design tasks. You can
download the CA ERwin Data Modeler Community Edition, which is suitable for class
use, from www.ca.com/us/software-trials.aspx. You can use ERwin to produce either
crow�s foot or IDEF1X data models.

Although it is better at creating database designs (discussed in Chapter 6) than data
models, Microsoft Visio is a possibility. A trial version is available from the Microsoft Web
site at http://office.microsoft.com/en-us/visio/default.aspx. See Appendix F for a full
discussion of using Microsoft Visio for data modeling and database designs.

Finally, Oracle is continuing development of the MySQL Workbench, as described in
this book in Chapters 2 and 10B, and a free (but somewhat limited) version is available
at the MySQL Web site at http://dev.mysql.com/downloads/workbench/5.2.html.
Although, like Microsoft Visio, it is better at database designs than data models, it is a very
useful tool, and the database designs it produces can be used with any DBMS, not just
MySQL. See Appendix E for a full discussion of using MySQL Workbench for data
modeling and database designs.

Strong Entities and Weak Entities

A strong entity is an entity that represents something that can exist on its own. For example,
PERSON is a strong entity�we consider people to exist as individuals in their own right.
Similarly, AUTOMOBILE is a strong entity. In addition to strong entities, the original version of
the E-R model included the concept of a weak entity, which is defined as any entity whose
existence depends on the presence of another entity.

ID-Dependent Entities

The E-R model includes a special type of weak entity called an ID-dependent entity. An
ID-dependent entity is an entity whose identifier includes the identifier of another entity.
Consider, for example, an entity for a student apartment in a building, as shown in Figure 5-10(a).

The identifier of such an entity is a composite (BuildingName, ApartmentNumber),
where BuildingName is the identifier of the entity BUILDING. ApartmentNumber by itself is

BuildingName

Street
City
State/Province
Zip/PostalCode

BUILDING

APARTMENT

BuildingName
ApartmentNumber

NumberBedrooms
NumberBaths
MonthlyRent

PaintingName

Description
Dimensions
Year
Artist

PAINTING

PRINT

PaintingName
CopyNumber

Condition
PurchasePrice
DatePurchased

PatientName

Phone
Email

PATIENT

EXAM

PatientName
ExamDate

Weight
Height
BloodPressure

(a) APARTMENT Is
ID-Dependent on
BUILDING

(b) PRINT Is
ID-Dependent
on PAINTING

(c) EXAM Is
ID-Dependent
on PATIENT

Figure 5-10

Example ID-Dependent
Entities

Chapter 5 Data Modeling with the Entity-Relationship Model 165

insufficient to tell someone where you live. If you say you live in apartment number 5, they
must ask you, �In what building?�

Figure 5-10 shows three different ID-dependent entities. In addition to APARTMENT,
the entity PRINT in Figure 5-10(b) is ID-dependent on PAINTING, and the entity EXAM in
Figure 5-10(c) is ID-dependent on PATIENT.

In each of these cases, the ID-dependent entity cannot exist unless the parent (the entity
on which it depends) also exists. Thus, the minimum cardinality from the ID-dependent entity
to the parent is always one.

However, whether the parent is required to have an ID-dependent entity depends on the
application requirements. In Figure 5-10, both APARTMENT and PRINT are optional, but
EXAM is required. These restrictions arise from the nature of the application and not from any
logical requirement.

As shown in Figure 5-10, in our E-R models we use an entity with rounded corners to
represent the ID-dependent entity. We also use a solid line to represent the relationship
between the ID-dependent entity and its parent. This type of a relationship is called an
identifying relationship. A relationship drawn with a dashed line (refer to Figure 5-7) is used
between strong entities and is called a nonidentifying relationship because there are no
ID-dependent entities in the relationship.

ID-dependent entities pose restrictions on the processing of the database that is
constructed from them. Namely, the row that represents the parent entity must be created
before any ID-dependent child row can be created. Further, when a parent row is deleted, all
child rows must be deleted as well.

ID-dependent entities are common. Another example is the entity VERSION in the
relationship between PRODUCT and VERSION, where PRODUCT is a software product and
VERSION is a release of that software product. The identifier of PRODUCT is ProductName,
and the identifier of VERSION is (ProductName, ReleaseNumber). Yet another example is
EDITION in the relationship between TEXTBOOK and EDITION. The identifier of TEXTBOOK
is Title, and the identifier of EDITION is (Title, EditionNumber).

Non-ID-Dependent Weak Entities

All ID-dependent entities are weak entities. But, according to the original E-R model, some enti-
ties that are weak are not ID-dependent. Consider the AUTO_MODEL and VEHICLE entity
classes in the database of a car manufacturer, such as Ford or Honda, as shown in Figure 5-11.

166 Part 2 Database Design

In Figure 5-11(a), each VEHICLE is assigned a sequential number as it is manufactured.
So, for the manufacturer�s �Super SUV� AUTO_MODEL, the first VEHICLE manufactured
gets a ManufacturingSeqNumber of 1, the next gets a ManufacturingSeqNumber of 2, and
so on. This is clearly an ID-dependent relationship because ManufacturingSeqNumber is
based on the Manufacturer and Model.

Now let�s assign VEHICLE an identifier that is independent of the Manufacturer and
Model. We will use a VIN (vehicle identification number), as shown in Figure 5-11(b). Now, the
VEHICLE has a unique identifier of its own and does not need to be identified by its relation to
AUTO_MODEL.

This is an interesting situation. VEHICLE has an identity of its own and therefore is not
ID-dependent. Yet the VEHICLE is an AUTO_MODEL, and if that particular AUTO_MODEL
did not exist, the VEHICLE itself would never have existed. Therefore, VEHICLE is now a weak
but non-ID-dependent entity.

Consider your car�let�s say it is a Ford Mustang just for the sake of this discussion. Your
individual Mustang is a VEHICLE, and it exists as a physical object and is identified by the VIN
that is required for each licensed automobile. It is not ID-dependent on AUTO_MODEL, which
in this case is Ford Mustang, for its identity. However, if the Ford Mustang had never been
created as an AUTO_MODEL�a logical concept that was first designed on paper�your car
would never have been built because no Ford Mustangs would ever have been built! Therefore,
your physical individual VEHICLE would not exist without a logical AUTO_MODEL of Ford
Mustang, and in a data model (which is what we�re talking about) a VEHICLE cannot exist
without a related AUTO_MODEL. This makes VEHICLE a weak but non-ID-dependent entity.
Most data modeling tools cannot model non-ID-dependent entities. So, to indicate such
situations, we will use a nonidentifying relationship with a note added to the data model
indicating that the entity is weak, as shown in Figure 5-11(b).

The Ambiguity of the Weak Entity

Unfortunately, an ambiguity is hidden in the definition of weak entity, and this ambiguity is
interpreted differently by different database designers (as well as different textbook authors).
The ambiguity is that in a strict sense, if a weak entity is defined as any entity whose presence

AUTO_MODEL
Manufacturer
Model
Description
NumberOfPassengers
EngineType
RatedMPG

VEHICLE
Manufacturer
Model
ManufacturingSeqNumber

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

(a) ID-Dependent Entity

VEHICLE
VIN

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

AUTO_MODEL
Manufacturer
Model
Description
NumberOfPassengers
EngineType
RatedMPG

(b) Non-ID-Dependent
Weak Entity

Note: VEHICLE is a weak but not
ID-dependent entity.

Figure 5-11

Weak Entity Example

Chapter 5 Data Modeling with the Entity-Relationship Model 167

in the database depends on another entity, then any entity that participates in a relationship
having a minimum cardinality of one to a second entity is a weak entity. Thus, in an academic
database, if a STUDENT must have an ADVISER, then STUDENT is a weak entity, because a
STUDENT entity cannot be stored without an ADVISER.

This interpretation seems too broad to some people. A STUDENT is not physically
dependent on an ADVISER (unlike an APARTMENT to a BUILDING), and a STUDENT is not
logically dependent on an ADVISER (despite how it might appear to either the student or the
adviser), and, therefore, STUDENT should be considered a strong entity.

To avoid such situations, some people interpret the definition of weak entity more
narrowly. They say that to be a weak entity an entity must logically depend on another entity.
According to this definition, APARTMENT is a weak entity, but STUDENT is not. An
APARTMENT cannot exist without a BUILDING in which it is located. However, a STUDENT
can logically exist without an ADVISER, even if a business rule requires it.

We agree with the latter approach. Characteristics of ID-dependent and non-ID-dependent
weak entities, as used in this book, are summarized in Figure 5-12.

Subtype Entities

The extended E-R model introduced the concept of subtypes. A subtype entity is a special case
of another entity called its supertype. Students, for example, may be classified as undergraduate
or graduate students. In this case, STUDENT is the supertype, and UNDERGRADUATE and
GRADUATE are the subtypes.

Alternatively, a student could be classified as a freshman, sophomore, junior, or senior. In
that case, STUDENT is the supertype, and FRESHMAN, SOPHOMORE, JUNIOR, and SENIOR
are the subtypes.

As illustrated in Figure 5-13, in our E-R models we use a circle with a line under it as a
subtype symbol to indicate a supertype�subtype relationship. Think of this as a symbol for an
optional (the circle), 1:1 (the line) relationship. In addition, we use a solid line to represent an
ID-dependent subtype entity because each subtype is ID-dependent on the supertype. Also
note that none of the line end symbols shown in Figure 5-8 are used on the connecting lines.

� A weak entity is an entity whose existence depends on another entity.
� An ID-dependent entity is a weak entity whose identifier includes the identifier of
 another entity.
� Indentifying relationships are used to represent ID-dependent entities.
� Some entities are weak, but not ID-dependent. Using data modeling tools, they
 are shown with nonidentifying relationships, with separate documentation
 indicating they are weak.

Figure 5-12

Summary of ID-Dependent
and Weak Entities

isGradStudent

GRADUATE
StudentID
UndergraduateGPA
ScoreOnGMAT

STUDENT
StudentID
LastName
FirstName
isGradStudent

UNDERGRADUATE
StudentID
HighSchoolGPA
ScoreOnSAT

(a) Exclusive Subtypes with Discriminator

HIKING_CLUB
StudentID
DateDuesPaid
AmountPaid

STUDENT
StudentID
LastName
FirstName

SAILING_CLUB
StudentID
DateDuesPaid
AmountPaid

(b) Inclusive Subtypes

Figure 5-13

Example Subtype Entities

168 Part 2 Database Design

In some cases, an attribute of the supertype indicates which of the subtypes is appropriate
for a given instance. An attribute that determines which subtype is appropriate is called a
discriminator. In Figure 5-13(a), the attribute named isGradStudent (which has only the
values Yes and No) is the discriminator. In our E-R diagrams, the discriminator is shown next
to the subtype symbol, as illustrated in Figure 5-13(a). Not all supertypes have a discriminator.
Where a supertype does not have a discriminator, application code must be written to create
the appropriate subtype.

Subtypes can be exclusive or inclusive. With exclusive subtypes, a supertype instance is
related to at most one subtype. With inclusive subtypes, a supertype instance can relate to one
or more subtypes. In Figure 5-13(a), the X in the circle means that the UNDERGRADUATE and
GRADUATE subtypes are exclusive. Thus, a STUDENT can be either an UNDERGRADUATE or
a GRADUATE, but not both. Figure 5-13(b) shows that a STUDENT can join either the
HIKING_CLUB or the SAILING_CLUB, or both. These subtypes are inclusive (note there is no X
in the circle). Because a supertype may relate to more than one subtype, inclusive subtypes do
not have a discriminator.

The most important (some would say the only) reason for creating subtypes in a data model
is to avoid value-inappropriate nulls. Undergraduate students take the SAT exam and report that
score, whereas graduate students take the GMAT and report their score on that exam. Thus, the
SAT score would be NULL in all STUDENT entities for graduates, and the GMAT score would be
NULL for all undergraduates. Such null values can be avoided by creating subtypes.

The relationships that connect supertypes and subtypes are called IS-A
relationships because a subtype is the same entity as the supertype.

Because this is so, the identifier of a supertype and all its subtypes must be the same;
they all represent different aspects of the same entity. Contrast this with HAS-A
relationships, in which an entity has a relationship to another entity, but the identifiers of
the two entities are different.

The elements of the entity-relationship model and their IE Crow�s Foot representation are
summarized in Figure 5-14. The identifier and attributes are shown only in the first example.
Note that for 1:1 and 1:N nonidentifying relationships a relationship to a parent entity may be
optional. For identifying relationships, the parent is always required.

Patterns in Forms, Reports, and E-R Models

A data model is a representation of how users view their world. Unfortunately, you cannot
walk up to most computer users and ask questions like, �What is the maximum cardinality
between the EMPLOYEE and SKILL entities?� Few users would have any idea of what you
mean. Instead, you must infer the data model indirectly from user documents and from users�
conversations and behavior.

One of the best ways to infer a data model is to study the users� forms and reports. From
such documents, you can learn about entities and their relationships. In fact, the structure of
forms and reports determines the structure of the data model, and the structure of the data
model determines the structure of forms and reports. This means that you can examine a form
or report and determine the entities and relationships that underlie it.

You can also use forms and reports to validate the data model. Rather than showing the
data model to the users for feedback, an alternative is to construct a form or report that
reflects the structure of the data model and obtain user feedback on that form or report. For
example, if you want to know if an ORDER has one or many SALESPERSONs, you can show
the users a form that has a space for entering just one salesperson�s name. If the user asks,
�Where do I put the name of the second salesperson?� then you know that orders have at least
two and possibly many salespeople. Sometimes, when no appropriate form or report exists,
teams create a prototype form or report for the users to evaluate.

Chapter 5 Data Modeling with the Entity-Relationship Model 169

DEPARTMENT

DepartmentName

BudgetCode
OfficeNumber

A B

DEPARTMENT entity; DepartmentName is identifier; BudgetCode and OfficeNumber
are attributes.

1:1, nonidentifying relationship. A relates to zero or one B; B relates to exactly one
A. Identifier and attributes not shown.

1:N, nonidentifying relationship. A relates to one or many Bs; B relates to zero or
one A. Identifier and attributes not shown.

Many-to-many, nonidentifying relationship. A relates to zero or more Bs; B relates to
one or more As.

1:N identifying relationship. A relates to zero, one, or many Bs. B relates to exactly
one A. Identifier and attributes not shown. For identifying relationships, the child
must always relate to exactly one parent. The parent may relate to zero, one, many,
or a combination of these minimum cardinalities.

A is supertype, C and D are exclusive subtypes. Discriminator not shown. Identifier
and attributes not shown.

A B

A B

A

A

B

DC

A is supertype, C and D are inclusive subtypes. Identifier and attributes not shown.
A

DC

Figure 5-14

IE Crow�s Foot Symbol
Summary

All of this means that you must understand how the structure of forms and reports
determines the structure of the data model, and the reverse. Fortunately, many forms and
reports fall into common patterns. If you learn how to analyze these patterns, you will be
well on your way to understanding the logical relationship between forms and reports and
the data model. Accordingly, in the next sections we will discuss the most common patterns
in detail.

Strong Entity Patterns

Three relationships are possible between two strong entities: 1:1, 1:N, and N:M. When
modeling such relationships, you must determine both the maximum and minimum
cardinality. The maximum cardinality often can be determined from forms and reports. In
most cases, to determine the minimum cardinality you will have to ask the users.

1.1 Strong Entity Relationships
Figure 5-15 shows a data entry form and a report that indicate a one-to-one relationship between
the entities CLUB_MEMBER and LOCKER. The MEMBER_LOCKER form in Figure 5-15(a)
shows data for an athletic club member, and it lists just one locker for that member. This form
indicates that a CLUB_MEMBER has at most one locker. The report in Figure 5-15(b) shows the
lockers in the club and indicates the member who has been allocated that locker. Each locker is
assigned to one club member.

The form and report in Figure 5-15 thus suggest that a CLUB_MEMBER has one
LOCKER, and a LOCKER is assigned to one CLUB_MEMBER. Hence, the relationship

170 Part 2 Database Design

(a) Club Membership Data Entry Form

(b) Club Locker Report

Figure 5-15

Form and Report Indicating
a 1:1 Relationship

CLUB_MEMBER

MemberNumber

MemberName
Phone
Email

LOCKER

LockerNumber

LockerRoom
LockerSize

Figure 5-16

Data Model for the 1:1
Relationship in Figure 5-15

between them is 1:1. To model that relationship, we draw a nonidentifying relationship
(meaning the relationship is strong and not ID-dependent) between the two entities, as shown
in Figure 5-16. We then set the maximum cardinality to 1:1. You can tell that this is a nonidenti-
fying relationship, because the relationship line is dashed. Also, the absence of a crow�s foot
indicates that the relationship is 1:1.

Regarding minimum cardinality, every club member shown in the form has a locker, and
every locker shown in the report is assigned to a club member, so it appears that the
relationship is mandatory to mandatory. However, this form and report are just instances;
they may not show every possibility. If the club allows social, nonathletic memberships,
then not every club member will have a locker. Furthermore, it is unlikely that every locker
is occupied; there must be some lockers that are unused and nonallocated. Accordingly,
Figure 5-16 shows this relationship as optional to optional, as indicated by the small circles
on the relationship lines.

Chapter 5 Data Modeling with the Entity-Relationship Model 171

How do you recognize strong entities? You can use two major tests. First,
does the entity have an identifier of its own? If it shares a part of its identi-

fier with another entity, then it is an ID-dependent entity, and is therefore weak. Second,
does the entity seem to be logically different from and separate from the other entities?
Does it stand alone, or is it part of something else? In this case, a CLUB_MEMBER and
a LOCKER are two very different, separate things; they are not part of each other or of
something else. Hence, they are strong.

Note also that a form or report shows only one side of a relationship. Given entities A
and B, a form can show the relationship from A to B, but it cannot show the relationship
from B to A at the same time. To learn the cardinality from B to A, you must examine a
second form or report, ask the users, or take some other action.

Finally, it is seldom possible to infer minimum cardinality from a form or report.
Generally, you must ask the users.

1:N Strong Entity Relationships
Figure 5-17 shows a form that lists the departments within a company. The company has many
departments, so the maximum cardinality from COMPANY to DEPARTMENT is N. But what
about the opposite direction? To determine if a department relates to one or N companies, we
need to examine a form or report that shows the relationship from a department to a company.
However, assume that no such form or report exists. Also assume that the users never view
company data from the perspective of a department. We cannot ignore the issue, because we
need to know whether the relationship is 1:N or N:M.

In such a case, we must ask the users or at least make a determination by thinking about
the nature of the business setting. Can a department belong to more than one company? Is a
department shared among companies? Because this seems unlikely, we can reasonably assume
that DEPARTMENT relates to just one COMPANY. Thus, we conclude the relationship is 1:N.
Figure 5-18 shows the resulting data model. Note that the many side of the relationship is
indicated by the crow�s foot next to DEPARTMENT.

Considering minimum cardinality, we do not know if a COMPANY must have a
DEPARTMENT or if a DEPARTMENT must have a COMPANY. We will definitely need to
ask the users. Figure 5-18 depicts the situation in which a DEPARTMENT must have a
COMPANY, but a COMPANY need not have any DEPARTMENTs.

N:M Strong Entity Relationships
Figure 5-19(a) shows a form with data about a supplier and the parts it is prepared to supply.
Figure 5-19(b) shows a report that summarizes parts and lists the companies that can supply
those parts. In both cases, the relationship is many: A SUPPLIER supplies many PARTs, and a
PART is supplied by many SUPPLIERs. Thus, the relationship is N:M.

Figure 5-17

Form Indicating a 1:N
Relationship

172 Part 2 Database Design

COMPANY

CompanyName

City

DEPARTMENT

DepartmentName

BudgetCode
MailStop

Figure 5-18

Data Model for the 1:N
Relationship in Figure 5-17

(a) SUPPLIERS Form

(b) PART Report

Figure 5-19

Form and Report Indicating
an N:M Relationship

Figure 5-20 shows a data model that extends the data model in Figure 5-18 to include this
new relationship. A supplier is a company, so we show the supplier entity as a COMPANY.

Because not all companies are suppliers, the relationship from COMPANY to PART must
be optional. However, every part must be supplied from somewhere, so the relationship from
PART to COMPANY is mandatory.

In summary, the three types of strong entity relationships are 1:1, 1:N, and N:M. You can
infer the maximum cardinality in one direction from a form or report. You must examine a
second form or report to determine the maximum cardinality in the other direction. If no form

Chapter 5 Data Modeling with the Entity-Relationship Model 173

or report that shows the relationship is available, you must ask the users. Generally, it is not
possible to determine minimum cardinality from forms and reports.

ID-Dependent Relationships

Three principle patterns use ID-dependent entities: multivalued attribute, archetype/instance
(also called version/instance), and association. Because the association pattern is often confused
with the N:M strong entity relationships just discussed, we will look at that pattern first.

The Association Pattern
An association pattern is subtly and confusingly similar to an N:M strong relationship. To see
why, examine the report in Figure 5-21 and compare it with the report in Figure 5-19(b).

What is the difference? If you look closely, you�ll see that the only difference is that the report
in Figure 5-21 contains Price, which is the price quotation for a part from a particular supplier. The
first line of this report indicates that the part Cedar Shakes is supplied by Bristol Systems for $14.00.

Price is neither an attribute of COMPANY nor is it an attribute of PART. It is an attribute
of the combination of a COMPANY with a PART. Figure 5-22 shows the appropriate data
model for such a case.

Here, a third entity, QUOTATION, has been created to hold the Price attribute. The
identifier of QUOTATION is the combination of PartNumber and CompanyName. Note that
PartNumber is the identifier of PART, and CompanyName is the identifier of COMPANY.
Hence, QUOTATION is ID-dependent on both PART and COMPANY.

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

DepartmentName

BudgetCode
MailStop

DEPARTMENT

Figure 5-20

Data Model for the N:M
Relationship in Figure 5-19

Figure 5-21

Report Indicating an
Association Pattern

174 Part 2 Database Design

In Figure 5-22, then, the relationships between PART and QUOTATION and between
COMPANY and QUOTATION are both identifying. This fact is shown in Figure 5-22 by the
solid, nondashed line that represents these relationships.

As with all identifying relationships, the parent entities are required. Thus, the minimum
cardinality from QUOTATION to PART is one, and the minimum cardinality from QUOTATION
to COMPANY also is one. The minimum cardinality in the opposite direction is determined by
business requirements. Here, a PART must have a QUOTATION, but a COMPANY need not
have a QUOTATION.

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

QUOTATION

PartNumber
CompanyName

Price

Figure 5-22

Association Pattern Data
Model for the Report in
Figure 5-21

Consider the differences between the data models in Figure 5-20 and
Figure 5-22. The only difference between the two is that in the latter the

relationship between COMPANY and PART has an attribute, Price. Remember this
example whenever you model an N:M relationship. Is there a missing attribute that
pertains to the combination and not just to one of the entities? If so, you are dealing
with an association, ID-dependent pattern and not an N:M, strong entity pattern.

Associations can occur among more than two entity types. Figure 5-23, for example, shows a
data model for the assignment of a particular client to a particular architect for a particular

ASSIGNMENT

ClientName
ArchitectName
ProjectName

HoursWorked

ArchitectName

Office
Email

ARCHITECT

ClientName

Email
Phone

CLIENT

ProjectName

StartDate
Budget

PROJECT

Figure 5-23

Association Pattern Data
Model for the Ternary
Relationship in Figure 5-4

Chapter 5 Data Modeling with the Entity-Relationship Model 175

5 The original E-R model allowed for multivalued attributes. Over time, that feature has been ignored, and today
most people assume that the E-R model requires single-valued attributes. We will do so in this text.

project. The attribute of the assignment is HoursWorked. This data model shows how the ternary
relationship in Figure 5-4(b) can be modeled as a combination of three binary relationships.

The Multivalued Attribute Pattern
In the E-R model as used today,5 attributes must have a single value. If the COMPANY entity
has PhoneNumber and Contact attributes, then a company can have at most one value for
phone number and at most one value for contact.

In practice, however, companies can have more than one phone number and one contact.
Consider, for example, the data entry form in Figure 5-24. This particular company has three
phone numbers; other companies might have one or two or four, or whatever. We need to
create a data model that allows companies to have multiple phones, and placing the attribute
PhoneNumber in COMPANY will not do it.

Figure 5-25 shows the solution. Instead of including PhoneNumber as an attribute of
COMPANY, we create an ID-dependent entity, PHONE, that contains the attribute
PhoneNumber. The relationship from COMPANY to PHONE is 1:N, so a company can have
multiple phone numbers. Because PHONE is an ID-dependent entity, its identifier includes
both CompanyName and PhoneNumber.

We can extend this strategy for as many multivalued attributes as necessary. The
COMPANY data entry form in Figure 5-26 has multivalued Phone and multivalued Contact
attributes. In this case, we just create a separate ID-dependent entity for each multivalued
attribute, as shown in Figure 5-27.

In Figure 5-27, PhoneNumber and Contact are independent. PhoneNumber is the phone
number of the company and not necessarily the phone number of a contact. If PhoneNumber

Figure 5-24

Data Entry Form with a
Multivalued Attribute

CompanyName

City
Country
Volume

COMPANY

PHONE

CompanyName
PhoneNumber

Figure 5-25

Data Model for the Form
in Figure 5-24

176 Part 2 Database Design

is not a general company phone number, but rather the phone number of a particular person at
that company, then the data entry form would appear as in Figure 5-28. Here, for example,
Alfred has one phone number and Jackson has another.

In this case, the attributes PhoneNumber and Contact belong together. Accordingly, we
place them into a single ID-dependent entity, as shown in Figure 5-29. Notice that the identi-
fier of PHONE_CONTACT is Contact and CompanyName. This arrangement means that a
given Contact name can appear only once per company. Contacts can share phone numbers,
however, as shown for employees Lynda and Swee. If the identifier of PHONE_CONTACT was
PhoneNumber and CompanyName, then a phone number could occur only once per company,
but contacts could have multiple numbers. Work through these examples to ensure that you
understand them.

In all of these examples, the child requires a parent, which is always the case for
ID-dependent entities. The parent may or may not require a child, depending on the
application. A COMPANY may or may not require a PHONE or a CONTACT. You must ask the
users to determine whether the ID-dependent entity is required.

Multivalued attributes are common, and you need to be able to model them effectively.
Review the models in Figures 5-25, 5-27, and 5-29 and be certain that you understand their
differences and what those differences imply.

Figure 5-26

Data Entry Form with
Separate Multivalued
Attributes

CompanyName

City
Country
Volume

COMPANY

PHONE

CompanyName
PhoneNumber

CONTACT

CompanyName
Contact

Figure 5-27

Data Model for the Form
in Figure 5-26

Chapter 5 Data Modeling with the Entity-Relationship Model 177

The Archetype/Instance Pattern
The archetype/instance pattern (also called version/instance) occurs when one entity
represents a manifestation or an instance of another entity. You have already seen one
example of archetype/instance in the example of PAINTING and PRINT in Figure 5-10.
The painting is the archetype, and the prints made from the painting are the instances of
that archetype.

Other examples of archetype/instances are shown in Figure 5-30. One familiar example
concerns classes and sections of classes. The class is the archetype, and the sections of
the class are instances of that archetype. Other examples involve designs and instances
of designs. A yacht manufacturer has various yacht designs, and each yacht is an instance
of a particular design archetype. In a housing development, a contractor offers several
different house models, and a particular house is an instance of that house model
archetype.

As with all ID-dependent entities, the parent entity is required. The child entities (here
SECTION, YACHT, and HOUSE) may or may not be required, depending on application
requirements.

Logically, the child entity of every archetype/instance pattern is an ID-dependent entity.
All three of the examples in Figure 5-30 are accurate representations of the logical structure of
the underlying data. However, sometimes users will add additional identifiers to the instance
entity and in the process change the ID-dependent entity to a weak entity that is not
ID-dependent.

For example, although you can identify a SECTION by class name and section, colleges
and universities often will add a unique identifier to SECTION, such as ReferenceNumber.

Figure 5-28

Data Entry Form with
Composite Multivalued
Attributes

CompanyName

City
Country
Volume

COMPANY

PHONE_CONTACT

CompanyName
Contact

PhoneNumber

Figure 5-29

Data Model for the Form
in Figure 5-28

178 Part 2 Database Design

In that case, SECTION is no longer an ID-dependent entity, but it is still existence dependent
on CLASS. Hence, as shown in Figure 5-31, SECTION is weak, but not ID-dependent.

A similar change may occur to the YACHT entity. Although the manufacturer of a yacht
may refer to it by specifying the hull number of a given design, the local tax authority may refer
to it by State and LicenseNumber. If we change the identifier of YACHT from (HullNumber,
DesignName) to (LicenseNumber, State), then YACHT is no longer ID-dependent; it becomes
a weak, non-ID-dependent entity.

Similarly, although the home builder may think of a home as the third house constructed
according to the Cape Codd design, everyone else will refer to it by its address. When we
change the identifier of HOUSE from (HouseNumber, ModelName) to (Street, City, State, Zip),
then HOUSE becomes a weak, non-ID-dependent entity. All of these changes are shown in
Figure 5-31.

ClassName

NumberHours
Description

CLASS

SECTION

ClassName
SectionNumber

ClassDays
Time
Professor

DesignName

Description
Length
Beam
NumberStateRooms
NumberHeads

YACHT_DESIGN

YACHT

DesignName
HullNumber

LicenseNumber
State
DateManufactured
DateSold
SalesPrice

ModelName

Description
NumberBedrooms
SquareFootage
GarageSize

HOUSE_MODEL

HOUSE

ModelName
HouseNumber

Street
City
State
Zip

Figure 5-30

Three Archetype/Instance
Pattern Examples

ClassName

NumberHours
Description

CLASS

DesignName

Description
Length
Beam
NumberStateRooms
NumberHeads

YACHT_DESIGN

ModelName

Description
NumberBedrooms
SquareFootage
GarageSize

HOUSE_MODEL

ReferenceNumber

ClassDays
Time
Professor
SectionNumber

SECTION

LicenseNumber
State

HullNumber
DateManufactured
DateSold
SalesPrice

YACHT

Street
City
State
Zip

SECTION, YACHT,
and HOUSE are
weak, but not
ID-dependent,
entities.

HouseNumber

HOUSE

Figure 5-31

Three Weak But Not
ID-Dependent Relationships

Chapter 5 Data Modeling with the Entity-Relationship Model 179

Data modelers continue to debate the importance of weak, non-ID-dependent
entities. Everyone agrees that they exist, but not everyone agrees that they

are important.
First, understand that existence dependence influences the way we write database

applications. For the CLASS/SECTION example in Figure 5-31, we must insert a new
CLASS before we can add a SECTION for that class. Additionally, when we delete a
CLASS, we must delete all of the SECTIONs for that CLASS as well. This is one reason
that some data modelers believe that weak, non-ID-dependent entities are important.

Skeptics say that although weak, non-ID-dependent entities may exist, they are not
necessary. They say that we can obtain the same result by calling SECTION strong and
making CLASS required. Because CLASS is required, the application will need to insert
a CLASS before a SECTION is created and delete dependent SECTIONs when deleting
a CLASS. So, according to that viewpoint, there is no practical difference between a
weak, non-ID-dependent entity and a strong entity with a required relationship.

Others disagree. Their argument goes something like this: The requirement that a
SECTION must have a CLASS comes from a logical necessity. It has to be that way�it
comes from the nature of reality. The requirement that a strong entity must have a
relationship to another strong entity arises from a business rule. Initially, we say that an
ORDER must have a CUSTOMER (both strong entities), and then the application
requirements change and we say that we can have cash sales, meaning that an ORDER
no longer has to have a CUSTOMER. Business rules frequently change, but logical
necessity never changes. We need to model weak, non-ID-dependent entities so that
we know the strength of the required parent rule.

And so it goes. You, with the assistance of your instructor, can make up your own
mind. Is there a difference between a weak, non-ID-dependent entity and a strong entity
with a required relationship? In Figure 5-31, should we call the entities SECTION, YACHT,
and HOUSE strong, as long as their relationships are required? We think not�we think
there is a difference. Others think differently, however.

Mixed Identifying and Nonidentifying Patterns

Some patterns involve both identifying and nonidentifying relationships. The classic example is the
line-item pattern, but there are other instances of mixed patterns as well. We begin with line items.

The Line-Item Pattern
Figure 5-32 shows a typical sales order, or invoice. Such forms usually have data about the
order itself, such as the order number and order date, data about the customer, data about the
salesperson, and then data about the items on the order. A data model for a typical
SALES_ORDER is shown in Figure 5-33.

In Figure 5-33, CUSTOMER, SALESPERSON, and SALES_ORDER are all strong entities, and
they have the nonidentifying relationships you would expect. The relationship from CUSTOMER
to SALES_ORDER is 1:N, and the relationship from SALESPERSON to SALES_ORDER also is
1:N. According to this model, a SALES_ORDER must have a CUSTOMER and may or may not
have a SALESPERSON. All of this is readily understood.

The interesting relationships concern the line items on the order. Examine the data grid
in the form in Figure 5-32. Some of the data values belong to the order itself, but other data
values belong to items in general. In particular, Quantity and ExtendedPrice belong to the
SALES_ORDER, but ItemNumber, Description, and UnitPrice belong to ITEM. The lines on
an order do not have their own identifier. No one ever says, �Give me the data for line 12.�
Instead, they say, �Give me the data for line 12 of order 12345.� Hence, the identifier of a line
is a composite of the identifier of a particular line and the identifier of a particular order.
Thus, entries for line items are always ID-dependent on the order in which they appear. In
Figure 5-33, ORDER_LINE_ITEM is ID-dependent on SALES_ORDER. The identifier of the
ORDER_LINE_ITEM entity is (SalesOrderNumber, LineNumber).

Now, and this is the part that is sometimes confusing for some students, ORDER_
LINE_ITEM is not existence-dependent on ITEM. It can exist even if no item has yet been

180 Part 2 Database Design

Figure 5-32

Data Entry Form for a Sales
Order

CustomerID

LastName
FirstName
Address
City
State
Zip
Phone

CUSTOMER

SalespersonID

SalespersonLastName
SalespersonFirstName
SalespersonCode

SALESPERSON

SalesOrderNumber

Date
Subtotal
Tax
Total

SALES_ORDER

ORDER_LINE_ITEM

SalesOrderNumber
LineNumber

Quantity
UnitPrice
ExtendedPrice

ItemNumber

UnitPrice
Description

ITEM

Figure 5-33

Data Model for the Sales
Order in Figure 5-32

assigned to it. Further, if an ITEM is deleted, we do not want the line item to be deleted with it.
The deletion of an ITEM may make the value of ItemNumber and other data invalid, but it
should not cause the line item itself to disappear.

Now consider what happens to a line item when an order is deleted. Unlike with the dele-
tion of an item, which only causes data items to become invalid, the deletion of the order
removes the existence of the line item. Logically, a line item cannot exist if its order is deleted.
Hence, line items are existence-dependent on orders.

Work through each of the relationships in Figure 5-33 and ensure that you understand
their type and their maximum and minimum cardinalities. Also understand the implications

Chapter 5 Data Modeling with the Entity-Relationship Model 181

of this data model. For example, do you see why this sales order data model is unlikely to be
used by a company in which salespeople are on commission?

Other Mixed Patterns
Mixed identifying and nonidentifying relationships occur frequently. Learn to look for a mixed
pattern when a strong entity has a multivalued composite group and when one of the elements
in the composite group is an identifier of a second strong entity.

Consider, for example, baking recipes. Each recipe calls for a certain amount of a specific
ingredient, such as flour, sugar, or butter. The ingredient list is a multivalued composite group,
but one of the elements of that group, the name of the ingredient, is the identifier of a strong
entity. As shown in Figure 5-34, the recipe and the ingredients are strong entities, but the
amount and instructions for using each ingredient are ID-dependent on RECIPE.

Or, consider employees� skill proficiencies. The name of the skill and the proficiency
level the employee has are a multivalued group, but the skill itself is a strong entity, as shown
in Figure 5-35. Dozens of other examples are possible.

Before continuing, compare the models in Figures 5-33, 5-34, and 5-35 with the associa-
tion pattern in Figure 5-22. Make sure that you understand the differences and why the model
in Figure 5-22 has two identifying relationships and the models in Figures 5-33, 5-34, and 5-35
have just one.

RecipeName

Description
NumberServed

RECIPE

IngredientName

Description
AmountOnHand
StorageLocation

INGREDIENT

INGREDIENT_USE

RecipeName
IngredientNumber

Amount
Instructions

Figure 5-34

Mixed Relationship Pattern
for Restaurant Recipe

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

Name

Description
SalaryRange

SKILL

EMPLOYEE_SKILL

EmployeeNumber
SkillNumber

ProficiencyLevel
CourseTaken

Figure 5-35

Mixed Relationship Pattern
for Employee Skills

182 Part 2 Database Design

The For-Use-By Pattern

As stated earlier in this chapter, the major reason for using subtypes in a database design is
to avoid value-inappropriate nulls. Some forms suggest the possibility of such nulls when
they show blocks of data fields that are colored and labeled �For Use by someone/something
Only.� For example, Figure 5-36 shows two tan sections, one for commercial fishers and
another for sport fishers. The presence of these grayed-out sections indicates the need for
subtype entities.

The data model for this form is shown in Figure 5-37. Observe that each tan section has a
subtype. Notice that the subtypes differ not only in their attributes, but that one has a
relationship that the other does not have. Sometimes, the only differences between subtypes
are differences in the relationships they have.

The nonidentifying relationship from VESSEL to COMMERCIAL_LICENSE is shown as
1:N, mandatory to mandatory. In fact, this form does not have sufficient data for us to con-
clude that the maximum cardinality from VESSEL to COMMERCIAL_LICENSE is N. This fact
was determined by interviewing users and learning that one boat is sometimes used by more
than one commercial fisher. The minimum cardinalities indicate a commercial fisher must
have a vessel, and that only vessels that are used for licenses are to be stored in this database.

Resident Fishing License
2011 Season

State of Washington

License No:
03-1123432

Name:

Street:

City: State: Zip:

For Use by Commercial Fishers Only For Use by Sport Fishers Only

Vessel Number: Number Years at

This Address:

Vessel Name: Prior Year License

Number:

Vessel Type:

Tax ID:

Figure 5-36

Data Entry Form Suggesting
the Need for Subtypes

SPORT_LICENSE

NumberYearsAtAddress
PriorYearLicenseNumber

COMMERCIAL_LICENSE

TaxID

VesselNumber

VesselName
VesselType

VESSEL

LicenseNo

Name
Address
City
State
Zip

FISHING_LICENSEFigure 5-37

Data Model for Form
in Figure 5-36

Chapter 5 Data Modeling with the Entity-Relationship Model 183

The point of this example is to illustrate how forms often suggest the need for subtypes.
Whenever you see a grayed out or otherwise distinguished section of a form with the words
�For use by . . . ,� think �subtype.�

Recursive Patterns

A recursive relationship occurs when an entity type has a relationship to itself. The classic
examples of recursive relationships occur in manufacturing applications, but there are many
other examples as well. As with strong entities, three types of recursive relationships are
possible: 1:1, 1:N, and N:M. Let�s consider each.

1:1 Recursive Relationships
Suppose you are asked to construct a database for a railroad, and you need to make a
model of a freight train. You know that one of the entities is BOXCAR, but how are
BOXCARs related? To answer that question, envision a train. Except for the first boxcar,
each has one boxcar in front, and, except for the last boxcar, each boxcar has one boxcar in
back. Thus, the relationship is 1:1 between boxcars, with an optional relationship for the
first and last cars.

Figure 5-38 shows a data model in which each BOXCAR has a 1:1 relationship to the
BOXCAR ahead. The BOXCAR entity at the head of the train has a 1:1 relationship to ENGINE.
(This model assumes a train has just one engine. To model trains with multiple engines, create
a second recursive relationship among engines. Construct that relationship just like the
Boxcar Ahead relationship.)

Figure 5-39 shows example entity instances that illustrate this data model. Not surprisingly,
this set of entity instances looks just like a train.

An alternative model is to use the relationship to represent the BOXCAR behind.
Either model works. Other examples of 1:1 recursive relationships are the succession of U.S.
presidents, the succession of deans in a college of business, and the order of passengers on
a waiting list.

EngineNumber

Type
HorsePower

ENGINE

BoxCarNumber

First Boxcar

Boxcar Ahead

Capacity
Type

BOXCAR

Figure 5-38

Data Model for a 1:1
Recursive Relationship

Engine Boxcar 10 Boxcar 20 Boxcar 15

First Boxcar
Relationship

Boxcar
Relationships

Figure 5-39

Sample Entities for the Data
Model in Figure 5-38

184 Part 2 Database Design

1:N Recursive Relationships
The classic example of a 1:N recursive relationship occurs in organizational charts, in which an
employee has a manager who may, in turn, manage several other employees. Figure 5-40 shows
an example managerial chart. Note that the relationship between employees is 1:N.

Figure 5-41 shows a data model for the managerial relationship. The crow�s foot indicates
that a manager may manage more than one employee. The relationship is optional to optional
because one manager (the president) has no manager and because some employees manage
no one.

Another example of a 1:N recursive relationship concerns maps. For example, a world map
has a relationship to many continent maps, each continent map has a relationship to many
nation maps, and so forth. A third example concerns biological parents where the relationship
from PERSON to PERSON is shown by tracing either mother or father (but not both).

N:M Recursive Relationships
N:M recursive relationships occur frequently in manufacturing applications, where they are
used to represent bills of materials. Figure 5-42 shows an example.

Sarah

RobinJohn Bob

AndieArthurTae Jonathan RobynKyle Alex
Figure 5-40

Managerial Relationships

EmployeeName

Other Data . . .

EMPLOYEE

Manages

Figure 5-41

Data Model for the
Management Structure in
Figure 5-40 as a 1:N
Recursive Relationship

Child�s Red
Wagon

BodyHandle
Assembly

Wheel
Assembly

NutBoltHandle Washer AxleWheel

Figure 5-42

Bill of Materials

Chapter 5 Data Modeling with the Entity-Relationship Model 185

The key idea of a bill of materials is that one part is composed of other parts. A child�s red
wagon, for example, consists of a handle assembly, a body, and a wheel assembly, each of which
is a part. The handle assembly, in turn, consists of a handle, a bolt, a washer, and a nut. The
wheel assembly consists of wheels, axles, washers, and nuts. The relationship among the parts
is N:M, because a part can be made up of many parts and because a part (such as washers and
nuts) can be used in many parts.

The data model for a bill of materials is shown in Figure 5-43. Notice that each part has an
N:M relationship to other parts. Because a part need not have any component parts, and
because a part need not have any parts that contain it, the minimum cardinality is optional to
optional.

What would happen to the data model if the diagram showed how many
of each part are used? Suppose, for example, that the wheel assembly

requires four washers and the handle assembly requires just one. The data model in
Figure 5-43 will not be correct for this circumstance. In fact, adding Quantity to this N:M
relationship is analogous to adding Price to the N:M relationship in Figure 5-22. See
Project Question 5.67.

PartName

Other Data . . .

PART

Figure 5-43

Data Model for the Bill of
Materials in Figure 5-42 as
an N:M Recursive
Relationship

N:M recursive relationships can be used to model directed networks, such as the flow of
documents through organizational departments or the flow of gas through a pipeline. They also
can be used to model the succession of parents, in which mothers, fathers, and stepparents are
included.

If recursive structures seem hard to comprehend, don�t fret. They may seem strange at
first, but they are not difficult. Work through some data examples to gain confidence. Make up
a train and see how the model in Figure 5-38 applies or change the example in Figure 5-40 from
employees to departments and see how the model in Figure 5-41 needs to be adjusted. Once
you have learned to identify recursive patterns, you�ll find it easy to create models for them.

The Data Modeling Process

During the data modeling process, the development team analyzes user requirements and
constructs a data model from forms, reports, data sources, and user interviews. The process is
always iterative; a model is constructed from one form or report and then supplemented and
adjusted as more forms and reports are analyzed. Periodically, users are asked for additional
information, such as that needed to assess minimum cardinality. Users also review and
validate the data model. During that review, prototypes evidencing data model constructs may
need to be constructed, as explained earlier.

To give you an idea of the iterative nature of data modeling, we will consider the development
of a simple data model for a university. As you read this example, strive to appreciate how the
model evolves as more and more requirements are analyzed.

For a more detailed version of this data modeling exercise, combined with an overview of
the systems analysis and design process, see Appendix B.

186 Part 2 Database Design

One of the authors worked on a large data model for the U.S. Army�s
logistical system. The model contained over 500 different entity types, and

it took a team of seven people more than a year to develop, document, and validate it.
On some occasions, the analysis of a new requirement indicated that the model had
been conceived incorrectly, and days of work had to be redone. The most difficult aspect
of the project was managing complexity. Knowing which entities related to which;
whether an entity had already been defined; and whether a new entity was strong, weak,
a supertype, or a subtype required a global understanding of the model. Memory was
of poor help because an entity created in July could be a subtype of an entity created
hundreds of entities earlier in February. To manage the model, the team used many
different administrative tools. Keep this example in mind as you read through the
development of the Highline University data model.

Suppose the administration at a hypothetical university named Highline University wants
to create a database to track colleges, departments, faculty, and students. To do this, a data
modeling team has collected a series of reports as part of its requirements determination. In
the next sections, we will analyze these reports to produce a data model.

The College Report

Figure 5-44 shows an example report from Highline University about one college within the
university, specifically, the College of Business. This example is one instance of this report;
Highline University has similar reports about other colleges, such as the College of Engineering
and the College of Social Sciences. The data modeling team needs to gather enough examples
to form a representative sample of all the college reports. Here, assume that the report in
Figure 5-44 is representative.

Examining the report, we find data specific to the college�such as the name, dean,
telephone number, and campus address�and also facts about each department within the
college. These data suggest that the data model should have COLLEGE and DEPARTMENT
entities with a relationship between them, as shown in Figure 5-45.

The relationship in Figure 5-45 is nonidentifying. This relationship is used because DEPART-
MENT is not ID-dependent, and, logically, a DEPARTMENT is independent of a COLLEGE. We
cannot tell from the report in Figure 5-44 whether a department can belong to many colleges. To
answer this question, we need to ask the users or look at other forms and reports.

Assume that we know from the users that a department belongs to just one college, and
the relationship is thus 1:N from COLLEGE to DEPARTMENT. The report in Figure 5-44 does
not show us the minimum cardinalities. Again, we must ask the users. Assume we learn from
the users that a college must have at least one department, and a department must be
assigned to exactly one college.

College of Business
Mary B. Jefferson, Dean

Phone: 232-1187
Campus Address:

Business Building, Room 100

Chairperson

Jackson, Seymour P.

HeuTeng, Susan

Brammer, Nathaniel D.

Tuttle, Christine A.

Barnes, Jack T.

Phone

232-1841

232-1414

236-0011

236-9988

236-1184

Total Majors

318

211

247

184

212

Department

Accounting

Finance

Info Systems

Management

Production

Figure 5-44

Highline University Sample
College Report

Chapter 5 Data Modeling with the Entity-Relationship Model 187

CollegeName

DeanName
Phone
Building
Room

COLLEGE DEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors

Figure 5-45

Data Model for the College
Report in Figure 5-44

The Department Report

The Department Report shown in Figure 5-46 contains departmental data along with a list
of the professors who are assigned to that department. This report contains data concerning
the department�s campus address. Because these data do not appear in the DEPARTMENT
entity in Figure 5-45, we need to add them, as shown in Figure 5-47(a). This is typical of the
data modeling process. That is, entities and relationships are adjusted as additional forms,
reports, and other requirements are analyzed.

Figure 5-47(a) also adds the relationship between DEPARTMENT and PROFESSOR. We ini-
tially model this as an N:M relationship, because a professor might have a joint appointment.
The data modeling team must further investigate the requirements to determine whether joint
appointments are allowed. If not, the relationship can be redefined as a nonidentifying 1:N, as
shown in Figure 5-47(b).

Another possibility regarding the N:M relationship is that some attribute about
the combination of a professor and a department is missing. If so, then an association
pattern is more appropriate. At Highline, suppose the team finds a report that describes
the title and employment terms for each professor in each department. Figure 5-47(c)
shows an entity for such a report, named APPOINTMENT. As you would expect from
the association pattern, APPOINTMENT is ID-dependent on both DEPARTMENT and
PROFESSOR.

A chairperson is a professor, so another improvement on the model is to remove the
Chairperson data from DEPARTMENT and replace it with a chairperson relationship. This has
been done in Figure 5-47(d). In the Chairs/Chaired By relationship, the PROFESSOR is the
parent entity. A professor can be a chair of zero or one departments, and a department must
have exactly one professor as chair.

With the Chairs/Chaired By relationship, the attribute Chairperson is no longer needed in
DEPARTMENT, so it is removed. Normally, a chairperson has his or her office in the
department office; if this is the case, Phone, Building, and Room in DEPARTMENT duplicate
Phone, Building, and OfficeNumber in PROFESSOR. Consequently, it might be possible to
remove Phone, Building, and Room from DEPARTMENT. However, a professor may have a
different phone from the official department phone, and the professor may also have an office
outside of the department�s office. Because of this possibility, we will leave Phone, Building,
and Room in DEPARTMENT.

Information Systems Department
College of Business

Chairperson:
Phone:
Campus Address:

Brammer, Nathaniel D
236-0011
Social Science Building, Room 213

Office

Social Science, 219

Social Science, 308

Social Science, 207

Phone

232-7713

232-5791

232-9112

Professor

Jones, Paul D.

Parks, Mary B

Wu, Elizabeth

Figure 5-46

Highline University Sample
Department Report

188

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors
Building
Room

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors
Building
Room

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

Chairs/Chaired By

APPOINTMENT

Title
Terms

(a) Data Model Using an N:M Relationship

(c) Data Model Using an Association Pattern

(b) Data Model Using a 1:N Relationship

(d) Data Model Using an Association Pattern
and 1:1 Relationship

Figure 5-47

Alternate Data Models for the DEPARTMENT-to-PROFESSOR Relationship

Chapter 5 Data Modeling with the Entity-Relationship Model 189

The Department/Major Report

Figure 5-48 shows a report of a department and the students who major in that department.
This report indicates the need for a new entity called STUDENT. Because students are not ID-
dependent on departments, the relationship between DEPARTMENT and STUDENT is non-
identifying, as shown in Figure 5-49. We cannot determine the minimum cardinality from
Figure 5-48, but assume that interviews with users indicate that a STUDENT must have
MAJOR, but no MAJOR need have any students. Also, using the contents of this report as a
guide, attributes StudentNumber, StudentName, and Phone are placed in STUDENT.

There are two subtleties in this interpretation of the report in Figure 5-48. First, observe
that Major�s Name was changed to StudentName when the attribute was placed in STUDENT.
This was done because StudentName is more generic. Major�s Name has no meaning outside
the context of the Major relationship. Additionally, the report heading in Figure 5-48 has an
ambiguity. Is the phone number for the department a value of DEPARTMENT.Phone or a value
of PROFESSOR.Phone? The team needs to investigate this further with the users. Most likely, it
is a value of DEPARTMENT.Phone.

The Student Acceptance Letter

Figure 5-50 shows the acceptance letter that Highline sends to its incoming students. The data
items in this letter that need to be represented in the data model are shown in boldface. In
addition to data concerning the student, this letter also contains data regarding the student�s
major department as well as data about the student�s adviser.

We can use this letter to add an Advises/Advised By relationship to the data model.
However, which entity should be the parent of this relationship? Because an adviser is a
professor, it is tempting to make PROFESSOR the parent. However, a professor acts as an

Student Major List
Information Systems Department

Chairperson: Brammer, Nathaniel D
Student Number

12345

48127

37512

Phone

237-8713

237-8713

237-8713

Phone: 236-0011
Major’s Name

Jackson, Robin R.

Lincoln, Fred J.

Madison, Janice A.

Figure 5-48

Highline University Sample
Department Student Report

CollegeName

DeanName
Phone
Building
Room

COLLEGE

StudentNumber

StudentName
Phone

STUDENT

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Major

Chairs / Chairs By

Figure 5-49

Data Model with STUDENT
Entity

190 Part 2 Database Design

adviser within the context of a particular department. Therefore, Figure 5-51 shows APPOINT-
MENT as the parent of STUDENT. To produce the report in Figure 5-50, the professor�s data
can be retrieved by accessing the related APPOINTMENT entity and then accessing that
entity�s PROFESSOR parent. This decision is not cut-and-dried, however. One can make a
strong argument that the parent of the relationship should be PROFESSOR.

According to this data model, a student has at most one adviser. Also, a student must have
an adviser, but no professor (via APPOINTMENT) need advise any students. These constraints
cannot be determined from any of the reports shown and will need to be verified with the users.

Mr. Fred Parks
123 Elm Street
Los Angeles, CA 98002

Dear Mr. Parks:

You have been admitted as a major in the Accounting Department at Highline
University, starting in the Fall Semester, 2011. The office of the Accounting
Department is located in the Business Building, Room 210.

Your adviser is professor Elizabeth Johnson, whose telephone number is 232-
8740 and whose office is located in the Business Building, Room 227. Please
schedule an appointment with your adviser as soon as you arrive on campus.

Congratulations and welcome to Highline University!

Sincerely,

Jan P. Smathers
President

JPS/rkp

Figure 5-50

Highline University Sample
Student Acceptance Letter

CollegeName

DeanName
Phone
Building
Room

COLLEGE

StudentNumber

Title
StudentName
HomeStreet
HomeCity
HomeState
HomeZip
Phone

STUDENT

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Major

Chairs / Chaired By

Advises / Advised By

Figure 5-51

Data Model with Advises
Relationship

Chapter 5 Data Modeling with the Entity-Relationship Model 191

The acceptance letter uses the title Mr. in the salutation. Therefore, a new attribute called Title
is added to STUDENT. Observe that this Title is different from the one in APPOINTMENT. This
difference will need to be documented in the data model to avoid confusion. The acceptance
letter also shows the need to add new home address attributes to STUDENT.

The acceptance letter reveals a problem. The name of the student is Fred Parks, but we
have allocated only one attribute, StudentName, in STUDENT. It is difficult to reliably
disentangle first and last names from a single attribute, so a better model is to have two
attributes: StudentFirstName and StudentLastName. Similarly, note that the adviser in this let-
ter is Elizabeth Johnson. So far, all professor names have been in the format Johnson, Elizabeth.
To accommodate both forms of name, ProfessorName in PROFESSOR must be changed to the
two attributes ProfessorFirstName and ProfessorLastName. A similar change is necessary for
DeanName. These changes are shown in Figure 5-52, which is the final form of this data model.

This section should give you a feel for the nature of a data modeling project. Forms and
reports are examined in sequence, and the data model is adjusted as necessary to accommo-
date the knowledge gained from each new form or report. It is very typical to revise the data
model many, many times throughout the data modeling process. See Project Question 5.67 for
yet another possible revision.

CollegeName

DeanFirstName
DeanLastName
Phone
Building
Room

COLLEGE

StudentNumber

Title
StudentFirstName
StudentLastName
HomeStreet
HomeCity
HomeState
HomeZip
Phone

STUDENT

ProfessorFirstName
ProfessorLastName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Major

Chairs / Chairs By

Advises / Advised By

Figure 5-52

Final Data Model

When databases are developed as part of a new information
systems project, the database design is accomplished in two
phases. First, a data model is constructed from forms,
reports, data sources, and other requirements. The data
model is then transformed into a database design. A data
model is a blueprint for a database design. Like blueprints for
buildings, data models can be altered as necessary, with little
effort. Once the database is constructed, however, such
alterations are time consuming and very expensive.

The most prominent data model in use today is the entity-
relationship, or E-R, data model. It was invented by Peter Chen
and extended by others to include subtypes. An entity is some-
thing that users want to track. An entity class is a collection of
entities of the same type and is described by the structure of
the entities in the class. An entity instance is one entity of a
given class. Entities have attributes that describe their charac-
teristics. Identifiers are attributes that name entity instances.
Composite identifiers consist of two or more attributes.

192 Part 2 Database Design

The E-R model includes relationships, which are
associations among entities. Relationship classes are associ-
ations among entity classes, and relationship instances are
associations among entity instances. Today, relationships are
not allowed to have attributes. Relationships can be given
names so that they can be identified.

The degree of a relationship is the number of entity types
that participate in the relationship. Binary relationships have
only two entity types. In practice, relationships of degrees
greater than two are decomposed into multiple binary
relationships.

The difference between an entity and a table is that you
can express an entity relationship without specifying foreign
keys. Working with entities reduces complexity and makes it
easier to revise the data model as work progresses.

Relationships are classified according to their cardinality.
Maximum cardinality is the maximum number of instances
that can participate in a relationship instance. Minimum
cardinality is the least number of entities that must partici-
pate in a relationship.

Relationships commonly have one of three maximum
cardinalities: 1:1, 1:N, or N:M. In rare instances, a maximum
cardinality might be a specific number, such as 1:15.
Relationships commonly have one of four basic minimum
cardinalities: optional to optional, mandatory to optional,
optional to mandatory, or mandatory to mandatory. In rare
cases, the minimum cardinality is a specific number.

Unfortunately, many variations of the E-R model are in
use. The original version represented relationships with
diamonds. The Information Engineering version uses a line
with a crow�s foot, the IDEF1X version uses another set of
symbols, and UML uses yet another set. To add further
complication, many data modeling products have added their
own symbols. In this text, we will use the IE Crow�s Foot model
with symbols, as summarized in Figure 5-14. Other models
and techniques are summarized in Appendices B, C, D, and H.

An ID-dependent entity is an entity whose identifier
includes the identifier of another entity. Such entities use an

identifying relationship. In such relationships, the parent is
always required, but the child (the ID-dependent entity) may
or may not be required, depending on application require-
ments. Identifying relationships are shown with solid lines in
E-R diagrams.

A weak entity is an entity whose existence depends on
the presence of another entity. All ID-dependent entities are
weak. Additionally, some entities are weak, but not ID-
dependent. Some people believe such entities are not impor-
tant; others believe they are.

A subtype entity is a special case of another entity called
its supertype. Subtypes may be exclusive or inclusive.
Exclusive subtypes sometimes have discriminators, which
are attributes that specify a supertype�s subtype. The most
important (and perhaps only) reason for creating subtypes in
a data model is to avoid value-inappropriate nulls.

Relationships among nonsubtype entities are called
HAS-A relationships. Relationships among supertype/subtype
entities are called IS-A relationships.

The elements of a data model are constructed by analy-
zing forms, reports, and data sources. Many forms and reports
fall into common patterns. In this text, we discussed the 1:1,
1:N, and N:M strong entity patterns. We also discussed three
patterns that use ID-dependent relationships: association,
multivalue attribute, and version/instance. Some forms involve
mixed identifying and nonidentifying patterns. Line items are
the classic example of mixed forms, but there are other
examples as well.

The for-use-by pattern indicates the need for subtypes.
In some cases, subtypes differ because they have different
attributes, but they also can differ because they have different
relationships. A recursive relationship occurs when an entity
has a relationship to itself. The three types of recursive
relationship are 1:1, 1:N, and N:M.

The data modeling process is iterative. Forms and
reports are analyzed, and the data model is created, modified,
and adjusted as necessary. Sometimes, the analysis of a form
or report will require that earlier work be redone. C�est la vie!

association pattern
attribute
binary relationship
cardinality
child
composite identifier
crow�s foot symbol
data model
degree
discriminator
entity
entity class
entity instance

entity-relationship (E-R) diagrams
entity-relationship (E-R) model
exclusive subtype
extended E-R model
HAS-A relationship
ID-dependent entity
identifier
identifying relationship
IE Crow�s Foot model
inclusive subtype
Information Engineering (IE) model
Integrated Definition 1, Extended (IDEF1X)
IS-A relationship

Chapter 5 Data Modeling with the Entity-Relationship Model 193

mandatory
mandatory-to-mandatory (M-M) relationship
mandatory-to-optional (M-O) relationship
many-to-many (N:M) relationship
maximum cardinality
minimum cardinality
nonidentifying relationship
one-to-many (1:N) relationship
one-to-one (1:1) relationship
optional
optional-to-mandatory (O-M) relationship

optional-to-optional (O-O) relationship
parent
relationship
relationship class
relationship instance
strong entity
subtype
supertype
ternary relationship
Unified Modeling Language (UML)
weak entity

5.1 Describe the two phases in designing databases that arise from the development of
new information systems.

5.2 In general terms, explain how a data model could be used to design a database for a
small video rental store.

5.3 Explain how a data model is like a building blueprint. What is the advantage of making
changes during the data modeling stage?

5.4 Who is the author of the entity-relationship data model?

5.5 Define entity. Give an example of an entity (other than one presented in this chapter).

5.6 Explain the difference between an entity class and an entity instance.

5.7 Define attribute. Give an example attribute for the entity in your answer to Review
Question 5.5.

5.8 Define identifier. Give an example identifier for the entity in your answer to Review
Question 5.5.

5.9 Give an example of a composite identifier.

5.10 Define relationship. Give an example of a relationship (other than one presented in this
chapter). Name your relationship.

5.11 Explain the difference between a relationship class and a relationship instance.

5.12 What is the degree of relationship? Give an example of a relationship of degree three
(other than one presented in this chapter).

5.13 What is a binary relationship?

5.14 Explain the difference between an entity and a table. Why is this difference important?

5.15 What does cardinality mean?

5.16 Define the terms maximum cardinality and minimum cardinality.

5.17 Give examples of 1:1, 1:N, and N:M relationships (other than those presented in this
chapter). Use the traditional diamond notation to diagram your examples.

5.18 Give an example for which the maximum cardinality must be an exact number.

5.19 Give examples of M-M, M-O, O-M, and O-O relationships (other than those presented
in this chapter). Use the circle and hash mark notation on the diamond portrayal of
relationships.

5.20 Explain, in general terms, how the traditional E-R model, the IE Crow�s Foot version, the
IDEF1X version, and the UML version differ. Which version is used primarily in this text?

194 Part 2 Database Design

5.21 Explain how the notations shown in Figure 5-7 differ.

5.22 Explain how the notations shown in Figure 5-9 differ.

5.23 What is an ID-dependent entity? Give an example of an ID-dependent entity (other
than one presented in this chapter).

5.24 Explain how to determine the minimum cardinality of both sides of an ID-dependent
relationship.

5.25 What rules exist when creating an instance of an ID-dependent entity? What rules
exist when deleting the parent of an ID-dependent entity?

5.26 What is an identifying relationship? How is it used?

5.27 Explain why the relationship between PRODUCT and VERSION discussed on page 165
is an identifying relationship.

5.28 What is a weak entity? How do weak entities relate to ID-dependent entities?

5.29 What distinguishes a weak entity from a strong entity that has a required relationship
to another entity?

5.30 Define subtype and supertype. Give an example of a subtype�supertype relationship
(other than one presented in this chapter).

5.31 Explain the difference between exclusive subtypes and inclusive subtypes. Give an
example of each.

5.32 What is a discriminator?

5.33 Explain the difference between IS-A and HAS-A relationships.

5.34 What is the most important reason for using subtypes in a data model?

5.35 Describe the relationship between the structure of forms and reports and the data model.

5.36 Explain two ways forms and reports are used for data modeling.

5.37 Explain why the form and report in Figure 5-15 indicate that the underlying relationship
is 1:1.

5.38 Why is it not possible to infer minimum cardinality from the form and report in
Figure 5-15?

5.39 Describe two tests for determining if an entity is a strong entity.

5.40 Why does the form in Figure 5-17 not indicate that the underlying relationship is 1:N?
What additional information is required to make that assertion?

5.41 Explain why two forms or reports are usually needed to infer maximum cardinality.

5.42 How can you assess minimum cardinality for the entities in the form in Figure 5-17?

5.43 Explain why the form and report in Figure 5-19 indicate that the underlying relationship
is N:M.

5.44 Name three patterns that use ID-dependent relationships.

5.45 Explain how the association pattern differs from the N:M strong entity pattern. What
characteristic of the report in Figure 5-21 indicates that an association pattern is needed?

5.46 In general terms, explain how to differentiate an N:M strong entity pattern from an
association pattern.

5.47 Explain why two entities are needed to model multivalued attributes.

5.48 How do the forms in Figures 5-26 and 5-28 differ? How does this difference affect the
data model?

Chapter 5 Data Modeling with the Entity-Relationship Model 195

5.49 Describe, in general terms, the archetype/instance pattern. Why is an ID-dependent
relationship needed for this pattern? Use the CLASS/SECTION example shown in
Figure 5-30 in your answer.

5.50 Explain what caused the entities in Figure 5-31 to change from ID-dependent entities.

5.51 Summarize the two sides in the argument about the importance of weak, but not ID-
dependent, entities.

5.52 Give an example of the line-item pattern as it could be used to describe the contents of a
shipment. Assume that the shipment includes the names and quantities of various items
as well as each item�s insured value. Place the insurance value per item in an ITEM entity.

5.53 What entity type should come to mind when you see the words �For use by� in a form?

5.54 Give examples of 1:1, 1:N, and N:M recursive relationships (other than those presented
in this chapter).

5.55 Explain why the data modeling process must be iterative. Use the Highline University
example.

5.56 This question is for Microsoft Visio users. Convert the data models in Figures 5-16,
5-20, 5-22, 5-23, 5-30, 5-33, 5-37, and 5-52 into Visio format. Use the Visio arrow nota-
tion. (Hint: See Appendix F, �Getting Started with Microsoft Visio 2010.�)

5.57 This question is for Visio users. Convert the data models in Figures 5-16, 5-20, 5-22,
5-23, 5-30, 5-33, 5-37, and 5-52 into Visio format. Use the Visio version of IE Crow�s Foot
notation. (Hint: See Appendix F.)

Answer the following questions using IE Crow�s Foot notation.

5.58 Examine the subscription form shown in Figure 5-53. Using the structure of this form,
do the following:

A. Create a model with one entity. Specify the identifier and attributes.

B. Create a model with two entities, one for customer and a second for subscription.
Specify identifiers, attributes, relationship name, type, and cardinalities.

C. Under what conditions do you prefer the model in A to that in B?

D. Under what conditions do you prefer the model in B to that in A?

Fine

1 year (6 issues) for just $18�20% off the newsstand price.
(Outside the U.S. $21/year�U.S. funds, please)

To subscribe

2 years (12 issues) for just $34�save 24%
(Outside the U.S. $40/2 years�U.S. funds, please)

Name

Address

City
My payment is enclosed.

Please start my subscription with current issue next issue
Please bill me.

State Zip

Wood
Working

.

Figure 5-53

Subscription Form

196 Part 2 Database Design

X

NAME

ADDRESS

ADDRESS

VIOLATION DATE

VIOLATIONS

OFFICERS
SIGNATURE

DRIVERS
SIGNATUREXX

This is a warning, no further action is required.

You are released to take this vehicle to a place of repair.
Continued operation on the roadway is not authorized.

CORRECT VIOLATION(S) IMMEDIATELY. Return this signed card
for proof of compliance within 15/30 days. (if this box checked)

PERSONNEL
NUMBER

DIST DETACH

MO
LOCATION

MILES OF ON

DAY YEAR
TIME
HOUR:

CITY

DRIVERS LICENSE

VEHICLES LICENSE

VIN

REGISTERED

OWNER

STATE COLOR YEAR TYPEMAKE

STATE BIRTH DATE HGT WGT EYESM
F

STATE
ZIP
CODE

LAST FIRST

WASHINGTON STATE PATROL CORRECTION NOTICE

Kroenke
5053 88 Ave SE

Mecer Island Wa 98040
00000
AAA000 Wa

11 7 2011 935 2 17
17 E Enumckum SR410

Writing text while driving

S Scott 850

90 900Saab
Wa 2/2746 6 165Bl

David M

Figure 5-54

Traffic Citation

5.59 Consider the traffic citation shown in Figure 5-54. The rounded corners on this form
provide graphical hints about the boundaries of the entities represented.

A. Create a data model with five entities. Use the data items on the form to specify
identifiers and attributes for those entities.

B. Specify relationships among the entities. Name the relationship and give its type
and cardinalities. Indicate which cardinalities can be inferred from data on the form
and which need to be checked out with systems users.

5.60 Examine the list of e-mail messages in Figure 5-55. Using the structure and example
data items in this list, do the following:

A. Create a single-entity data model for this list. Specify the identifier and all entities.

B. Modify your answer to A to include entities SENDER and SUBJECT. Specify the
identifiers and attributes of entities and the type and cardinalities of the relation-
ships. Explain which cardinalities can be inferred from Figure 5-55 and which need
to be checked out with users.

C. The e-mail address in the From column in Figure 5-55 is in two different styles. One
style has the true e-mail address; the second style (e.g., Tom Cooper) is the name of
an entry in the user�s e-mail directory. Create two categories of SENDER based on
these two styles. Specify identifiers and attributes.

5.61 Examine the list of stock quotes in Figure 5-56. Using the structure and example data
items in this list, do the following:

A. Create a single-entity data model for this list. Specify the identifier and attributes.

B. Modify your answer to A to include the entities COMPANY and INDEX. Specify the
identifier and attributes of the entities and the type and cardinalities of the relation-
ships. Explain which cardinalities can be inferred from Figure 5-56 and which need
to be checked out with users.

Chapter 5 Data Modeling with the Entity-Relationship Model 197

Figure 5-55

Email List

C. The list in Figure 5-56 is for a quote on a particular day at a particular time of day.
Suppose that the list were changed to show closing daily prices for each of these
stocks and that it includes a new column: QuoteDate. Modify your model in B to
reflect this change.

D. Change your model in C to include the tracking of a portfolio. Assume the portfolio has
an owner name, a phone number, an e-mail address, and a list of stocks held. The list
includes the identity of the stock and the number of shares held. Specify all additional
entities, their identifiers and attributes, and the type and cardinality of all relationships.

E. Change your answer to part D to keep track of portfolio stock purchases and sales in
a portfolio. Specify entities, their identifiers and attributes, and the type and
cardinality of all relationships.

5.62 Figure 5-57 shows the specifications for single-stage air compressor products. Note that
there are two product categories that are based on Air Performance: The A models are at
125 pounds per square inch of pressure, and the E models are at 150 pounds per square
inch of pressure. Using the structure and example data items in this list, do the following:

A. Create a set of exclusive subtypes to represent these compressors. The supertype
will have attributes for all single-stage compressors, and the subtypes will have

Figure 5-56

Stock Quotations

198 Part 2 Database Design

attributes for products having the two different types of Air Performance. Assume
that there might be additional products with different types of Air Performance.
Specify the entities, identifiers, attributes, relationships, type of category cluster,
and possible determinant.

B. Figure 5-58 shows a different model for the compressor data. Explain the entities,
their type, the relationship, its type, and its cardinality. How well do you think this
model fits the data shown in Figure 5-57?

C. Compare your answer in part A with the model in Figure 5-58. What are the
essential differences between the two models? Which do you think is better?

D. Suppose you had the job of explaining the differences in these two models to a
highly motivated, intelligent end user. How would you accomplish this?

5.63 Figure 5-59 shows a listing of movie times at theaters in Seattle. Using the data in this
figure as an example, do the following:

A. Create a model to represent this report using the entities MOVIE, THEATER, and
SHOW_TIME. Assume that theaters may show multiple movies. Although this
report is for a particular day, your data model should allow for movie times on
different days as well. Specify the identifier of the entities and their attributes. Name
the relationships and the type and cardinality of all relationships. Explain which
cardinalities you can logically deduce from Figure 5-59 and which need to be
checked out with users. Assume that distance is an attribute of THEATER.

Figure 5-57

Air Compressor
Specifications

Model

HP
Tank Gal
ApproxShipWeight
Length
Width
Height

SS_COMPRESSOR

AIR_PERFORMANCE_TYPE

AirPerformance

PumpRPM
CFMDisp
Del�dAir

2

Figure 5-58

Alternative Model for
Compressor Data

Chapter 5 Data Modeling with the Entity-Relationship Model 199

B. This report was prepared for a user who is located near downtown Seattle. Suppose
that it is necessary to produce this same report for these theaters, but for a user
located in a Seattle suburb, such as Bellevue, Renton, Redmond, or Tacoma. In this
case, distance cannot be an attribute of THEATER. Change your answer in A for
this situation. Specify the entity identifiers and attributes. Name the relationships
and identify the type and cardinality of all relationships.

C. Suppose that you want to make this data model national. Change your answer to B
so that it can be used for other metropolitan areas. Change your answer in A for this
situation. Specify the entity identifiers and attributes. Name the relationships and
identify the type and cardinality of all relationships.

D. Modify your answer to C to include the leading cast members. Assume that the role of a
cast member is not to be modeled. Specify the identifier of new entities and their attrib-
utes. Name the relationships and identify the type and cardinality of all relationships.

E. Modify your answer to C to include the leading cast members. Assume that the role
of a cast member is specified. Specify the identifier of new entities and their attrib-
utes. Name the relationships and identify the type and cardinality of all relationships.

5.64 Consider the three reports in Figure 5-60. The data are samples of data that would
appear in the reports like these.

Figure 5-59

Movie Time Listing

200 Part 2 Database Design

A. Make a list of as many potential entities as these reports suggest.

B. Examine your list to determine whether any entities are synonyms. If so, consolidate
your list.

C. Construct an IE Crow�s Foot model showing relationships among your entities. Name
each relationship and specify cardinalities. Indicate which cardinalities you can justify
on the basis of these reports and which you will need to check out with the users.

5.65 Consider the CD cover in Figure 5-61.
A. Specify identifiers and attributes for the entities CD, ARTIST, ROLE, and SONG.

B. Construct a crow�s foot model showing relationships among these four entities.
Name each relationship and specify cardinalities. Indicate which cardinalities you
can justify on the basis of the CD cover and which you will need to check out with
the users.

Figure 5-60

Cereal Product Reports

Chapter 5 Data Modeling with the Entity-Relationship Model 201

C. Consider a CD that does not involve a musical, so there is no need for ROLE. How-
ever, the entity SONG_WRITER is needed. Create a crow�s foot model for CD,
ARTIST, SONG, and SONG_WRITER. Assume that an ARTIST can either be a group
or an individual. Assume that some artists record individually and as part of a group.

D. Combine the models you developed in your answers to B and C. Create new entities if
necessary, but strive to keep your model as simple as possible. Specify identifiers and
attributes of new entities, name new relationships, and indicate their cardinalities.

5.66 Consider the data model in Figure 5-43. How should this model be altered if the users
want to keep track of how many of each part are used? Suppose, for example, that the
wheel assembly requires four washers and the handle assembly requires just one, and
the database must store these quantities. (Hint: Adding Quantity to this N:M relation-
ship is analogous to adding Price to the N:M relationship in Figure 5-22.)

5.67 The data model in Figure 5-52 uses the attribute Room in COLLEGE and DEPART-
MENT, but uses OfficeNumber in PROFESSOR. These attributes have the same kind of
data, even though they have different names. Examine Figure 5-46 and explain how
this situation came to be. Do you think having different names for the same attribute
types is rare? Do you think it is a problem? Why or why not?

West Side Story
Based on a conception of Jerome Robbins

Book by ARTHUR LAURENTS
Music by LEONARD BERNSTEIN
Lyrics by STEPHEN SONDHEIM

Entire Original Production Directed
and Choreographed by JEROME ROBBINS

HIGHLIGHTS FROM THE COMPLETE RECORDING

Maria
Tony
Anita
Riff
and MARILYN HORNE singing �Somewhere�

Jet Song
(Riff, Action, Baby John, A-rab, Chorus)
Something’s Coming
(Tony)
Maria
(Tony)
Tonight
(Maria, Tony)
America
(Anita, Rosalia, Chorus)
Cool
(Riff, Chorus)
One Hand, One Heart
(Tony, Maria)
Tonight (Ensemble)
(Entire Cast)
I Feel Pretty
(Maria, Chorus)
Somewhere
(A Girl)
Gee Officer Krupke
(Action, Snowboy, Diesel, A-rab, Baby John, Chorus)
A Boy Like That
(Anita, Maria)
I Have a Love
(Maria, Anita)
Taunting Scene
(Orchestra)
Finale
(Maria, Tony)

[3’13]

[2’33]

[2’56]

[5’27]

[4’47]

[4’37]

[5’38]

[3’40]

[3’22]

[2’34]

[4’18]

[2’05]

[3’30]

[1’21]

[2’40]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.KIRI TE KANAWA

. JOSE CARRERAS
. TATIANA TROYANOS

. KURT OLLMAN

Rosalia
Consuela
Fancisca
Action

. Louise Edeiken
. Stella Zambalis
. Angelina Reaux

. David Livingston
Bernardo

Diesel
Baby John
A-rab
Snowboy

. Marty Nelson
. Stephen Bogardus

 Peter Thom
.Todd Lester

. . . .Richard Harrell

Originally produced on Broadway by Robert E. Griffith and Harold S. Prince
by arrangement with Roger L. Stevens

Orchestration by Leonard Bernstein with Sid Ramin and Irwin Kostal

Figure 5-61

CD Cover

Suppose that you have been hired by Marcia�s Dry Cleaning to create a database
application to track customers, orders, and items. Marcia also wants to start a
Frequent Cleaner�s Club, whereby she will offer a 50 percent discount on every 10th
customer order.

A. Using your knowledge, create a data model for Marcia�s business. Name each entity,
describe its type, and indicate all attributes and identifiers. Name each relationship,
describe its type, and specify minimum and maximum cardinalities.

B. List any item in your answer to A that you believe should be checked out with Marcia
and/or her employees.

202 Part 2 Database Design

Suppose that you have been hired by Morgan Importing to create a database application
to track stores, purchases, shipments, and shippers. Sometimes several items
are purchased from a store on a single visit, but do not assume that all of the items are
placed on the same shipment. You want to track each item in a shipment and assign an
insurance value to each item.

A. Using your knowledge, create a data model for Morgan Importing. Name each entity,
describe its type, and indicate all attributes and identifiers. Name each relationship,
describe its type, and specify minimum and maximum cardinalities.

B. List any item in your answer to A that you believe should be checked out with Phillip
Morgan and/or his employees.

This chapter explains the transformation of entity-relationship data models
into relational database designs. A database design is a set of database
specifications that can actually be implemented as a database in a DBMS. This
transformation consists of three primary tasks: (1) replacing entities and
attributes with tables and columns; (2) representing relationships and maximum
cardinalities by placing foreign keys; and (3) representing minimum cardinality
by defining actions to constrain activities on values of primary and foreign keys.
Steps 1 and 2 are relatively easy to understand and accomplish; step 3 may be
easy or difficult, depending on the minimum cardinality type. In this chapter, we
will create database designs, and then we will implement a database design in
Chapter 7 when we build a database using SQL DDL and DML.

� To understand how to transform data models into
database designs

� To be able to identify primary keys and understand
when to use a surrogate key

� To understand the use of referential integrity constraints

� To understand the use of referential integrity actions

� To be able to represent ID-dependent, 1:1, 1:N, and
N:M relationships as tables

Chapter Objectives

Transforming
Data Models into
Database Designs6

� To be able to represent weak entities as tables

� To be able to represent supertype/subtypes as tables

� To be able to represent recursive relationships as tables

� To be able to represent ternary relationships as tables

� To be able to implement referential integrity actions
required by minimum cardinalities

203

204 Part 2 Database Design

Create a Table for Each Entity

We begin the database design by creating a table for each entity using the steps shown in
Figure 6-1. In most cases, the table is assigned the same name as the entity. Each attribute of
the entity becomes a column of the table. The identifier of the entity becomes the primary key
of the table. The example in Figure 6-2 shows the creation of the EMPLOYEE table from the
EMPLOYEE entity. In this text, to differentiate entities from tables, we will show entities with
shadowed boxes and tables with nonshadowed boxes. This notation will help clarify our
discussion, but be aware that it is not standard notation across the industry.

Be certain that you understand the difference between these similar-looking graphics.
The shadowed rectangle in Figure 6-2(a) represents a logical structure that has no physical
existence. It is a blueprint. The nonshadowed rectangle in Figure 6-2(b) represents a database
table. It is the same as the following notation that we used in Chapters 3 and 4:

EMPLOYEE (EmployeeNumber, EmployeeName, Phone, Email, HireDate,
ReviewDate, EmpCode)

Note, too, the key symbol next to EmployeeNumber. It documents the fact that EmployeeNumber
is the table key, just as the underline does in the notation used in Chapters 3 and 4.

Selecting the Primary Key

The selection of the primary key is important. The DBMS will use the primary key to facili-
tate searching and sorting of table rows, and some DBMS products use it to organize table

1. Create a table for each entity:
 � Specify primary key (consider surrogate keys, as appropriate)
 � Specify candidate keys
 � Specify properties for each column:
 � Null status
 � Data type
 � Default value (if any)
 � Specify data constraints (if any)
 � Verify normalization
2. Create relationships by placing foreign keys
 � Relationships between strong entities (1:1, 1:N, N:M)
 � Identifying relationships with ID-dependent entities (intersection tables,
 association patterns, multivalued attributes, archetype/instance patterns)
 � Relationships between a strong entity and a weak but non-ID-dependent entity
 (1:1, 1:N, N:M)
 � Mixed relationships
 � Relationships between supertype/subtype entities
 � Recursive relationships (1:1, 1:N, N:M)
3. Specify logic for enforcing minimum cardinality:
 � M-O relationships
 � O-M relationships
 � M-M relationships

Figure 6-1

Steps for Transforming a
Data Model into a Database
Design

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

(a) EMPLOYEE Entity (b) EMPLOYEE Table

Figure 6-2

Transforming an Entity
to a Table

Chapter 6 Transforming Data Models into Database Designs 205

storage. DBMS products almost always create indexes and other data structures using the
values of the primary key.

The ideal primary key is short, numeric, and fixed. EmployeeNumber in Figure 6-2 meets
all of these conditions and is acceptable. Beware of primary keys such as EmployeeName,
Email, (AreaCode, PhoneNumber), (Street, City, State, Zip), and other long character columns.
In cases like these, when the identifier is not short, numeric, or fixed, consider using another
candidate key as the primary key. If there are no additional candidate keys, or if none of them
is any better, consider using a surrogate key.

A surrogate key is a DBMS-supplied identifier of each row of a table. Surrogate key values
are unique within the table, and they never change. They are assigned when the row is created,
and they are destroyed when the row is deleted. Surrogate key values are the best possible
primary keys because they are designed to be short, numeric, and fixed. Because of these
advantages, some organizations have gone so far as to require that surrogates be used for the
primary key of every table.

Before endorsing such a policy, however, consider two disadvantages of surrogate keys.
First, their values have no meaning to a user. Suppose you want to determine the department
to which an employee is assigned. If DepartmentName is a foreign key in EMPLOYEE, then
when you retrieve an employee row, you obtain a value such as �Accounting� or �Finance�. That
value may be all that you need to know about department.

Alternatively, if you define the surrogate key DepartmentID as the primary key
of DEPARTMENT, then DepartmentID will also be the foreign key in EMPLOYEE. When
you retrieve a row of EMPLOYEE, you will get back a number such as 123499788 for the
DepartmentID, a value that has no meaning to you at all. You have to perform a second query
on DEPARTMENT to obtain DepartmentName.

The second disadvantage of surrogate keys arises when data are shared among different
databases. Suppose, for example, that a company maintains three different SALES databases,
one for each of three different product lines. Assume that each of these databases has a table
called SALES_ORDER that has a surrogate key called ID. The DBMS assigns values to IDs so
that they are unique within a particular database. It does not, however, assign ID values so that
they are unique across the three different databases. Thus, it is possible for two different
SALES_ORDER rows, in two different databases, to have the same ID value.

This duplication is not a problem until data from the different databases are merged.
When that happens, to prevent duplicates, ID values will need to be changed. However, if ID
values are changed, then foreign key values may need to be changed as well, and the result is a
mess, or at least much work to prevent a mess.

It is, of course, possible to construct a scheme using different starting values for surrogate
keys in different databases. Such a policy ensures that each database has its own range of surrogate
key values. This requires careful management and procedures, however; and if the starting values
are too close to one another, the ranges will overlap and duplicate surrogate key values will result.

Some database designers take the position that, for consistency, if one
table has a surrogate key, all of the tables in the database should have a

surrogate key. Others think that such a policy is too rigid; after all, there are good data
keys, such as ProductSKU (which would use SKU codes as discussed in Chapter 2). If
such a key exists, it should be used instead of a surrogate key. Your organization may
have standards on this issue that you should follow.

Be aware that DBMS products vary in their support for surrogate keys. Microsoft
Access, Microsoft SQL Server, and Oracle MySQL provide them. Microsoft SQL Server
allows the designer to pick the starting value and increment of the key, and Oracle
MySQL allows the designer to pick the starting value. Oracle�s Oracle Database 11g,
however, does not provide direct support for surrogate keys, but you can obtain the
essence of them in a rather backhanded way, as discussed in Chapter 10A.

We use surrogate keys unless there is some strong reason not to. In addition to the
advantages described here, the fact that they are fixed simplifies the enforcement of
minimum cardinality, as you will learn in the last section of this chapter.

206 Part 2 Database Design

Specifying Candidate (Alternate) Keys

The next step in creating a table is to specify candidate keys. As discussed in Chapter 3,
candidate keys are alternative identifiers of unique rows in a table. Some products use
the term alternate key (AK) rather than candidate key, but the two terms are synonymous.
Figure 6-3 illustrates the use of alternate keys.

Figure 6-3(a) shows EMPLOYEE with a primary key of EmployeeNumber and a candidate,
or alternate, key of Email. In Figure 6-3(b), CustomerNumber is the primary key of
CUSTOMER, and both the composite (Name, City) and Email are candidate keys. In these
diagrams, the symbol AKn.m means the nth alternate key and the mth column of that alter-
nate key. In the EMPLOYEE table, Email is labeled AK1.1 because it is the first alternate key
and the first column of that key. CUSTOMER has two alternate keys. The first is a composite of
two columns, which are labeled AK1.1 and AK1.2. The nomenclature Name (AK1.1) means
that Name is the first column of the first alternate key, and City (AK1.2) means that City is the
second column of the first alternate key. In CUSTOMER, Email is marked as AK2.1 because it
is the first (and only) column of the second alternate key.

Specify Column Properties

The next step in the creation of a relation is to specify the column properties. Four properties
are shown in Figure 6-1: null status, data type, default value, and data constraints.

Null Status
Null status refers to whether the column can have a null value. Typically, null status is
specified by using the phrase NULL if nulls are allowed and NOT NULL if not. Thus, NULL
does not mean that the column is always null; it means that null values are allowed. Because of
this possible confusion, some people prefer the term NULL ALLOWED rather than NULL.
Figure 6-4 shows the null status of each of the columns in the EMPLOYEE table.

The EMPLOYEE table in Figure 6-4 contains a subtlety. EmployeeNumber,
the primary key, is marked NOT NULL, but Email, the alternate key, is

marked NULL. It makes sense that EmployeeNumber should not be allowed to be null.
If it were, and if more than one row had a null value, then EmployeeNumber would not
identify a unique row. Why, however, should Email be allowed to have null values?

The answer is that alternate keys often are used just to ensure uniqueness. Marking
Email as a (possibly null) alternate key means that Email need not have a value, but, if it
has one, that value will be different from all other values of Email in the EMPLOYEE table.
This answer is dissatisfying because it means that alternate keys are not truly alternate
primary keys. Alas, that�s the way it is. Just know that primary keys can never be null but
that alternate keys can be.

EmployeeNumber

EmployeeName
Phone
Email (AK1.1)
HireDate
ReviewDate
EmpCode

EMPLOYEE

CustomerNumber

Name (AK1.1)
City (AK1.2)
Phone
Email (AK2.1)

CUSTOMER

(a) (b)

Figure 6-3

Representing Candidate
(Alternative) Keys

Data Type
The next step is to define the data type for each column. Unfortunately, each DBMS provides a
different set of data types. For example, to record currency values Microsoft Access has a data
type called Currency and SQL Server has a data type called Money, but Oracle Database has no

Chapter 6 Transforming Data Models into Database Designs 207

EmployeeNumber: NOT NULL

EmployeeName: NOT NULL
Phone: NULL
Email: NULL (AK1.1)
HireDate: NOT NULL
ReviewDate: NULL
EmpCode: NULL

EMPLOYEE

Figure 6-4

Table Display Showing Null
Status

EmployeeNumber: int

EmployeeName: char(50)
Phone: char(15)
Email: char(50) (AK1.1)
HireDate: datetime
ReviewDate: datetime
EmpCode: char(18)

EMPLOYEEFigure 6-5

Table Display Showing Data
Types

The fact that a design tool is dedicated to one DBMS product does not
mean that it cannot be used to design databases for other DBMSs. For

example, an SQL Server database can be designed in MySQL Workbench and most of
the design will be correct. You will, however, have to understand the relevant differences
in the DBMS products and make adjustments when creating the actual database.

EmployeeNumber: int NOT NULL

EmployeeName: char(50) NOT NULL
Phone: char(15) NULL
Email: char(50) NULL (AK1.1)
HireDate: datetime NOT NULL
ReviewDate: datetime NULL
EmpCode: char(18) NULL

EMPLOYEEFigure 6-6

Table Display Showing Null
Status and Data Types

data type for currency. Instead, with Oracle, you use the numeric data type for currency values.
A summary of data types for Oracle Database 11g, SQL Server 2008 R2, and MySQL 5.5 appears
in Chapter 7 as Figure 7-4.

If you know which DBMS you will be using to create the database, you can use that
product�s data types in your design. Figure 6-5 illustrates the display of data types in a table
using the data types for SQL Server (e.g., datetime is an SQL Server data type).

In fact, with many data modeling products, such as Computer Associate�s ERwin, you
can specify the DBMS you will use and the data modeling product will supply the appropriate
set of data types. Other products are DBMS specific. For example, Oracle�s MySQL
Workbench is intended to design databases for MySQL, and therefore uses MySQL-specific
data types.

If you do not know which DBMS product you will be using, or if you want to preserve
independence from a particular DBMS, you can specify the data types in a generic way. Typical
generic data types are CHAR(n) for a fixed-length character string of length n, VARCHAR(n)
for a variable-length character string having a maximum length of n, DATE, TIME, MONEY,
INTEGER, and DECIMAL. If you work for a larger organization, that company probably has its
own generic data standards. If so, you should use those data standards.

Figure 6-6 shows the EMPLOYEE table showing both data type and null status. The
display becomes crowded, however, and from now on we will show tables with just column
names. With most products, you can turn such displays on or off depending on the work you
are doing.

Table
ITEM

Column
ItemNumber

Default Value
Surrogate key

CategoryITEM None

ItemPrefixITEM If Category = �Perishable� then �P�
If Category = �Imported� then �I�
If Category = �One-off� then �O�
Otherwise = �N�

ApprovingDeptITEM If ItemPrefix = �I� then
 �SHIPPING/PURCHASING�
Otherwise = �PURCHASING�

ShippingMethodITEM If ItemPrefix = �P� then �Next Day�
Otherwise = �Ground�

Figure 6-7

Sample Documentation
for Default Values

208 Part 2 Database Design

Default Value
A default value is a value supplied by the DBMS when a new row is created. The value can be a
constant, such as the string �New Hire� for the EmpCode column in EMPLOYEE, or it can be the
result of a function, such as the date value of the computer�s clock for the HireDate column.

In some cases, default values are computed using more complicated logic. The default
value for a price, for example, might be computed by applying a markup to a default cost and
then reducing that marked up price by a customer�s discount. In such a case, an application
component or a trigger (discussed in Chapter 7) will be written to supply such a value.

It is possible to use the data modeling tool to record default values, but such values often
are shown in separate design documentation. Figure 6-7, for example, shows one way that
default values are documented.

Data Constraints
Data constraints are limitations on data values. There are several different types. Domain
constraints limit column values to a particular set of values. For example, EMPLOYEE.
EmpCode could be limited to �New Hire�, �Hourly�, �Salary�, or �Part Time�. Range constraints
limit values to a particular interval of values. EMPLOYEE.HireDate, for example, could be
limited to dates between January 1, 1990, and December 31, 2025.

An intrarelation constraint limits a column�s values in comparison with other columns
in the same table. The constraint that EMPLOYEE.ReviewDate be at least 3 months after
EMPLOYEE.HireDate is an intrarelation constraint. An interrelation constraint limits a
column�s values in comparison with other columns in other tables. An example for the
CUSTOMER table is that CUSTOMER.Name must not be equal to BAD_CUSTOMER.Name,
where BAD_ CUSTOMER is a table that contains a list of customers with credit and balance
problems.

Referential integrity constraints, which we discussed in Chapter 3, are one type of inter-
relation constraint. Because they are so common, sometimes they are documented only when
they are not enforced. For example, to save work, a design team might say that every foreign
key is assumed to have a referential integrity constraint to the table that it references and that
only exceptions to this rule are documented.

Verify Normalization

The last task in step 1 of Figure 6-1 is to verify table normalization. When data models are
developed using forms and reports as guides, they generally result in normalized entities. This
occurs because the structures of forms and reports usually reflect how users think about their
data. Boundaries of a form, for example, often show the range of a functional dependency.
If this is hard to understand, think of a functional dependency as a theme. A well-designed
form or report will bracket themes using lines, colors, boxes, or other graphical elements.
Those graphical hints will have been used by the data modeling team to develop entities, and
the result will be normalized tables.

Chapter 6 Transforming Data Models into Database Designs 209

All of this, however, should be verified. You need to ask whether the resulting tables are in
BCNF and whether all multivalued dependencies have been removed. If not, the tables should
probably be normalized. However, as we discussed in Chapter 4, sometimes normalization is
undesirable. Thus, you should also examine your tables to determine if any normalized ones
should be denormalized.

Create Relationships

The result of step 1 is a set of complete, but independent, tables. The next step is to create
relationships. In general, we create relationships by placing foreign keys into tables. The way in
which this is done and the properties of the foreign key columns depend on the type of
relationship. In this section, we consider each of the relationships described in Chapter 5:
nonidentifying relationships between strong entities, identifying relationships between
ID-dependent entities, relationships in mixed entity patterns, relationships between a super-
type and its subtypes, and recursive relationships. We conclude this section with a discussion
of special cases of ternary relationships.

Relationships Between Strong Entities

As you learned in Chapter 5, nonidentifying relationships between strong entities are
characterized by their maximum cardinality. There are three types of these relationships: 1:1, 1:N,
and N:M.

1:1 Relationships Between Strong Entities
After the tables corresponding to the strong entities have been designed, a 1:1 relationship
between these entities can be represented in one of two ways. You can place the primary key of the
first table in the second as a foreign key, or you can place the primary key of the second table in the
first as a foreign key. Figure 6-8 shows the representation of the 1:1 nonidentifying relationship
between CLUB_MEMBER and LOCKER. In Figure 6-8(a), MemberNumber is placed in LOCKER
as a foreign key. In Figure 6-8(b), LockerNumber is placed in CLUB_MEMBER as a foreign key.

Either of these designs will work. If you have a club member�s number and want his or her
locker, then using the design in Figure 6-8(a) you can query the LOCKER table for the given
value of MemberNumber. But, if you have the LockerNumber and want the club member�s
data, then, using the design in Figure 6-8(a), you can query the LOCKER table for the Locker-
Number, obtain the MemberNumber, and use that value to query the CLUB_MEMBER table
for the rest of the club member�s data.

Follow a similar procedure to verify that the design in Figure 6-8(b) works as well. However,
one data constraint applies to both designs. Because the relationship is 1:1, a given value of a
foreign key can appear only once in the table. For example, in the design in Figure 6-8(a), a given

MemberNumber

MemberName
Phone
Email

CLUB_MEMBER

LockerNumber

LockerRoom
LockerSize
MemberNumber (FK) (AK1.1)

LOCKER

(a) With Foreign Key in LOCKER

MemberNumber

MemberName
Phone
Email
LockerNumber (FK) (AK1.1)

CLUB_MEMBER

LockerNumber

LockerRoom
LockerSize

LOCKER

(b) With Foreign Key in CLUB_MEMBER

Figure 6-8

The Two Alternatives for
Representing a 1:1
Relationship Between
Strong Entities

210 Part 2 Database Design

value of MemberNumber can appear just once; each value must be unique in the LOCKER table.
If a value of MemberNumber were to appear in two rows, then a member would be assigned to
two lockers, and the relationship would not be 1:1.

To cause the DBMS to enforce the required uniqueness of the foreign key value, we define
the foreign key column as unique. This can be done either directly in the column definition of
the foreign key (in which case there is no designation in the table diagram) or by defining the
foreign key as an alternate key. This latter technique, though common, is a bit confusing
because, logically, MemberNumber is not an alternate key for LOCKER. We are just using the
fact that alternate keys are unique to document the uniqueness of the foreign key in a 1:1
relationship. Depending on the database design software being used, the alternate key designa-
tion may appear in the database design of the tables and the relationship, and this is illustrated
in Figure 6-8(a). A similar technique is used on the foreign key LockerNumber in Figure 6-8(b).

Figure 6-8 shows the minimum cardinalities of the relationship as optional-optional (O-O),
and in this case either of the designs in Figure 6-8 will work, although the design team may
prefer one over the other. However, if the minimum cardinalities of the relationship are either
mandatory-optional (M-O) or optional-mandatory (O-M), then one design will be greatly
preferred, as you will learn in the section on minimum cardinality design later in this chapter.
Also, application requirements may mean that one design is faster than the other.

To summarize, to represent a 1:1 strong entity relationship, place the key of one table in
the other table. Enforce the maximum cardinality by defining the foreign key as unique (or as
an alternate key).

1:N Relationships Between Strong Entities
After the tables corresponding to the strong entities have been designed, a 1:N relationship
between the entities is represented by placing the primary key of the table on the one side into
the table on the many side as a foreign key. Recall from Chapter 5 that the term parent is used to
refer to the table on the one side and the term child is used to refer to the table on the many side.
Using this terminology, you can summarize the design of 1:N relationships by saying, �Place the
primary key of the parent in the child as a foreign key.� This is illustrated in Figure 6-9.

Figure 6-9(a) shows an E-R diagram for the 1:N relationship between the COMPANY and
DEPARTMENT entities. The relationship is represented in the database design in Figure 6-9(b)
by placing the primary key of the parent (CompanyName) in the child (DEPARTMENT) as a
foreign key. Because parents have many children (the relationship is 1:N), there is no need to
make the foreign key unique.

For 1:N relationships between strong entities, that�s all there is to it. Just remember: �Place
the primary key of the parent in the child as a foreign key.�

N:M Relationships Between Strong Entities
Again, we must first create the database design tables from the data model entities, and then
create the relationship. However, the situation for N:M relationships is more complicated.

CompanyName

City
Country
Volume

COMPANY

DepartmentName

BudgetCode
MailStop

DEPARTMENT

(a) 1:N Relationship Between Strong Entities

CompanyName

City
Country
Volume

COMPANY

DepartmentName

BudgetCode
MailStop
CompanyName (FK)

DEPARTMENT

(b) Placing the Primary Key of the Parent in the Child as a Foreign Key

Figure 6-9

Representing a 1:N
Relationship Between
Strong Entities

Chapter 6 Transforming Data Models into Database Designs 211

The problem is that there is no place in either table in an N:M relationship in which to place
the foreign key. Consider the example in Figure 6-10(a), which shows a relationship between
COMPANY and PART that specifies which companies can supply which parts. A COMPANY
may supply many PARTs, and a PART may be supplied by many different COMPANY(ies).

Suppose we try to represent this relationship by placing the primary key of one table as a
foreign key in the second table, as we did for 1:N relationships. Say we place the primary key of
PART in COMPANY as follows:

COMPANY (CompanyName, City, Country, Volume, PartNumber)

PART (PartNumber, PartName, SalesPrice, ReOrderQuantity, QuantityOnHand)

With this design, a given PartNumber may appear in many rows of COMPANY so that
many companies can supply the part. But, how do we show that a company can supply many
parts? There is only space to show one part. We do not want to duplicate the entire row for a
company just to show a second part; such a strategy would result in unacceptable data
duplication and data integrity problems. Therefore, this is not an acceptable solution, and a
similar problem will occur if we try to place the primary key of COMPANY, CompanyName,
into PART as a foreign key.

The solution is to create a third table, called an intersection table. Such a table shows the
correspondences of a given company and a given part. It holds only the primary keys of the two
tables as foreign keys, and this combination of keys serves as the composite primary key of the
intersection table itself. The intersection holds only the key data; it contains no other user
data. For the example in Figure 6-10(a) we create the following intersection table:

COMPANY_PART_INT (CompanyName, PartNumber)

The COMPANY_PART_INT table has one row for each company�part combination.
Notice that both columns are part of the primary key, and that each column is a foreign key to

CompanyName

City
Country
Volume

COMPANY

PartNumber

FK???

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

(a) The Foreign Key Has No Place in Either Table

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

(b) Foreign Keys Placed in ID-Dependent Intersection Table

CompanyName (FK)
PartNumber (FK)

COMPANY_PART_INT

Figure 6-10

Representing an N:M
Relationship Between
Strong Entities

212 Part 2 Database Design

a different table. Because both columns are keys of other tables, intersection tables are always
ID-dependent on both of their parent tables and the relationships with the parent tables are
identifying relationships.

Thus, while the database design in Figure 6-10(a) is drawn with a nonidentifying N:M
relationship between two strong entities, in Figure 6-10(b) COMPANY_PART_INT is shown
as ID-dependent with identifying relationship lines. Like all ID-dependent tables, the
parent tables are required; COMPANY_PART_INT requires both a COMPANY and PART.
The parents may or may not require an intersection table row, depending on application
requirements. In Figure 6-10 (b), a COMPANY need not supply a PART, but a PART must be
supplied by at least one COMPANY.

The problem for the data models of N:M relationships between strong
entities is that they have no direct representation. An N:M relationship must

always be decomposed into two 1:N relationships using an intersection table in the
database design. This is why products like MySQL Workbench are unable to represent N:M
relationships in a data model. These products force you to make the transformation to two
1:N relationships ahead of time, during modeling. As stated in Chapter 5, however, most
data modelers consider this requirement to be a nuisance because it adds complexity to
data modeling when the whole purpose of data modeling is to reduce complexity to the
logical essentials.

� Representing N:M Relationships
� Association Relationships
� Multivalued Attributes
� Archetype/Instance Relationships

Figure 6-11

Four Uses for ID-Dependent
Entities

Relationships Using ID-Dependent Entities

Figure 6-11 summarizes the four uses for ID-dependent entities. We have already described the
first use shown in Figure 6-11: the representation of N:M relationships. As shown in Figure 6-10,
an ID-dependent intersection table is created to hold the foreign keys of the two tables partici-
pating in the relationship, and identifying 1:N relationships are created between each table and
the intersection table.

The other three uses shown in Figure 6-11 were discussed in Chapter 5, and here we will
describe the creation of tables and relationships for each of these three uses.

Association Relationships
As we discussed in Chapter 5, an association relationship is subtly close to an N:M relationship
between two strong entities. The only difference between the two types of relationships is that
an association relationship has one or more attributes that pertain to the relationship and not
to either of the entities. These attributes must be added to what would otherwise be the inter-
section table in the N:M relationship. Figure 6-12(a) shows the association relationship data
model created in Figure 5-22. In this example, the association of a company and a part carries
an attribute named Price.

The representation of such a relationship using a table is straightforward. Just create a
table that is ID-dependent on both of its parents and place the Price attribute in that table. The
result for the example in Figure 6-12(a) is the table:

QUOTATION (CompanyName, PartNumber, Price)

This table appears in the database design in Figure 6-12(b). Like all ID-dependent
relationships, the parents of an association table are required. The parents may or may not require

Chapter 6 Transforming Data Models into Database Designs 213

The table that represents the association entity looks very much like an
intersection table; the only difference is the presence of the Price attribute.

Because of the attribute, the need for association tables, such as QUOTATION, will
appear in user requirements. Somewhere there will be a form or a report that has the
attribute Price. However, the need for intersection tables never appears in the users�
world. Such tables are an artifact of the relational model, and no form, report, or other
user requirement will indicate the need for one.

Intersection tables complicate the construction of applications. They must be
processed to obtain related rows, but they never directly appear on a form or report. In
Microsoft Access they are frustratingly difficult to mangle into the form and report
design tools. You will see more about this in later chapters. In any case, for now under-
stand the key difference between association and intersection tables: Association
tables have user data, but intersection tables do not.

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

PartNumber
CompanyName

Price

QUOTATION

(a) Association Pattern Data Model from Figure 5-22

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

PartNumber (FK)
CompanyName (FK)

Price

QUOTATION

(b) Association Pattern Database Design

Figure 6-12

Using ID-Dependent
Entities in an Association
Relationship

the rows of the association table, depending on application requirements. In Figure 6-12(b), a
COMPANY need not have any QUOTATION rows, but a PART must have at least one
QUOTATION row.

214 Part 2 Database Design

As shown in Figure 6-13, association entities sometimes connect more than two entity
types. Figure 6-13(a) shows the association relationship among the CLIENT, ARCHITECT, and
PROJECT entities from the data model we created in Figure 5-23. When there are several
participants in the association, the strategy just shown is simply extended. The association
table will have the key of each of its parents, as shown in Figure 6-13(b). In this case, the
ASSIGNMENT table has three foreign keys and one nonkey attribute, HoursWorked.

In both of these examples, it is only coincidence that the association tables have only one
nonkey attribute. In general, an association table can have as many nonkey attributes as
necessary to meet user requirements.

(a) Association Pattern Data Model from Figure 5-23

(b) Association Pattern Database Design

ASSIGNMENT

ClientName
ArchitectName
ProjectName

HoursWorked

ArchitectName

Office
Email

ARCHITECT

ClientName

Email
Phone

CLIENT

ProjectName

StartDate
Budget

PROJECT

ASSIGNMENT

ClientName (FK)
ArchitectName (FK)
ProjectName (FK)

HoursWorked

ArchitectName

Office
Email

ARCHITECT

ClientName

CLIENT

ProjectName

StartDate
Budget

PROJECT

Email
Phone

Figure 6-13

Using ID-Dependent Entities
in an Association
Relationship Among Three
Entities

Chapter 6 Transforming Data Models into Database Designs 215

As you can see from these examples, it is not much work to transform an
ID-dependent entity into a table. All that is necessary is to transform the

entity into a table, and copy the attributes into columns.
Why is it so simple? There are two reasons. First, all identifying relationships are 1:N.

If they were 1:1, there would be no need for the ID-dependent relationship. The attributes
of the child entity could just be placed in the parent entity. Second, given that the relation-
ship is 1:N, the design principle is to place the key of the parent into the child. However,
the definition of an ID-dependent relationship is that part of its identifier is an identifier of
its parent. Thus, by definition, the key of the parent is already in the child. Hence, it is not
necessary to create a foreign key; that work has already been done during data modeling.

Multivalued Attributes
The third use for ID-dependent entities is to represent multivalued entity attributes, and this
is illustrated in Figure 6-14. Figure 6-14(a) is a copy of Figure 5-29. Here, COMPANY has a
multivalued composite, (Contact, PhoneNumber), that is represented by the ID-dependent
entity PHONE_CONTACT.

As shown in Figure 6-14(b), representing the PHONE_CONTACT entity is straightforward.
Just replace it with a table and replace each of its attributes with a column. In this example, the
CompanyName attribute is both a part of the primary key and a foreign key.

Like all ID-dependent tables, PHONE_CONTACT must have a parent row in COMPANY.
However, a COMPANY row may or may not have a required PHONE_CONTACT, depending on
application requirements.

(a) Data Model with Multivalued
Attributes from Figure 5-29

CompanyName

City
Country
Volume

COMPANY

PHONE_CONTACT

CompanyName
Contact

PhoneNumber

(b) Database Design to
Store Multivalued Attributes

CompanyName

City
Country
Volume

COMPANY

PHONE_CONTACT

CompanyName (FK)
Contact

PhoneNumberFigure 6-14

Using ID-Dependent Entities
to Store Multivalued
Attributes

Archetype/Instance Pattern
As illustrated in Figure 6-15, the fourth use for ID-dependent entities and identifying relation-
ships is the archetype/instance pattern (also referred to as the version/instance pattern).
Figure 6-15(a), which is a copy of Figure 5-30, shows the CLASS/SECTION archetype/instance
example from Chapter 5, and Figure 6-15(b) shows the relational design.

As noted in the previous chapter, however, sometimes the instances of an
archetype/instance pattern are given identifiers of their own. In that case, the instance entity
becomes a weak, but not ID-dependent, entity. When this occurs, the relationship must
be transformed using the rules of a 1:N relationship between a strong entity and a weak but
non-ID-dependent entity. However, this transformation is the same as a 1:N relationship

216 Part 2 Database Design

ClassName

NumberHours
Description

CLASS

SECTION

ClassName
SectionNumber

ClassDays
Time
Professor

(a) Data Model with Archetype/Instance
Pattern from Figure 5-30

ClassName

NumberHours
Description

CLASS

SECTION

ClassName (FK)
SectionNumber

ClassDays
Time
Professor

(b) Database Design for
Archetype/Instance Pattern

Figure 6-15

Using ID-Dependent Entities
in an Archetype/Instance
Pattern

ClassName

NumberHours
Description

CLASS

ReferenceNumber

ClassDays
Time
Professor
SectionNumber

SECTION

ReferenceNumber

ClassDays
Time
Professor
SectionNumber
ClassName (FK)

SECTION is weak,
but not ID-dependent.

SECTION

ClassName

NumberHours
Description

CLASS

(b) Database Design for
Non-ID-Dependent Weak Entity

(a) Data Model with Non-ID-Dependent
Weak Entity from Figure 5-31

Figure 6-16

Transformation of the
Archetype/Instance Pattern
Using Non-ID-Dependent
Weak Entities

between two strong entities. This just means that the primary key of the parent table should be
placed in the child table as a foreign key. Figure 6-16(a) shows a copy of the data model in
Figure 5-31 in which SECTION has been given the identifier ReferenceNumber. In the
relational database design in Figure 6-16(b), ClassName (the primary key of the parent CLASS
table) has been placed in SECTION (the child table) as a foreign key.

Keep in mind, however, that even though SECTION is no longer ID-dependent, it is still
weak. SECTION requires a CLASS for its existence. This means that a SECTION must always
have a CLASS as its parent, and this restriction arises from logical necessity, not just from
application requirements. The fact that SECTION is weak should be recorded in design
documentation.

Chapter 6 Transforming Data Models into Database Designs 217

Relationships with a Weak Non-ID-Dependent Entity

As you learned in Chapter 5, a relationship between a strong entity and a weak but non-
ID-dependent entity behaves just the same as a relationship between two strong entities. The
relationship is a nonidentifying relationship, and, again, these relationships are characterized
by their maximum cardinality. The previous discussion of 1:1, 1:N, and N:M relationships
between strong entities also applies to these types of relationships between a strong entity and
a weak but non-ID-dependent entity.

For example, what happens when the identifier of the parent of an ID-dependent entity is
replaced with a surrogate key? Consider the example of BUILDING and APARTMENT, in
which the identifier of APARTMENT is the composite of an apartment number and a building
identifier.

Suppose that the identifier of BUILDING is (Street, City, State/Province, Country). In this
case, the identifier of APARTMENT is (Street, City, State/Province, Country, ApartmentNumber).
This design can be improved by replacing the long BUILDING identifier with a surrogate key.
Suppose that we replace the key of BUILDING with BuildingID, a surrogate.

Now, with a surrogate key for BUILDING, what is the key of APARTMENT? When we
place the key of the parent in the child, we obtain (BuildingID, ApartmentNumber). But this
combination has no meaning to the user. What does an identifier of (10045898, �5C�) mean to a
user? Nothing! The key became meaningless when Street, City, State/Province, and Country
were replaced by BuildingID in BUILDING.

We can improve the design by using the following principle: When replacing the
identifier of the parent of an ID-dependent entity with a surrogate key, replace the identifier
of the ID-dependent entity with its own surrogate key. The resulting table will be weak, but
not ID-dependent.

Relationships in Mixed Entity Designs

As you might guess, the design of mixed entity patterns is a combination of strong entity and
ID-dependent entity designs. Consider the example of employees and skills in Figure 6-17.
Figure 6-17(a) is a copy of Figure 5-35. Here, the entity EMPLOYEE_SKILL is ID dependent on
EMPLOYEE, but it has a nonidentifying relationship to SKILL.

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

Name

Description
SalaryRange

SKILL

(b) Database Design for
Mixed Entity Pattern

EMPLOYEE_SKILL

EmployeeNumber (FK)
SkillNumber

ProficiencyLevel
CourseTaken
Name (FK)

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

Name

Description
SalaryRange

SKILL

(a) Data Model with Mixed Entity
Pattern from Figure 5-35

EMPLOYEE_SKILL

EmployeeNumber
SkillNumber

ProficiencyLevel
CourseTaken

Figure 6-17

Transformation of the
Mixed Entity Pattern

218 Part 2 Database Design

The database design of the E-R model for the data model in Figure 6-17(a) is shown in
Figure 6-17(b). Notice that EmployeeNumber is both a part of the primary key of
EMPLOYEE_SKILL and also a foreign key to EMPLOYEE. The 1:N nonidentifying relationship
between SKILL and EMPLOYEE_SKILL is represented by placing the key of SKILL, which is
Name, in EMPLOYEE_SKILL. Note that EMPLOYEE_SKILL.Name is a foreign key but not
part of the primary key of EMPLOYEE_SKILL.

A similar strategy is used to transform the SALES_ORDER data model in Figure 6-18.
Figure 6-18(a) is a copy of the SALES_ORDER data model originally shown in Figure 5-33.
In Figure 6-18(b), the ID-dependent table, ORDER_LINE_ITEM, has SalesOrderNumber as part
of its primary key and as a foreign key. It has ItemNumber as a foreign key only.

The design transformation process for all HAS-A relationships can be
summarized by the phrase, �Place the primary key of the parent in the child

as a foreign key.� For strong entities, a 1:1 relationship can have either entity as the
parent, and therefore the foreign key can go in either table. For 1:N relationships, the
primary key of the parent goes in the child as the foreign key. For N:M relationships,
decompose the model into two 1:N relationships by defining an intersection table and
place the parent key of the parent in the child as a foreign key for each.

For identifying relationships, the primary key of the parent is already in the child, so
there is nothing more to do. For mixed relationships, on the identifying side, the primary
key of the parent is already in the child. On the nonidentifying side, place the primary
key of the parent in the child. In short, if you�re going to memorize just a few rules for
creating relationships, the first one is �HAS-A: Place the primary key of the parent in the
child as the foreign key.�

CustomerID

LastName
FirstName
Address
City
State
Zip
Phone

CUSTOMER

SalespersonID

SalespersonLastName
SalespersonFirstName
SalespersonCode

SALESPERSON

SalesOrderNumber

Date
Subtotal
Tax
Total

SALES_ORDER

ORDER_LINE_ITEM

SalesOrderNumber
LineNumber

Quantity
UnitPrice
ExtendedPrice

ItemNumber

UnitPrice
Description

ITEM

CustomerID

LastName
FirstName
Address
City
State
Zip
Phone

CUSTOMER

SalespersonID

SalespersonLastName
SalespersonFirstName
SalespersonCode

SALESPERSON

SalesOrderNumber

Date
Subtotal
Tax
Total
CustomerID (FK)
SalespersonID (FK)

SALES_ORDER

ORDER_LINE_ITEM

SalesOrderNumber (FK)
LineNumber

Quantity
UnitPrice
ExtendedPrice
ItemNumber (FK)

ItemNumber

UnitPrice
Description

ITEM

(a) Data Model of SALES_ORDER
Pattern from Figure 5-33

(b) Database Design for the
SALES_ORDER Pattern

Figure 6-18

Transformation of the
SALES_ORDER Pattern

Chapter 6 Transforming Data Models into Database Designs 219

GRADUATE

StudentID (FK)

UndergraduateGPA
ScoreOnGMAT

STUDENT

StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE

StudentID (FK)

HighSchoolGPA
ScoreOnSAT

(b) Database Design for the
Supertype/Subtype Relationship

isGradStudent

GRADUATE

StudentID

UndergraduateGPA
ScoreOnGMAT

STUDENT

StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE

StudentID

HighSchoolGPA
ScoreOnSAT

(a) Data Model of the Supertype/Subtype
Relationship from Figure 5-13(a)

Figure 6-19

Transformation of the
Supertype/Subtype Entities

Relationships Between Supertype and Subtype Entities

Representing relationships between supertype entities and their subtypes is easy. Recall
that these relationships are also called IS-A relationships because a subtype and its super-
type are representations of the same underlying entity. A MANAGER (subtype) is an
EMPLOYEE (supertype), and a SALESCLERK (subtype) is also an EMPLOYEE (supertype).
Because of this equivalence, the keys of all subtype tables are identical to the key of the
supertype table.

Figure 6-19(a) shows the data model in Figure 5-13(a), an example for two subtypes of
STUDENT. Notice that the key of STUDENT is StudentID and that the key of each of the
subtypes also is StudentID. UNDERGRADUATE.StudentID and GRADUATE.StudentID are
both primary keys and foreign keys to their supertype.

Discriminator attributes cannot be represented in relational designs. In Figure 6-19(b), we
can do nothing with isGradStudent except note in the design documentation that isGradStudent
determines subtype. Application programs will need to be written to use isGradStudent to
determine which subtype pertains to a given STUDENT.

Recursive Relationships

The representation of recursive relationships is just an extension of the techniques used for
representing relationships between strong entities. These techniques may be a bit difficult to
comprehend at first because they appear strange, but they involve principles that you have
already learned.

1:1 Recursive Relationships
Consider the 1:1 recursive BOXCAR relationship in Figure 6-20(a), which is the same data
model we developed in Figure 5-38. To represent the relationship, we create a foreign key in
BOXCAR that contains the identifier of the boxcar ahead, as shown in Figure 6-20(b). Because
the relationship is 1:1, we make the foreign key unique by defining it as unique (shown here as
an alternate key). This restriction enforces the fact that a boxcar can have at most one boxcar
in front of it.

Notice that both sides of the relationship are optional. This occurs because the last car
on the train is ahead of no other car, and because the first car on the train has no other car
ahead of it. If the data structure were circular, this restriction would not be necessary. For
example, if you wanted to represent the sequence of names of the calendar months, and you
wanted December to lead to January, then you could have a 1:1 recursive structure with
required children.

220 Part 2 Database Design

BoxCarNumber

Boxcar Ahead

Capacity
Type

BOXCAR

First Boxcar

BoxCarNumber

Boxcar Ahead

Capacity
Type
BoxCarNumberAhead (FK) (AK1.1)

BOXCAR

(a) Data Model for a 1:1 Recursive
Relationship in Figure 5-38

(b) Database Design for a 1:1
Recursive Relationship

EngineNumber

Type
HorsePower

ENGINE

First Boxcar

EngineNumber

Type
HorsePower

ENGINE

Figure 6-20

Representing 1:1 Recursive
Relationships

EmployeeName

Other Data...

EMPLOYEE

Manages

(a) Data Model for a 1:N Recursive
Relationship in Figure 5-41

EmployeeName

Other_Data_...
EmployeeNameMgr (FK)

EMPLOYEE

Manages

(b) Database Design for a 1:N
Recursive Relationship

Figure 6-21

Representing 1:N Recursive
Relationships

If you find the concept of recursive relationships confusing, try this trick.
Assume that you have two entities: BOXCAR_AHEAD and BOXCAR_BEHIND,

each having the same attributes. Notice that there is a 1:1 relationship between these two
entities. Replace each entity with its table. Like all 1:1 strong entity relationships, you can
place the key of either table as a foreign key in the other table. For now, place the key of
BOXCAR_AHEAD into BOXCAR_BEHIND.

Now realize that BOXCAR_AHEAD only duplicates data that reside in BOXCAR_BEHIND.
The data are unnecessary. So, discard BOXCAR_AHEAD and you will have the same design
as shown in Figure 6-20(b).

1:N Recursive Relationships
As with all 1:N relationships, 1:N recursive relationships are represented by placing the
primary key of the parent in the child as a foreign key. Consider the Manages relationship in
Figure 6-21(a), which is the data model we developed in Figure 5-41. In this case, we place the
name of the manager in each employee�s row. Thus, in Figure 6-21(b), the EmployeeNameMgr
has been added to the EMPLOYEE table.

Notice that both the parent and the child are optional. This is true because the lowest-
level employees manage no one and because the highest-level person, the CEO or other
most senior person, has no manager. If the data structure were circular, this would not be
the case.

Chapter 6 Transforming Data Models into Database Designs 221

N:M Recursive Relationships
The trick for representing N:M recursive relationships is to decompose the N:M relationship
into two 1:N relationships. We do this by creating an intersection table, just as we did for N:M
relationships between strong entities.

Figure 6-22(a) is the data model we developed in Figure 5-43. It shows the solution to an
example for a bill-of-materials problem. Each part has potentially many subordinate parts, and
each part can be used as a component in potentially many other parts. To represent this
relationship, create an intersection table that shows the correspondence of a part/part use.
You can model upwards or downwards. If the former, the intersection table will carry the
correspondence of a part and where that part is used. If the latter, the intersection table will
carry the correspondence of a part and the parts that it contains. Figure 6-22(b) shows the
intersection table for modeling downwards in the bill of materials.

PartName

Other Data

PART

PartName

Other_Data_...

PART

PART_PART_INT

PartName (FK)
ContainsPartName (FK)

Contains_Part Is_Contained_In_Part

(b) Database Design for an N:M
Recursive Relationship

(a) Database Design for an N:M
Recursive Relationship

in Figure 5-43

Figure 6-22

Representing N:M Recursive
Relationships

Again, if you find this to be confusing, assume that you have two different
tables, one called PART and a second called CONTAINED_PART. Create

the intersection table between the two tables. Note that CONTAINED_PART duplicates
the attributes in PART, and is thus unnecessary. Eliminate the table and you will have the
design in Figure 6-22(b).

Representing Ternary and Higher-Order Relationships

As we discussed in Chapter 5, ternary and higher-order relationships can be represented by
multiple binary relationships, and such a representation usually works without any problems.
However, in some cases, there are constraints that add complexity to the situation. For
example, consider the ternary relationship among the entities ORDER, CUSTOMER, and
SALESPERSON. Assume that the relationship from CUSTOMER to ORDER is 1:N and that the
relationship from SALESPERSON to ORDER also is 1:N. We can represent the three-part
relationship among ORDER:CUSTOMER:SALESPERSON as two separate binary relationships:
one between ORDER and CUSTOMER and a second between SALESPERSON and
CUSTOMER. The design of the tables will be:

CUSTOMER (CustomerNumber, {nonkey data attributes})

SALESPERSON (SalespersonNumber, {nonkey data attributes})

ORDER (OrderNumber, {nonkey data attributes}, CustomerNumber,
SalespersonNumber)

222 Part 2 Database Design

1000
2000
3000

CustomerNumber Other nonkey data SalespersonNumber
10
20
30

100
200
300
400
500

1000
2000
1000
3000
2000

OrderNumber Other nonkey data SalespersonNumber CustomerNumber
10
20
10
30

CUSTOMER Table

ORDER Table
Binary MUST Constraint

Only 20 is allowed here

10
20
30

SalespersonNumber Other nonkey data

SALESPERSON TableFigure 6-23

Ternary Relationship with
a MUST Constraint

Suppose, however, that the business has a rule that each CUSTOMER can place orders
only with a particular SALESPERSON. In this case, the ternary relationship ORDER:
CUSTOMER:SALESPERSON is constrained by an additional binary 1:N relationship between
SALESPERSON and CUSTOMER. To represent the constraint, we need to add the key of
SALESPERSON to CUSTOMER. The three tables will now be:

CUSTOMER (CustomerNumber, {nonkey data attributes}, SalespersonNumber)

SALESPERSON (SalespersonNumber, {nonkey data attributes})

ORDER (OrderNumber, {nonkey data attributes}, CustomerNumber,
SalespersonNumber)

The constraint that a particular CUSTOMER is sold to by a particular SALESPERSON
means that only certain combinations of CustomerNumber and SalespersonNumber can exist
together in ORDER. Unfortunately, this constraint cannot be expressed in a relational model.
It must be documented in the design, however, and enforced by program code, as shown in
Figure 6-23.

A constraint that requires one entity to be combined with another entity is called a
MUST constraint. Other similar constraints are the MUST NOT constraint and the MUST
COVER constraint. In a MUST NOT constraint, the binary relationship indicates combina-
tions that are not allowed to occur in the ternary relationship. For example, the ternary
relationship PRESCRIPTION:DRUG:CUSTOMER shown in Figure 6-24 can be constrained
by a binary relationship in the ALLERGY table that lists the drugs that a customer is not
allowed to take.

In a MUST COVER constraint, the binary relationship indicates all combinations that
must appear in the ternary relationship. For example, consider the relationship AUTO_REPAIR:
REPAIR:TASK in Figure 6-25. Suppose that a given REPAIR consists of a number of TASKs, all
of which must be performed for the REPAIR to be successful. In this case, in the table
AUTO_REPAIR, when a given AUTO_REPAIR has a given REPAIR, then all of the TASKs for
that REPAIR must appear as rows in that table.

None of the three types of binary constraints discussed here can be represented in the rela-
tional design. Instead, they are documented in the design and implemented in application code.

Chapter 6 Transforming Data Models into Database Designs 223

100
200
300
400
500

1000
2000
1000
3000
2000

PrescriptionNumber Other nonkey data DrugNumber CustomerNumber
45
10
70
20

1000
1000
2000
2000
3000
3000
3000

CustomerNumber Other nonkey data
10
20
20
45
30
45
70

10
20
30
45
70
90

DrugNumber

DrugNumber

Other nonkey data

DRUG Table

ALLERGY Table

PRESCRIPTION Table

Binary MUST NOT Constraint

Neither 20 nor 45 can appear here

Figure 6-24

Ternary Relationship with
a MUST NOT Constraint

100
100
100
200
200

1001
1002
1003
2001

InvoiceNumber Other nonkey dataRepairNumber TaskNumber
10
10
10
20
20

AUTO_REPAIR Table

2002 must appear here

1001
1002
1003
2001
2002
3001
4001

TaskNumber Other nonkey data
10
10
10
20
20
30
40

RepairNumber

TASK Table

Binary MUST COVER Constraint

10
20
30
40

RepairNumber Other nonkey data

REPAIR Table

Figure 6-25

Ternary Relationship with
a MUST COVER Constraint

224 Part 2 Database Design

CollegeName

DeanFirstName
DeanLastName
Phone
Building
Room

COLLEGE

StudentNumber

Title
StudentFirstName
StudentLastName
HomeStreet
HomeCity
HomeState
HomeZip
Phone

STUDENT

ProfessorFirstName
ProfessorLastName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Major

Chairs / Chairs By

Advises / Advised By

Figure 6-26

Data Model for Highline
University in Figure 5-52

Relational Representation of the Highline University Data Model

Let�s consider the data model we created for Highline University in Chapter 5. Our final data
model for Highline University is shown in Figure 6-26.

Using the principles we have discussed in this chapter, we can turn this into a relational
database design, and the resulting database design is a straightforward application of the principles
described in this chapter. The database design for Highline University is shown in Figure 6-27.

CollegeName

DeanFirstName
DeanLastName
Phone
Building
Room

COLLEGE

StudentNumber

Major

Adviser

Title
DepartmentName (FK)
StudentFirstName
StudentLastName
HomeStreet
HomeCity
HomeState
HomeZip
Phone
ProfessorDepartment (FK)
ProfessorFirstName (FK)
ProfessorLastName (FK)

STUDENT

DepartmentName

Phone
TotalMajors
Room
CollegeName (FK)
ProfessorFirstName (FK) (AK1.1)
ProfessorLastName (FK) (AK1.2)

DEPARTMENT

ProfessorFirstName
ProfessorLastName

Building
OfficeNumber
Phone

PROFESSOR

APPOINTMENT

DepartmentName (FK)
ProfessorFirstName (FK)
ProfessorLastName (FK)

Chairs / Chaired By

Title
Terms

Figure 6-27

Database Design for
Highline University

Chapter 6 Transforming Data Models into Database Designs 225

You should review Figure 6-27 to ensure that you understand the representation of every
relationship. Note that there are actually two foreign key references to a DepartmentName
primary key column in STUDENT. The first is DepartmentName (FK), which is the foreign key
linking to the DepartmentName primary key in DEPARTMENT. This relationship has the
referential integrity constraint:

DepartmentName in STUDENT must exist in DepartmentName in DEPARTMENT

The second is ProfessorDepartment (FK), which is part of the composite foreign key
(ProfessorDepartment, ProfessorFirstName, ProfessorLastName). This foreign key links to the
primary key (DepartmentName, ProfessorFirstName, ProfessorLastName) in APPOINTMENT
and has the referential integrity constraint:

(ProfessorDepartment, ProfessorFirstName, ProfessorLastName) in STUDENT
must exist in (DepartmentName, ProfessorFirstName, ProfessorLastName) in APPOINTMENT

Note that we had to change DepartmentName in APPOINTMENT to ProfessorDepartment
in STUDENT because we cannot have two columns named DepartmentName in STUDENT and
we had already used DepartmentName as the foreign key linking to DEPARTMENT.

This illustrates that a foreign key does not have to have the same name as the primary key
it links to. As long as the referential integrity constraints are correctly specified, the foreign key
name can be whatever we want it to be.

In addition to the two referential integrity constraints above our database design, we will
also have the following:

CollegeName in DEPARTMENT must exist in CollegeName in COLLEGE

(ProfessorFirstName, ProfessorLastName) in DEPARTMENT
must exist in (ProfessorFirstName, ProfessorLastName) in PROFESSOR

DepartmentName in APPOINTMENT must exist in DepartmentName in DEPARTMENT

(ProfessorFirstName, ProfessorLastName) in APPOINTMENT
must exist in (ProfessorFirstName, ProfessorLastName) in PROFESSOR

Design for Minimum Cardinality

The third and last step of transforming data models into database designs is to create a plan for
enforcing minimum cardinality. Unfortunately, this step can be considerably more complicated
than the first two design steps. Relationships that have required children entities are particularly
problematic because we cannot enforce such constraints with database structures. Instead, as
you will see, we must design procedures for execution by the DBMS or by applications.

Relationships can have one of four minimum cardinalities: parent optional and child
optional (O-O), parent mandatory and child optional (M-O), parent optional and child
mandatory (O-M), or parent mandatory and child mandatory (M-M). As far as enforcing
minimum cardinality is concerned, no action needs to be taken for O-O relationships, and we
need not consider them further. The remaining three relationships pose restrictions on insert,
update, and delete activities.

Figure 6-28 summarizes the actions needed to enforce minimum cardinality. Figure 6-28(a)
shows needed actions when the parent row is required (M-O and M-M relationships), and
Figure 6-28(b) shows needed actions when the child row is required (O-M and M-M relationships).
In these figures and the accompanying discussion, the term action means minimum cardinality
enforcement action. We use the shorter term action for ease of discussion.

To discuss these rules, we will use the database design for storing data on several companies
shown in Figure 6-29. In this diagram, we have a 1:N, M-O relationship between COMPANY and
DEPARTMENT and between DEPARTMENT and EMPLOYEE, and a 1:N, M-M relationship
between COMPANY and PHONE_CONTACT. In the COMPANY-to-DEPARTMENT relationship,

226 Part 2 Database Design

Parent Required Action on Parent Action on Child

Insert None. Get a parent.
Prohibit.

Modify key or
foreign key

Change children�s foreign
key values to match new
value (cascade update).
Prohibit.

OK, if new foreign
key value matches
existing parent.
Prohibit.

Delete Delete children
(cascade delete).
Prohibit.

None.

(a) Actions When the Parent Is Required

Child Required Action on Parent Action on Child

Insert Get a child.
Prohibit.

None.

Modify key or
foreign key

Update the foreign key of
(at least one) child.
Prohibit.

If not last child, OK.
If last child, prohibit
or find a replacement.

Delete None. If not last child, OK.
If last child, prohibit
or find a replacement.

(b) Actions When the Child Is Required

Figure 6-28

Summary of Actions to
Enforce Minimum Cardinality

CompanyName

City
Country
Volume

COMPANY

PHONE_CONTACT

Contact
CompanyName (FK)

PhoneNumber

DepartmentName

Budgetcode
MailStop
CompanyName (FK)

DEPARTMENT

EmployeeNumber

EmployeeName
Phone
Email (AK1.1)
HireDate
ReviewDate
EmpCode
DepartmentName (FK)

EMPLOYEE

Figure 6-29

Database Design for Data
on Several Companies

COMPANY (on the 1 side of the relationship) is the parent entity and DEPARTMENT (on the N
side of the relationship) is the child entity. In the DEPARMENT-to-EMPLOYEE relationship,
DEPARTMENT (on the 1 side of the relationship) is the parent entity and EMPLOYEE (on the N
side of the relationship) is the child entity. In the COMPANY-to-PHONE_CONTACT relationship,
COMPANY (on the 1 side of the relationship) is the parent entity and PHONE_CONTACT (on the
N side of the relationship) is the child entity.

Chapter 6 Transforming Data Models into Database Designs 227

Actions When the Parent Is Required

When the parent is required, we need to ensure that every row of the child table has a valid,
non-null value of the foreign key. To accomplish this, we must restrict actions to update or
delete the parent�s primary key and actions to create or modify the child�s foreign key. Consider
actions on the parent first.

Actions on the Parent Row When the Parent Is Required
According to Figure 6-28 (a), when a new parent is created, nothing needs to be done. No child row
can yet be dependent upon the new row. In our example, we can create a new DEPARTMENT and
not worry about minimum cardinality enforcement in EMPLOYEE.

However, consider what happens if we attempt to change the value of an existing parent
row�s primary key. If that row has children, then those children have a foreign key value that
matches the current primary key value. If the primary key of the parent changes, then any
existing children will become orphans; their foreign key values will no longer match a parent
row. To prevent the creation of orphans, either the foreign key values must be changed to
match the new value of the parent�s primary key or the modification to the parent�s primary
key must be prohibited.

In our example, if a DEPARTMENT attempts to change its DepartmentName from �Info
Sys� to �Information Systems�, then any child rows in EMPLOYEE that have a foreign key value of
�Info Sys� will no longer match a parent and will be orphans. To prevent orphans, either the
values of the foreign key in EMPLOYEE must also be changed to �Information Systems� or the
update to the primary key in DEPARTMENT must be prohibited. The policy of propagating a
change from the parent�s primary key to the children�s foreign key is called cascading updates.

Now consider what happens when there is an attempt to delete a parent. If that row has
children, and if the deletion is allowed, then the children will become orphans. Hence, when
such a delete attempt is made, either the children must be deleted as well or the deletion must
be prohibited. Deleting the children along with the parent is called cascading deletions.
In our example, when an attempt is made to delete a DEPARTMENT, either all related rows in
EMPLOYEE must be deleted as well or the deletion must be disallowed.

Generally, cascading deletions are not chosen for relationships between
strong entities. The deletion of a DEPARTMENT row should not force the

deletion of EMPLOYEE rows. Instead, the deletion should be disallowed. To remove a
DEPARTMENT row, the EMPLOYEE rows would be reassigned to a new DEPARTMENT
and then the DEPARTMENT row would be deleted.

However, cascading deletions are almost always chosen for weak child entities. For
example, when you delete a COMPANY, you should always delete all of the weak
PHONE_NUMBER rows that depend on that COMPANY.

Actions on the Child Row When the Parent Is Required
Now consider actions on the child row. If the parent is required, then when a new child row is
created, the new row must have a valid foreign key value. When we create a new EMPLOYEE,
for example, if DEPARTMENT is required, then the new EMPLOYEE row must have a valid
value for DepartmentName. If not, the insert must be disallowed. Usually there is a default
policy for assigning parents to a new row. In our example, when a new row is added to
EMPLOYEE, the default policy could be to add the new employee to the department named
�Human Resources�.

With regards to modifications to the foreign key, the new value must match a value of the
primary key in the parent. In EMPLOYEE, if we change DepartmentName from �Accounting� to
�Finance�, then there must already be a DEPARTMENT row with the primary key value of
�Finance�. If not, the modification must be prohibited.

If the parent row is required, there are no restrictions on the deletion of the child row. The
child can go away without consequence on the parent.

228 Part 2 Database Design

When the parent has a surrogate key, the enforcement actions for update
are different between the parent and the child. On the parent side, the

surrogate key will never change, and hence update actions can be ignored. On the child
side, however, the foreign key can change if the child switches to a new parent. Hence,
on the parent side, you can ignore actions when the key is a surrogate. On the child side,
however, you must consider update actions even when the parent�s key is a surrogate.

Actions When the Child Is Required

When the child is required, we need to ensure that there is at least one child row for the parent
at all times. The last child cannot leave the parent. For example, in the DEPARTMENT-
to-EMPLOYEE relationship, if a DEPARTMENT requires an EMPLOYEE, then the last
EMPLOYEE cannot leave the DEPARTMENT. This has ramifications on actions on the child,
as shown in Figure 6-28(b).

Enforcing required children is much more difficult than enforcing required parents.
To enforce a required parent, we just need to check for a match between primary key and
foreign key values. To enforce a required child, we must count the number of children that a
parent has. This difference forces us to write code to enforce required children. To begin,
consider the required child actions from the perspective of the parent.

Actions on the Parent Row When the Child Is Required
If the child is required, then we cannot create a new parent without also creating a relationship
to a child. This means that we must either find an existing child row and change its foreign key
to match that of the new parent or we must create a new child row at the same time the parent
is created. If neither action can be taken, then the insertion of the new parent must be prohib-
ited. These rules are summarized in the first row of Figure 6-28(b).

If the child is required, then to modify the parent�s primary key, either the key of at least
one child must also be changed or the update must be disallowed. This restriction never
applies to parents with surrogate keys because their values never change.

Finally, if the child is required and the parent is deleted, no action need be taken. Because it is
the child that is required, and not the parent, the parent can disappear without any consequence.

Actions on the Child Row When the Child Is Required
As shown in Figure 6-28(b), if the child is required, then no special action needs to be taken
when inserting a new child. The child comes into existence without influencing any parent.

However, there are restrictions on updating the foreign key of a required child. In particu-
lar, if the child is the last child of its current parent, then the update cannot occur. If it were to
occur, the current parent would be childless, and that is not allowed. Thus, a procedure must
be written to determine the number of children of the current parent. If that number is two or
greater, then the child foreign key value can be changed. Otherwise the update is prohibited.

A similar restriction pertains to the deletion of required children. If the child is the last
child to the parent, then the deletion is not allowed. Otherwise, the child can be deleted
without restriction.

Implementing Actions for M-O Relationships

Figure 6-30 summarizes the application of the actions in Figure 6-28 for each type of minimum
cardinality. As stated earlier, O-O relationships pose no restrictions and need not be considered.

M-O relationships require that the actions in Figure 6-28(a) be enforced. We need to make
sure that every child has a parent and that operations on either parent or child rows never
create orphans.

Fortunately, these actions are easy to enforce using facilities available in most DBMS
products. It turns out that we can enforce these actions with just two limitations. First, we
need to define a referential integrity constraint that ensures that every foreign key value has a
match in the parent table. Second, we make the foreign key column NOT NULL. With these
two restrictions, all of the actions in Figure 6-28(a) will be enforced.

Chapter 6 Transforming Data Models into Database Designs 229

Relationship
Minimum
Cardinality

Action to Apply

NothingO-O

Remarks

M-O Parent-required actions
[Figure 6-28(a)]

Child-required actions
[Figure 6-28(b)]

Easily enforced by DBMS;
define referential integrity
constraint and make foreign
key NOT NULL.

O-M Difficult to enforce. Requires
use of triggers or other
application code.

Parent-required actions
and child-required actions
[Figures 6-28(a) and 6-28(b)]

M-M Very difficult to enforce. Requires
a combination of complex
triggers. Triggers can lock each
other out. Many problems!

Figure 6-30

Actions to Apply to Enforce
Minimum Cardinality

Consider the DEPARTMENT-to-EMPLOYEE example. If we define the referential integrity
constraint

DepartmentName in EMPLOYEE must exist in DepartmentName in DEPARTMENT

then we know that every value of DepartmentName in EMPLOYEE will match a value
in DEPARTMENT. If we then make DepartmentName required, we know that every row in
EMPLOYEE will have a valid DEPARTMENT.

Almost every DBMS product has facilities for defining referential integrity constraints. You
will learn how to write SQL statements for that purpose in the next chapter. In those statements,
you will have the option of declaring whether updates and deletions are to cascade or are to be
prohibited. Once you have defined the constraint and made the foreign key NOT NULL, the
DBMS will take care of all of the actions in Figure 6-28 (a) for you.

Recall that in a 1:1 relationship between strong entities the key of either
table can be placed in the other table. If the minimum cardinality of such

a relationship is either M-O or O-M, it is generally best to place the key in the optional
table. This placement will make the parent required, which is easier to enforce. With a
required parent, all you have to do is define the referential integrity constraint and set the
foreign key to NOT NULL. However, if you place the foreign key so that the child is
required, let the work begin! You will have your hands full, as you are about to see.

Implementing Actions for O-M Relationships

Unfortunately, if the child is required, the DBMS does not provide much help. No easy mechanism
is available to ensure that appropriate child foreign keys exist nor is there any easy way to
ensure that valid relationships stay valid when rows are inserted, updated, or deleted. You are on
your own.

In most cases, required children constraints are enforced using triggers, which are
modules of code that are invoked by the DBMS when specific events occur. Almost all DBMS
products have triggers for insert, update, and delete actions. Triggers are defined for these
actions on a particular table. Thus, you can create a trigger on CUSTOMER INSERT or a trigger
on EMPLOYEE UPDATE, and so forth. You will learn more about triggers in Chapter 7.

230 Part 2 Database Design

To see how you would use triggers to enforce required children, consider Figure 6-28(b)
again. On the parent side, we need to write a trigger on insert and update on the parent row.
These triggers either create the required child or they steal an existing child from another
parent. If they are unable to perform one of these actions, they must cancel the insert or
update.

On the child side, a child can be inserted without problem. Once a child gets a parent,
however, it cannot leave that parent if it is the last or only child. Hence, we need to write
update and delete triggers on the child that have the following logic: If the foreign key is null,
the row has no parent, and the update or delete can proceed. If the foreign key does have a
value, however, check whether the row is the last child. If the row is the last child, then the
trigger must do one of the following:

� Delete the parent.
� Find a substitute child.
� Disallow the update or delete.

None of these actions will be automatically enforced by the DBMS. Instead, you must
write code to enforce these rules. You will see generic examples of such code in the next
chapter and real examples for SQL Server 2008 R2 in Chapter 10, Oracle Database 11g in
Chapter 10A, and MySQL 5.5 in Chapter 10B.

Implementing Actions for M-M Relationships

It is very difficult to enforce M-M relationships. All of the actions in both Figure 6-28(a) and
Figure 6-28(b) must be enforced simultaneously. We have a needy parent and a needy child,
and neither will let go of the other.

Consider, for example, what would happen if we change the relationship between
DEPARTMENT and EMPLOYEE in Figure 6-29 to M-M, and the effect that would have on the
creation of new rows in DEPARTMENT and EMPLOYEE. On the DEPARTMENT side, we must
write an insert department trigger that tries to insert a new EMPLOYEE for the new
DEPARTMENT. However, the EMPLOYEE table will have its own insert trigger. When we try to
insert the new EMPLOYEE, the DBMS calls the insert employee trigger, which will prevent the
insertion of an EMPLOYEE unless it has a DEPARTMENT row. But the new DEPARTMENT row
does not yet exist because it is trying to create the new EMPLOYEE row, which does not exist
because the new DEPARTMENT row does not yet exist, and round and round we go!

Now consider a deletion in this same M-M relationship. Suppose we want to delete a
DEPARTMENT. We cannot delete a DEPARTMENT that has any EMPLOYEE children. So,
before deleting the DEPARTMENT, we must first reassign (or delete) all of the employees in
that department. However, when we try to reassign the last EMPLOYEE, an EMPLOYEE
update trigger will be fired that will not allow the last employee to be reassigned. (The trigger
is programmed to ensure that every DEPARTMENT has at least one EMPLOYEE.) We have a
stalemate; the last employee cannot get out of the department, and the department cannot be
deleted until all employees are gone!

This problem has several solutions, but none are particularly satisfying. In the next chapter,
we will show one solution using SQL Views. That solution is complicated and requires careful
programming that is difficult to test and fix. The best advice is to avoid M-M relationships if
you can. If you cannot avoid them, budget your time with foreknowledge that a difficult task
lies ahead.

Designing Special Case M-M Relationships

Not all M-M relationships are as bad as the last section indicates. Although M-M relationships
between strong entities generally are as complicated as described, M-M relationships between
strong and weak entities are often easier. For example, consider the relationship between
COMPANY and PHONE_CONTACT in Figure 6-29. Because PHONE_CONTACT is an
ID-dependent weak entity, it must have a COMPANY parent. In addition, assume that applica-
tion requirements indicate that each COMPANY row must have at least one row in
PHONE_CONTACT. Hence, the relationship is M-M.

Chapter 6 Transforming Data Models into Database Designs 231

However, transactions are almost always initiated from the side of the strong entity.
A data entry form will begin with a COMPANY and then, somewhere in the body of the form,
the data from the PHONE_CONTACT table will appear. Hence, all insert, update, and deletion
activity on PHONE_CONTACT will come as a result of some action on COMPANY. Given this
situation, we can ignore the Action on Child columns in Figure 6-28(a) and Figure 6-28(b),
because no one will ever try to insert, modify, or delete a new PHONE_CONTACT except in
the context of inserting, modifying, or deleting a COMPANY.

Because the relationship is M-M, however, we must take all of the actions in the Action on
Parent columns of both Figure 6-28(a) and Figure 6-28(b). With regards to inserts on parents,
we must always create a child. We can meet this need by writing a COMPANY INSERT trigger
that automatically creates a new row of PHONE_CONTACT with null values for Contact and
PhoneNumber.

With regard to updates and deletions, all we need to do is to cascade all of the remaining
actions in Figure 6-28(a) and Figure 6-28(b). Changes to COMPANY.CompanyName will be
propagated to PHONE_CONTACT.CompanyName. The deletion of a COMPANY will auto-
matically delete that company�s PHONE_CONTACT rows. This makes sense; if we no longer
want data about a company, we certainly no longer want its contact and phone data.

Because of the difficulty of enforcing M-M relationships, developers look
for special circumstances to ease the task. Such circumstances usually

exist for relationships between strong and weak entities, as described. For relationships
between strong entities, such special circumstances may not exist. In this case, the M-M
cardinality is sometimes just ignored. Of course, this cannot be done for applications
such as financial management or operations that require careful records management,
but for an application such as airline reservations, where seats are overbooked anyway,
it might be better to redefine the relationship as M-O.

Documenting the Minimum Cardinality Design

Because enforcing minimum cardinality can be complicated, and because it often involves the
creation of triggers or other procedures, clear documentation is essential. Because the design
for the enforcement of required parents is easier than that for required children, we will use
different techniques for each.

Documenting Required Parents
Database modeling and design tools such as Computer Associates ERwin, Microsoft Visio, and
Oracle MySQL Workbench allow you to define referential integrity (RI) actions on each
table. These definitions are useful for documenting the actions necessary for required parent.
According to Figure 6-28(a), three design decisions are necessary for required parents:
(1) determining whether updates to the parent�s primary key should cascade or be prohibited;
(2) determining whether deletions of the parent should cascade or be prohibited; and
(3) identifying how a parent row is to be selected on the insert of a child.

In theory, referential integrity actions can be used to document the actions
to be taken to enforce required children as well as required parents. When

they are used for both purposes, however, they become confusing and ambiguous. In
an M-M relationship, for example, a child may have one set of rules for insert because
of its required parent and another set of rules for insert because it is a required child. The
insert referential integrity action will be overloaded with these two purposes, and its
meaning will be ambiguous, at best. Hence, in this text we will use referential integrity
actions only for documenting required parents. We will use another technique, described
next, for documenting required children.

232 Part 2 Database Design

HouseID

Street
City
State_Province
Zip_PostalCode
Country

HOUSE

InspectionNumber

Date
Inspector
Company
FileNumber
HouseID (FK)

INSPECTION

Figure 6-31

HOUSE-to-INSPECTION O-M
Relationship

INSPECTION Is
Required

Action on HOUSE Action on INSPECTION

Insert Trigger to create row in
INSPECTION when
inserting HOUSE.
Disallow HOUSE insert
if INSPECTION data are
not available.

Not possible, surrogate
key.

None.

Modify key or
foreign key

Prohibit. HOUSE has
surrogate key and
inspections never change
to a different house.

None.Delete Trigger to prohibit if sole
INSPECTION report.

Figure 6-32

Actions to Enforce the O-M
Relationship Between
HOUSE and INSPECTION

Documenting Required Children
One easy and unambiguous way for defining the actions to enforce a required child is to use
Figure 6-28(b) as a boilerplate document. Create a copy of this figure for each relationship
that has a required child and fill in the specific actions for insert, update, and delete
operations.

For example, consider Figure 6-31, which shows the O-M relationship between HOUSE
and INSPECTION. A given house must have at least one inspection, but an inspection need
not be related to any house. HOUSE has a surrogate key, HouseID, and other columns, as
shown in Figure 6-31.

Because the HOUSE-to-INSPECTION relationship has a required child, we will fill out the
table in Figure 6-28(b). Figure 6-32 shows the result. Here, triggers are described for HOUSE
insert and INSPECTION deletion. HOUSE update actions are unneeded because HOUSE has a
surrogate key, and INSPECTION update is prohibited because of the surrogate key and also
because inspections are never reassigned to a different house.

Chapter 6 Transforming Data Models into Database Designs 233

An Additional Complication

You should be aware of an additional complication that is beyond the scope of this text. A table
can participate in many relationships. In fact, there can be multiple relationships between the
same two tables. You need to specify a design for the minimum cardinality of every relationship.
The minimum cardinality of each relationship will vary. Some will be O-M, some will be M-O,
and some will be M-M. Some of the relationships will require triggers, which may mean that you
have several sets of insert, update, and delete triggers per table. This array of triggers is not only
complicated to write and test, the actions of different triggers may interfere with one another
during execution. You will need more experience and knowledge to design, implement, and test
such complex arrays of trigger code and DBMS constraints. For now, just be aware that these
problems exist.

Summary of Minimum Cardinality Design

Figure 6-33 summarizes the design for relationship minimum cardinality. It shows each type of
relationship, the design decisions that need to be made, and the documentation that should be
created. Use this figure as a guide.

Relationship
Minimum
Cardinality

Design Decisions to Be Made Design Documentation

M-O � Update cascade or prohibit?
� Delete cascade or prohibit?
� Policy for obtaining parent on insert of child

� Policy for obtaining child on insert of parent
� Primary key update cascade or prohibit?
� Policy for update of child foreign key
� Policy for deletion of child

Referential integrity (RI) actions plus documentation for
policy on obtaining parent for child insert.

O-M Use Figure 6-28(b) as a boilerplate.

All decisions for M-O and O-M above, plus how
to process trigger conflict on insertion of first
instance of parent/child and deletion of last
instance of parent/child.

M-M For mandatory parent, RI actions plus documentation for
policy on obtaining parent for child insert. For mandatory
child, use Figure 6-28(b) as a boilerplate. Add
documentation on how to process trigger conflict.

Figure 6-33

Summary of Design
Decisions for Minimum
Cardinality

The View Ridge Gallery Database

We conclude this chapter with an example database design problem. This design will be used
throughout the rest of the text, so take the time to understand it. This particular problem was
chosen because it has typical relationships and moderate complexity. It has enough challenges
to make it interesting, but not so many as to make it overwhelming.

Summary of Requirements

The View Ridge Gallery (View Ridge or VRG) is a small art gallery that sells contemporary
European and North American fine art, including lithographs, high-quality reproduction
prints, original paintings and other artwork, and photographs. All of the lithographs, prints,
and photos are signed and numbered, and the original art is usually signed. View Ridge also
provides art framing services. It creates a custom frame for each artwork (rather than selling
standardized, premade frames) and is known for its excellent collection of frame stock.

View Ridge emphasizes reproduction artworks of European Impressionist, Abstractionist,
and Modernist artists such as Wassily Kandinsky and Henri Matisse. For original art, View
Ridge concentrates on Northwest School artists, such as Mark Tobey, Morris Graves,
Guy Anderson, and Paul Horiuchi, and produces shows of contemporary artists who work in

234 Part 2 Database Design

� Track customers and their artist interests
� Record gallery�s purchases
� Record customers� art purchases
� List the artists and works that have appeared in the gallery
� Report how fast an artist�s works have sold and at what margin
� Show current inventory in a Web page

Figure 6-34

Summary of View Ridge
Gallery Database
Requirements

the Northwest School tradition or in Northwest Maritime art. The price of new reproduction
prints ranges up to $1,000, and prices for contemporary artists range from $500 to $10,000. The
price of art from the Northwest School artists varies considerably, depending on the artwork
itself. Small pencil, charcoal, or watercolor sketches may sell for as little as $2,000, whereas
major works can range from $10,000 to $100,000. Very occasionally, View Ridge may carry
Northwest School art priced up to $500,000, but art priced above $250,000 is more likely to be
sold at auction by a major art auction house.

View Ridge has been in business for 30 years and has one full-time owner, three salespeople,
and two workers who make frames, hang art in the gallery, and prepare artwork for shipment.
View Ridge holds openings and other gallery events to attract customers to the gallery. View
Ridge owns all of the art that it sells�even sales of contemporary artwork is treated as a
purchase by View Ridge that then is resold to a customer. View Ridge does not take items on
a consignment basis.

The requirements for the View Ridge application are summarized in Figure 6-34. First,
both the owner and the salespeople want to keep track of customers� names, addresses,
phone numbers, and e-mail addresses. They also want to know which artists have appeal to
which customers. The salespeople use this information to determine whom to contact when
new art arrives and to personalize verbal and e-mail communications with their customers.

When the gallery purchases new art, data about the artist, the nature of the work, the
acquisition date, and the acquisition price are recorded. Also, on occasion, the gallery repur-
chases art from a customer and resells it, thus a work may appear in the gallery multiple times.
When art is repurchased, the artist and work data are not reentered, but the most recent
acquisition date and price are recorded. In addition, when art is sold, the purchase date, sales
price, and identity of the purchasing customer are stored in the database.

Salespeople want to examine past purchase data so that they can devote more time to the
most active buyers. They also sometimes use the purchase records to identify the location of
artworks they have sold in the past.

For marketing purposes, View Ridge wants its database application to provide a list of
artists and works that have appeared in the gallery. The owner also would like to be able to
determine how fast an artist�s work sells and at what sales margin. The database application
also should display current inventory on a Web page that customers can access via the Internet.

The View Ridge Data Model

Figure 6-35 shows a data model for the View Ridge database. This model has two strong
entities: CUSTOMER and ARTIST. In addition, the entity WORK is ID-dependent on ARTIST,

LastName
FirstName

Nationality
DateOfBirth
DateDeceased

ARTISTEmail

LastName
FirstName
AreaCode
LocalNumber
Street
City
State
ZipPostalCode
Country

CUSTOMER

DateAcquired

AcquisitionPrice
DateSold
SalesPrice
AskingPrice

TRANS
PURCHASES/SOLD TO ACQUIRED CREATES/CREATED BY

HAS INTEREST IN/ADMIRED BY

Title
Copy

Medium
Description

WORK

Figure 6-35

View Ridge Gallery Data
Model

Chapter 6 Transforming Data Models into Database Designs 235

and the entity TRANS is ID-dependent on WORK. There is also a nonidentifying relationship
from CUSTOMER to TRANS.

Note that we are using the entity name TRANS instead of TRANSACTION. We are doing
this because transaction is a DBMS reserved word in most (if not all) DBMS products. Using
DBMS reserved words such as table, column, or other names can create problems. Similarly, we
cannot use the reserved word tran. The word trans, however, is not a DBMS reserved word, and
we can use it without problems. We will discuss this problem more when we discuss specific
DBMS products in Chapters 10, 10A, and 10B.

In the View Ridge data model, an artist may be recorded in the database even if none of his
or her works has appeared in the gallery. This is done to record customer preferences for artists
whose works might appear in the future. Thus, an artist may have from zero to many works.

The identifier of WORK is the composite (Title, Copy) because, in the case of lithographs
and photos, there may be many copies of a given title. Also, the requirements indicate that a
work may appear in the gallery many times, so there is a need for potentially many TRANS
entities for each WORK. Each time a work appears in the gallery, the acquisition date and price
must be recorded. Thus, each WORK must have at least one TRANS row.

A customer may purchase many works; this is recorded in the 1:N relationship from
CUSTOMER to TRANS. Note that this relationship is optional in both directions. Finally, there
is an N:M relationship between CUSTOMERs and ARTISTs. This is an N:M relationship
between strong entities�the team searched in vain for a missing attribute that would indicate
an association pattern rather than an N:M relationship.

Database Design with Data Keys

A database design for the data model in Figure 6-35 is shown in Figure 6-36. This design uses
data keys, and every primary key except the composite (ARTIST.LastName, ARTIST.First-
Name) has problems. The keys for WORK and TRANS are huge, and the key for CUSTOMER is
doubtful; many customers may not have an e-mail address. Because of these problems, this
design cries out for surrogate keys.

Surrogate Key Database Design
The database design for the View Ridge database using surrogate keys is shown in Figure 6-37.
Notice that two identifying relationships (TRANS-to-WORK) and (WORK-to-ARTIST) have
been changed to nonidentifying relationships represented by dashed lines. This was done
because once ARTIST has a surrogate key, there is no need to keep ID-dependent keys in
WORK and TRANS. Realize that WORK and TRANS are both weak entities even though they
are no longer ID-dependent.

Notice that (LastName, FirstName) in ARTIST has been defined as an alternate key. This
notation indicates that (LastName, FirstName) has a UNIQUE constraint, which ensures that
artists are not duplicated in the database. Similarly, (Title, Copy) in WORK is defined as an
alternate key so that a given work cannot appear more than once.

LastName
FirstName

Nationality
DateOfBirth
DateDeceased

ARTISTEmail

LastName
FirstName
AreaCode
LocalNumber
Street
City
State
ZipPostalCode
Country

CUSTOMER

LastName (FK)
FirstName (FK)
DateAcquired
Title (FK)
Copy (FK)

AcquisitionPrice
DateSold
SalesPrice
AskingPrice
Email (FK)

TRANS

PURCHASES/SOLD_TO ACQUIRED CREATES/CREATED_BY

HAS_INTEREST_IN ADMIRED_BY

LastName (FK)
FirstName (FK)
Title
Copy

Medium

WORK

LastName (FK)
FirstName (FK)
Email (FK)

CUSTOMER_ARTIST_INT

Figure 6-36

Initial View Ridge Gallery
Database Design

236 Part 2 Database Design

ArtistID

LastName (AK1.1)
FirstName (AK1.2)
Nationality
DateOfBirth
DateDeceased

ARTISTCustomerID

LastName
FirstName
AreaCode
LocalNumber
Street
City
State
ZipPostalCode
Country
Email (AK1.1)

CUSTOMER

TransactionID

DateAcquired
AcquisitionPrice
DateSold
SalesPrice
AskingPrice
WorkID (FK)
CustomerID (FK)

TRANS
PURCHASES/SOLD_TO ACQUIRED CREATES/CREATED_BY

HAS_INTEREST_IN ADMIRED_BY

WorkID

Title (AK1.1)
Copy (AK1.2)
Medium
Description
ArtistID (FK)

WORK

CustomerID (FK)
ArtistID (FK)

CUSTOMER_ARTIST_INT

Figure 6-37

Final View Ridge Gallery
Database Design

Parent Child

Relationship Cardinality

ARTIST

WORK

CUSTOMER

CUSTOMER

ARTIST

TRANS

TRANS

CUSTOMER_ARTIST_INT

CUSTOMER_ARTIST_INT

WORK

Nonidentifying

Nonidentifying

Identifying

Identifying

Type

Nonidentifying

1:N

1:N

1:N

1:N

MAX

1:N

M-M

O-O

M-O

M-O

MIN

M-O

Figure 6-38

Summary of View Ridge
Database Design
Relationships

The foreign key placement is a straightforward application of the techniques described in
this chapter, but note that the foreign key CustomerID in TRANS can have null values. This
specification allows the creation of a TRANS row when a work is acquired, before any
customer has purchased the work. All other foreign keys are required.

Minimum Cardinality Enforcement for Required Parents

According to Figure 6-28(a), for each relationship that involves a required parent, we need to
decide:

� Whether to cascade or prohibit updates of the parent�s primary key
� Whether to cascade or prohibit deletions of the parent
� How to obtain a parent when a new child is created

Because there is no consistent means of documenting these actions in commercial database
design products, we will use the templates in Figure 6-28 to document our decisions. Figure 6-38
summarizes the relationships in the View Ridge database design.

Because all tables have surrogate keys, there is no need for any update cascade behavior
for any parent. However, some update actions on child tables must be restricted. For
example, once a WORK (child) is assigned to an ARTIST (parent), it is never to change to
another parent. Because this database is used to record purchases and sales, View Ridge
management never wants to delete any data that are related to a transaction. From time
to time, they may remove prior year�s data in bulk, but they will do that using bulk data
transfer and not as part of any application.

Hence, any CUSTOMER, WORK, or ARTIST row that is related to a TRANS row is never to
be deleted. Note, however, that rows of CUSTOMERs who have never made a purchase and
rows of ARTISTs whose works have never been carried in the gallery can be deleted. If either a
CUSTOMER or ARTIST is deleted under these circumstances, the deletion will cascade to
rows in the intersection table CUSTOMER_ARTIST_INT.

Chapter 6 Transforming Data Models into Database Designs 237

Finally, referential integrity actions are necessary for obtaining a parent WORK when a
TRANS record is created and a parent ARTIST when a WORK record is created. In both cases,
the policy will be for the application program to provide the ID of the required parent at the
time the WORK or TRANS record is created.

All these actions are documented inFigure 6-39, where each part is based on the template
for required children shown in Figure 6-28(a). Note that there is no diagram for the
CUSTOMER-to-TRANS relationship, because that is an O-O relationship without a required
parent (or child).

ARTIST
Is Required
Parent

Action on ARTIST
(Parent)

Action on WORK
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit�ARTIST uses a
surrogate key.

Prohibit�ARTIST uses a
surrogate key.

Delete Prohibit if WORK exists�
data related to a
transaction is never deleted
(business rule).
Allow if no WORK exists
(business rule).

None.

(a) For the ARTIST-to-WORK Relationship

WORK
Is Required
Parent

Action on WORK
(Parent)

Action on TRANS
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit�WORK uses a
surrogate key.

Prohibit�WORK uses a
surrogate key.

Delete Prohibit�data related to
a transaction is never
deleted (business rule).

None.

(b) For the WORK-to-TRANS Relationship

Figure 6-39

Actions to Enforce Minimum
Cardinality for Required
Parents

CUSTOMER
Is Required
Parent

Action on CUSTOMER
(Parent)

Action on
CUSTOMER_ARTITST_INT
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit�CUSTOMER
uses a surrogate key.

Prohibit�CUSTOMER
uses a surrogate key.

Delete Prohibit if TRANS exists�
data related to a transaction
is never deleted
(business rule).
Allow if no TRANS exists
(business rule)�cascade
delete children.

None.

(c) For the CUSTOMER-to-CUSTOMER_ARTIST_INT Relationship

238 Part 2 Database Design

ARTIST
Is Required
Parent

Action on ARTIST
(Parent)

Action on
CUSTOMER_ARTITST_INT
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit�ARTIST uses a
surrogate key.

Prohibit�ARTIST uses a
surrogate key.

Delete Prohibit if TRANS exists�
data related to a transaction
is never deleted
(business rule).
Allow if no TRANS exists
(business rule)�cascade
delete children.

None.

(d) For the ARTIST-to-CUSTOMER_ARTIST_INT Relationship

Figure 6-39

Continued

TRANS
Is Required
Parent

Action on WORK
(Parent)

Action on TRANS
(Child)

Insert INSERT trigger on WORK
to create row in TRANS.
TRANS will be given data
for DateAcquired and
AcquisitionPrice. Other
columns will be null.

Will be created by
INSERT trigger on WORK.

Modify key or
foreign key

Prohibit�surrogate key. Prohibit�TRANS must
always refer to the WORK
associated with it.

Delete Prohibit�data related to a
transaction is never deleted
(business rule).

Prohibit�data related to a
transaction is never deleted
(business rule).

Figure 6-40

Actions to Enforce Minimum
Cardinality for Required
Children for the WORK-to-
TRANS Relationship

Minimum Cardinality Enforcement for the Required Child

As shown in the summary in Figure 6-38, TRANS is the only required child in the database
design in Figure 6-37. The actions to enforce that required child are documented in Figure 6-40,
which is based on the template in Figure 6-28(b).

According to this document, an INSERT trigger on WORK will be written to create the
required child. This trigger will be fired whenever a work is first introduced at the gallery. At that
time, a new TRANS row will be created to store the values for DateAcquired and AcquisitionPrice.

Changes to the primary key in WORK will not occur because it has a surrogate key.
Changes to the foreign key in TRANS will not be allowed because a TRANS never switches to
another work. As stated earlier, the gallery has the policy that no transaction or related data
will ever be deleted. Consequently, deletions of either WORK or TRANS are not allowed.

Column Properties for the View Ridge Database Design Tables

As we discussed at the beginning of this chapter, besides naming the columns in each table, we
must specify the column properties summarized in Figure 6-1 for each column: null status, data
type, default value (if any), and data constraints (if any). These are shown in Figure 6-41, where sur-
rogate keys are shown using the SQL Server IDENTITY({StartValue}, {Increment}) property to
specify the values the surrogate key will use. We will describe this function in Chapters 7 and 10A.

With this step, we have completed our database design for the View Ridge Gallery
database, and now we are ready to create it as an actual, functioning database in a DBMS
product. We will do so in many of the following chapters, so be certain that you understand the
View Ridge Gallery database design we have built.

Column Name

ArtistID

LastName

FirstName

Nationality

DateOfBirth

DateDeceased

Type

Int

Char (25)

Char (25)

Char (30)

Numeric (4)

Numeric (4)

Key

Primary Key

Alternate Key

Alternate Key

No

No

No

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NULL

Remarks

Surrogate Key
IDENTITY (1,1)

Unique (AK1.1)

Unique (AK1.2)

IN (�Canadian�,
�English�,
�French�,
�German�,
�Mexican�,
�Russian�,
�Spanish�,
�United States�)

(DateOfBirth <
DateDeceased)
(BETWEEN 1900
and 2999)

(BETWEEN 1900
and 2999)

(a) Column Characteristics for the ARTIST Table

ARTIST

Column Name

WorkID

Title

Copy

Medium

Description

ArtistID

Type

Int

Char (35)

Char (12)

Char (35)

Varchar
(1000)

Int

Key

Primary Key

Alternate Key

Alternate Key

No

No

Foreign Key

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NOT NULL

Remarks

Surrogate Key
IDENTITY (500,1)

Unique (AK1.1)

Unique (AK1.2)

DEFAULT
value =
�Unknown
provenance�

(b) Column Characteristics for the WORK Table

WORK

Figure 6-41

Column Properties
for the View Ridge
Database Design

Column Name

TransactionID

AcquisitionPrice

AskingPrice

DateSold

SalesPrice

WorkID

Type

Int

Numeric (8,2)

Numeric (8,2)

Date

Numeric (8,2)

Int

Key

Primary Key

No

No

No

No

Foreign Key

NULL Status

NOT NULL

NOT NULL

NULL

NULL

NULL

(DateAcquired <=
DateSold)

(SalesPrice > 0)
AND (SalesPrice
<=500000)

NOT NULL

CustomerID Int Foreign Key NULL

Remarks

Surrogate Key
IDENTITY (100,1)

DateAcquired Date No NOT NULL

(c) Column Characteristics for the TRANS Table

TRANS

240 Part 2 Database Design

Transforming a data model into a database design requires
three major tasks: replacing each entity with a table and each
attribute with a column; representing relationships and
maximum cardinality by placing foreign keys; and represent-
ing minimum cardinality by defining actions to constrain
activities on values of primary and foreign keys.

During database design, each entity is replaced by a
table. The attributes of the entity become columns of the
table. The identifier of the entity becomes the primary key of
the table, and candidate keys in the entity become candidate
keys in the table. A good primary key is short, numeric, and
fixed. If a good primary key is not available, a surrogate key
may be used instead. Some organizations choose to use
surrogate keys for all of their tables. An alternate key is the
same as a candidate key and is used to ensure unique values
in a column. The notation AKn.m refers to the nth alterna-
tive key and the mth column in that key.

Four properties need to be specified for each table column:
null status, data type, default value, and data constraints. A

column can be NULL or NOT NULL. Primary keys are always
NOT NULL; alternate keys can be NULL. Data types depend
on the DBMS to be used. Generic data types include CHAR(n),
VARCHAR(n), DATE, TIME, MONEY, INTEGER, and DECI-
MAL. A default value is a value to be supplied by the DBMS
when a new row is created. It can be a simple value or the result
of a function. Sometimes triggers are needed to supply values
of more complicated expressions.

Data constraints include domain constraints, range
constraints, intrarelation constraints, and interrelation
constraints. Domain constraints specify a set of values that a
column may have; range constraints specify an interval of
allowed values; intrarelation constraints involve compa-
risons among columns in the same table; and interrelation
constraints involve comparisons among columns in different
tables. A referential integrity constraint is an example of an
interrelation constraint.

Once the tables, keys, and columns have been defined,
they should be checked against normalization criteria.

Column Name

CustomerID

Type

Int

Key

Primary Key

NULL Status

NOT NULL

Remarks

Surrogate Key
IDENTITY (1000,1)

LastName

FirstName

Street

City

State

ZipPostalCode

Country

AreaCode

PhoneNumber

Email

Char (25) No NOT NULL

Char (25) No NOT NULL

Char (30) No NULL

Char (35) No NULL

Char (2) No NULL

Char (9) No NULL

Char (50) No NULL

Char (3) No NULL

Char (8) No NULL

Varchar (100) Alternate Key NULL Unique (AK 1.1)

(d) Column Characteristics for the CUSTOMER Table

CUSTOMER

Column Name

ArtistID

Type

Int

Key

Primary Key,
Foreign Key

NULL Status

NOT NULL

Remarks

CustomerID Int Primary Key,
Foreign Key

NOT NULL

(e) Column Characteristics for the CUSTOMER_ARTIST_INT Table

CUSTOMER_ARTIST_INT

Figure 6-41

Continued

Chapter 6 Transforming Data Models into Database Designs 241

Usually the tables will already be normalized, but they should
be checked in any case. Also, it may be necessary to denor-
malize some tables.

The second step in database design is to create relation-
ships by placing foreign keys appropriately. For 1:1 strong
relationships, the key of either table can go in the other table
as a foreign key; for 1:N strong relationships, the key of the
parent must go in the child; and for N:M strong relationships,
a new table, called an intersection table, is constructed that
has the keys of both tables. Intersection tables never have
nonkey data.

Four uses for ID-dependent entities are N:M relation-
ships, association relationships, multivalued attributes, and
archetype/instance relationships. An association relationship
differs from an intersection table because the ID-dependent
entity has nonkey data. In all ID-dependent entities, the key
of the parent is already in the child. Therefore, no foreign key
needs to be created. When an instance entity of the archetype/
instance pattern is given a non-ID-dependent identifier,
it changes from an ID-dependent entity to a weak entity.
The tables that represent such entities must have the key of
the parent as a foreign key. They remain weak entities, however.
When the parent of an ID-dependent entity is given a surrogate
key, the ID-dependent entity is also given a surrogate key.
It remains a weak entity, however.

Mixed entities are represented by placing the key of the
parent of the nonidentifying relationship into the child. The
key of the parent of the identifying relationship will already be
in the child. Subtypes are represented by copying the key
from the supertype into the subtype(s) as a foreign key.
Recursive relationships are represented in the same ways that
1:1, 1:N, and N:M relationships are represented. The only dif-
ference is that the foreign key references rows in the table in
which it resides.

Ternary relationships are decomposed into binary
relationships. However, sometimes binary constraints must
be documented. Three such constraints are MUST, MUST
NOT, and MUST COVER.

The third step in database design is to create a plan for
enforcing minimum cardinality. Figure 6-28 shows the
actions that need to be taken to enforce minimum cardinality
for required parents and required children. The actions in
Figure 6-28(a) must be taken for M-O and M-M relationships;
the actions in Figure 6-28(b) must be taken for O-M and M-M
relationships.

Enforcing mandatory parents can be done by defining
the appropriate referential integrity constraint and by
setting the foreign key to NOT NULL. The designer must
specify whether updates to the parent�s primary key will
cascade or be prohibited, whether deletions to the parent
will cascade or be prohibited, and what policy will be used for
finding a parent when a new child is created.

Enforcing mandatory children is difficult and requires
the use of triggers or application code. The particular actions
that need to be taken are shown in Figure 6-28(b). Enforcing
M-M relationships can be very difficult. Particular challenges
concern the creation of the first parent/child rows and the
deletion of the last parent/child rows. The triggers on the
two tables interfere with one another. M-M relationships
between strong and weak entities are not as problematic as
those between strong entities.

In this text, the actions to enforce required parents are
documented using referential integrity actions on the table
design diagrams. The actions to enforce required children are
documented by using Figure 6-28(b) as a boilerplate document.
An additional complication is that a table can participate in
many relationships. Triggers written to enforce the minimum
cardinality on one relationship may interfere with triggers
written to enforce the minimum cardinality on another rela-
tionship. This problem is beyond the scope of this text, but be
aware that it exists. The principles for enforcing minimum
cardinality are summarized in Figure 6-33.

A database design for the View Ridge Gallery is shown
in Figures 6-37, 6-38, 6-39, 6-40, and 6-41. You should under-
stand this design, because it will be used throughout the
remainder of this book.

action
alternate key (AK)
candidate key
cascading deletion
cascading update
data constraint
database design
DBMS reserved word
default value
domain constraint
interrelation constraint
intersection table
intrarelation constraint
minimum cardinality enforcement action

MUST constraint
MUST COVER constraint
MUST NOT constraint
null status
parent mandatory and child mandatory (M-M)
parent mandatory and child optional (M-O)
parent optional and child mandatory (O-M)
parent optional and child optional (O-O)
range constraint
referential integrity (RI) action
SQL Server IDENTITY({StartValue},

{Increment}) property
surrogate key
trigger

242 Part 2 Database Design

6.1 Identify the three major tasks for transforming a data model into a database design.

6.2 What is the relationship between entities and tables? Between attributes and
columns?

6.3 Why is the choice of the primary key important?

6.4 What are the three characteristics of an ideal primary key?

6.5 What is a surrogate key? What are its advantages?

6.6 When should you use a surrogate key?

6.7 Describe two disadvantages of surrogate keys.

6.8 What is the difference between an alternate key and a candidate key?

6.9 What does the notation LastName (AK2.2) mean?

6.10 Name four column properties.

6.11 Explain why primary keys may never be null, but alternate keys can be null.

6.12 List five generic data types.

6.13 Describe three ways that a default value can be assigned.

6.14 What is a domain constraint? Give an example.

6.15 What is a range constraint? Give an example.

6.16 What is an intrarelation constraint? Give an example.

6.17 What is an interrelation constraint? Give an example.

6.18 What tasks should be accomplished when verifying normalization of a database design?

6.19 Describe two ways to represent a 1:1 strong entity relationship. Give an example other
than one in this chapter.

6.20 Describe how to represent a 1:N strong entity relationship. Give an example other than
one in this chapter.

6.21 Describe how to represent an N:M strong entity relationship. Give an example other
than one in this chapter.

6.22 What is an intersection table? Why is it necessary?

6.23 What is the difference between the table that represents an ID-dependent association
entity and an intersection table?

6.24 List four uses for ID-dependent entities.

6.25 Describe how to represent an association entity relationship. Give an example other
than one in this chapter.

6.26 Describe how to represent a multivalued attribute entity relationship. Give an example
other than one in this chapter.

6.27 Describe how to represent a version/instance entity relationship. Give an example
other than one in this chapter.

6.28 What happens when an instance entity is given a non-ID-dependent identifier? How
does this change affect relationship design?

6.29 What happens when the parent in an ID-dependent relationship is given a surrogate
key? What should the key of the child become?

Chapter 6 Transforming Data Models into Database Designs 243

6.30 Describe how to represent a mixed entity relationship. Give an example other than one
in this chapter.

6.31 Describe how to represent a supertype/subtype entity relationship. Give an example
other than one in this chapter.

6.32 Describe two ways to represent a 1:1 recursive relationship. Give an example other than
one in this chapter.

6.33 Describe how to represent a 1:N recursive relationship. Give an example other than one
in this chapter.

6.34 Describe how to represent an N:M recursive relationship. Give an example other than
one in this chapter.

6.35 In general, how are ternary relationships represented? Explain how a binary constraint
may impact such a relationship.

6.36 Describe a MUST constraint. Give an example other than one in this chapter.

6.37 Describe a MUST NOT constraint. Give an example other than one in this chapter.

6.38 Describe a MUST COVER constraint. Give an example other than one in this chapter.

6.39 Explain, in general terms, what needs to be done to enforce minimum cardinality.

6.40 Explain the need for each of the actions in Figure 6-28(a).

6.41 Explain the need for each of the actions in Figure 6-28(b).

6.42 State which of the actions in Figure 6-28 must be applied for M-O relationships, O-M
relationships, and M-M relationships.

6.43 Explain what must be done for the DBMS to enforce required parents.

6.44 What design decisions must be made to enforce required parents?

6.45 Explain why the DBMS cannot be used to enforce required children.

6.46 What is a trigger? How can triggers be used to enforce required children?

6.47 Explain why the enforcement of M-M relationships is particularly difficult.

6.48 Explain the need for each of the design decisions in Figure 6-33.

6.49 Explain the implications of each of the minimum cardinality specifications in Figure 6-38.

6.50 Explain the rationale for each of the entries in the table in Figure 6-40.

6.51 Answer Project Question 5.58 if you have not already done so. Design a database for
your model in Project Question 5.58. Your design should include a specification of
tables and attributes as well as primary, candidate, and foreign keys. Also specify how
you will enforce minimum cardinality. Document your minimum cardinality enforce-
ment using referential integrity actions for a required parent, if any, and the form in
Figure 6-28(b) for a required child, if any.

6.52 Answer Project Question 5.59 if you have not already done so. Design a database for
your model. Your design should include a specification of tables and attributes as well
as primary, candidate, and foreign keys. Also specify how you will enforce minimum
cardinality. Document your minimum cardinality enforcement using referential
integrity actions for required parents, if any, and the form in Figure 6-28(b) for required
children, if any.

244 Part 2 Database Design

6.53 Answer Project Question 5.60 if you have not already done so. Design a database for
your model in Project Question 5.60(c). Your design should include a specification of
tables and attributes as well as primary, candidate, and foreign keys. Also specify how
you will enforce minimum cardinality. Document your minimum cardinality enforce-
ment using referential integrity actions for required parents, if any, and the form in
Figure 6-28(b) for required children, if any.

6.54 Answer Project Question 5.61 if you have not already done so. Design a database for
your model in Project Question 5.61(d). Your design should include a specification of
tables and attributes as well as primary, candidate, and foreign keys. Also specify how
you will enforce minimum cardinality. Document your minimum cardinality enforce-
ment using referential integrity actions for required parents, if any, and the form in
Figure 6-28(b) for required children, if any.

6.55 Answer Project Question 5.62 if you have not already done so. Design databases for
your model in Project Question 5.62(a) and for the model in Figure 5-58. Your designs
should include a specification of tables and attributes as well as primary, candidate,
and foreign keys. Also specify how you will enforce minimum cardinality. Document
your minimum cardinality enforcement using referential integrity actions for required
parents, if any, and the form in Figure 6-28(b) for required children, if any.

6.56 Answer Project Question 5.63 if you have not already done so. Design a database for
your model in Project Question 5.63(e). Your design should include a specification of
tables and attributes as well as primary, candidate, and foreign keys. Also specify how
you will enforce minimum cardinality. Document your minimum cardinality enforce-
ment using referential integrity actions for required parents, if any, and the form in
Figure 6-28(b) for required children, if any.

6.57 Answer Project Question 5.64 if you have not already done so. Design a database for
your model in Project Question 5.64(c). Your design should include a specification of
tables and attributes as well as primary, candidate, and foreign keys. Also specify how
you will enforce minimum cardinality. Document your minimum cardinality enforce-
ment using referential integrity actions for required parents, if any, and the form in
Figure 6-28(b) for required children, if any.

6.58 Answer Project Question 5.65 if you have not already done so. Design a database for
your model in Project Question 5.65(d). Your design should include a specification of
tables and attributes as well as primary, candidate, and foreign keys. Also specify how
you will enforce minimum cardinality. Document your minimum cardinality enforce-
ment using referential integrity actions for required parents, if any, and the form in
Figure 6-28(b) for required children, if any.

If you have not already done so, complete the Marcia�s Dry Cleaning project at the end
of Chapter 5. Design a database for the model in your answer. Your design should
include a specification of tables and attributes as well as primary, candidate, and
foreign keys. Also specify how you will enforce minimum cardinality. Document your
minimum cardinality enforcement using referential integrity actions for required
parents, if any, and the form in Figure 6-28(b) for required children, if any.

If you have not already done so, answer the Morgan Importing project at the end of
Chapter 5. Design a database for the model in your answer. Your design should include
a specification of tables and attributes as well as primary, candidate, and foreign keys.
Also specify how you will enforce minimum cardinality. Document your minimum
cardinality enforcement using referential integrity actions for required parents, if any,
and the form in Figure 6-28(b) for required children, if any.

In Chapter 5 we discussed how to create a data model for a new
database, and in Chapter 6 we demonstrated how to transform that data
model into a database design that we can use to build an actual database
in a relational DBMS. We used the View Ridge Gallery (VRG) database as
our example in Chapter 6, and finished with a complete set of specifica-
tions for the VRG database. In Part 3, we will implement the VRG data-
base design in SQL Server 2008 R2 (with versions for Oracle Database
11g and MySQL 5.5 shown in Chapters 10A and 10B respectively).

Part 3 consists of two chapters. Chapter 7 presents SQL data
definition language statements for constructing database components
and describes the SQL data manipulation statements for inserting,
updating, and deleting data. You will also learn how to construct and use
SQL views. The chapter concludes with an introduction to embedding
SQL statements in application programs and SQL/Persistent Stored
Modules (SQL/PSM), which leads to a discussion of SQL triggers and
stored procedures.

Chapter 8 presents the use of SQL statements to redesign data-
bases. It presents SQL correlated subqueries and then introduces SQL
statements using the SQL EXISTS and NOT EXISTS keywords. Both of
these advanced SQL statements are needed for database redesign.
Chapter 8 also describes database reverse engineering, surveys
common database redesign problems, and shows how to use SQL to
solve database redesign problems.

D atabase Implementation

3

245

In Chapter 2, we introduced SQL and classified SQL statements into three
categories:

� data definition language (DDL) statements, which are used for
creating tables, relationships, and other database structures.

� data manipulation language (DML) statements, which are used for
querying, inserting, updating, and deleting data.

� SQL/Persistent stored modules (SQL/PSM) statements, which
extend SQL by adding procedural programming capabilities, such
as variables and flow-of-control statements, that provide some
programmability within the SQL framework.

� To create and manage table structures using SQL
statements

� To understand how referential integrity actions are
implemented in SQL statements

� To create and execute SQL constraints

� To understand several uses for SQL views

Chapter Objectives

SQL for Database
Construction
and Application
Processing7

� To use SQL statements to create and use views

� To understand how SQL is used in application
programming

� To understand SQL/Persistent Stored Modules (SQL/PSM)

� To understand how to create and use triggers

� To understand how to create and use stored procedures

246

Chapter 7 SQL for Database Construction and Application Processing 247

ArtistID

LastName (AK1.1)
FirstName (AK1.1)
Nationality
DateOfBirth
DateDeceased

ARTISTCustomerID

LastName
FirstName
AreaCode
LocalNumber
Street
City
State
ZipPostalCode
Country
Email (AK1.1)

CUSTOMER

TransactionID

DateAcquired
AcquisitionPrice
DateSold
SalesPrice
AskingPrice
WorkID (FK)
CustomerID (FK)

TRANS
PURCHASES/SOLD_TO ACQUIRED CREATES/CREATED_BY

HAS_INTEREST_IN ADMIRED_BY

WorkID

Title (AK1.1)
Copy (AK1.2)
Medium
Description
ArtistID (FK)

WORK

CustomerID (FK)
ArtistID (FK)

CUSTOMER_ARTIST_INT

Figure 7-1

Final View Ridge Gallery
Database Design

In Chapter 2, we discussed only DML query statements. This chapter
describes and illustrates SQL DDL statements for constructing databases,
SQL DML statements for inserting, modifying, and deleting data, and SQL
statements to create and use SQL Views. We also discuss how to embed
SQL statements into application programs and SQL/PSM, and how to use
SQL/PSM to create triggers and stored procedures.

The knowledge in this chapter is important whether you become a
database administrator or an application programmer. Even if you will not
construct SQL triggers or stored procedures yourself, it is important that you
know what they are, how they work, and how they influence database
processing.

The View Ridge Gallery Database

In Chapter 6, we introduced the View Ridge Gallery, a small art gallery that sells contemporary
North American and European fine art and provides art framing services. We also developed a
data model and database design for a database for the View Ridge Gallery. Our final database
design for View Ridge is shown in Figure 7-1. In this chapter, we will use SQL to build the View
Ridge database based on that design.

SQL DDL, DML, and a New Type of Join

Figure 7-2 summarizes the new SQL DDL and DML statements described in this chapter. We
begin with SQL DDL statements for managing table structures, including CREATE TABLE,
ALTER TABLE, DROP TABLE, and TRUNCATE TABLE. Using these statements, we will build

248 Part 3 Database Implementation

Managing Table Structure with SQL DDL

The SQL CREATE TABLE statement is used to construct tables, define columns and column
constraints, and create relationships. Most DBMS products provide graphical tools for
performing these tasks, and you may be wondering why you need to learn SQL to perform the
same work. There are four reasons. First, creating tables and relationships with SQL is quicker
than with graphical tools. Once you know how to use the SQL CREATE TABLE statement, you
will be able to construct tables faster and more easily than by fussing around with buttons and
graphical gimmickry. Second, some applications, particularly those for reporting, querying,
and data mining, require you to create the same table repeatedly. You can do this efficiently if
you create an SQL script text file with the necessary SQL CREATE TABLE statements. You
then just execute the SQL script when you need to re-create a table. Third, some applications
require you to create temporary tables during application work. The discussion of RFM reports
in Chapter 13 shows one such application. The only way to create tables from program code is
to use SQL. Finally, SQL DDL is standardized and DBMS independent. With the exception of
some data types, the same CREATE TABLE statement will work with SQL Server, Oracle
Database, DB2, or MySQL.

Creating the View Ridge Database

Of course, before you can create any tables, you have to create the database. The SQL-92 and
subsequent standards include an SQL statement for creating databases, but it is seldom used.
Instead, most developers use special commands or graphical tools for creating a database.
These techniques are DBMS specific, and we describe them in context in Chapters 10 (SQL
Server 2008 R2), 10A (Oracle Database 11g), 10B (MySQL 5.5), and Appendix A (Microsoft
Access 2010).

At this point, we highly recommend that you read the section on creating a new database
in the DBMS product you are using and use the appropriate steps to create a new database
named VRG. For illustrative purposes, we will use SQL Server 2008 R2 in this chapter, and our
SQL code will be the correct code for SQL Server 2008 R2. The correct SQL statements for
other DBMS products will be similar, but they will vary slightly. The correct SQL statements for
Oracle Database 11g and MySQL 5.5 can be found in Chapters 10A and 10B, respectively.
Figure 7-3 shows the VRG database in the SQL Server 2008 R2 Management Studio.

� SQL Data Definition Language (DDL)
 � CREATE TABLE
 � ALTER TABLE
 � DROP TABLE
 � TRUNCATE TABLE
� SQL Data Manipulation Language (DML)
 � INSERT
 � UPDATE
 � DELETE
 � MERGE
� Additional join forms
 � Alternative join syntax
 � Outer joins

Figure 7-2

Chapter 7 SQL Statements

the table structure for the View Ridge database. Next, we present the four SQL DML state-
ments for managing data: INSERT, UPDATE, DELETE, and MERGE. Finally, we will add to the
knowledge of joins you gained in Chapter 2 by describing a new format and offering a further
discussion of SQL joins.

Chapter 7 SQL for Database Construction and Application Processing 249

Using the SQL CREATE TABLE Statement

The basic format of the SQL CREATE TABLE statement is:

CREATE TABLE NewTableName (

three-part column definition,

three-part column definition,

. . .

optional table constraints

. . .

);

The parts of the three-part column definition are the column name, the column data type,
and, optionally, a constraint on column values. Thus, we can restate the CREATE TABLE format as:

CREATE TABLE NewTableName (

ColumnName DataType OptionalConstraint,

ColumnName DataType OptionalConstraint,

. . .

Optional table constraint

. . .

);

The column and table constraints we consider in this text are PRIMARY KEY, FOREIGN
KEY, NOT NULL, NULL, UNIQUE, and CHECK. Additionally, the DEFAULT keyword
(DEFAULT is not considered a column constraint) can be used to set initial values. Finally, most
variants of SQL support a property to implement surrogate primary keys. For example, SQL
Server 2008 R2 uses the SQL Server IDENTITY({StartValue}, {Increment}) property. Oracle
Database, MySQL, and Microsoft Access use somewhat different techniques for creating
surrogate keys. If you are using those products, see the discussion of surrogate keys for Oracle
Database 11g in Chapter 10A, MySQL 5.5 in Chapter 10B, or Microsoft Access in Appendix A.
We will explain each of these constraints, keywords, and properties as we meet them in the
context of our discussion in this chapter.

The Object Browser

The VRG database
object folders�when
database objects such
as tables are created
they will be visible
in these folders

The VRG database
object

Figure 7-3

The VRG Database in SQL
Server 2008 R2 Management
Studio

250 Part 3 Database Implementation

Variations in SQL Data Types

Each DBMS product has its own variant of SQL procedural programming language
extensions, which are additions that allow SQL to function similarly to a procedural
programming language (e.g., IF . . . THEN . . . ELSE structures). In the ANSI/ISO SQL
standard, these are known as SQL/Persistent Stored Modules (SQL/PSM). Some vendors
have given their SQL variants specific names. Microsoft�s SQL Server version of SQL is
called Transact-SQL (T-SQL), whereas Oracle�s Oracle Database version of SQL is called
Procedural Language/SQL (PL/SQL). MySQL�s variant, even though it, too, contains
procedural extensions based on SQL/PSM, has no special name and is just called SQL in
the MySQL documentation. We will point out specific SQL syntax differences as we
encounter them in our discussion. For more on T-SQL, see the SQL Server 2008 R2 Books
Online section Transact-SQL Reference at http://msdn.microsoft.com/en-us/library/
bb500275.aspx. For more on PL/SQL, see the Oracle Database PL/SQL User�s Guide and
Reference 11g Release 2 (11.2) http://download.oracle.com/docs/cd/E11882_01/server.112/
e17118/toc.htm. For more on SQL in MySQL, see the MySQL 5.5 Reference Manual Chapter
12 on SQL Statement Syntax at http://dev.mysql.com/doc/refman/5.5/en/sql-syntax.html.

One source of variation in DBMS SQL stems from the different data types implemented by
each vendor. The SQL standard defines a set of data types. Figure 7-4 shows a summary of
common (but not all) data types for the DBMSs we have been discussing.

Data Type Description
Binary
Char
Datetime

Image
Integer
Money

Numeric
Smalldatetime

Smallint
Smallmoney

Text
Tinyint
Varchar

Binary, length 0 to 8,000 bytes.
Character, length 0 to 8,000 bytes.
8-byte datetime. Range from January 1, 1753, through December 31, 9999,
with an accuracy of three-hundredths of a second.
Variable-length binary data. Maximum length 2,147,483,647 bytes.
4-byte integer. Value range from �2,147,483,648 through 2,147,483,647.
8-byte money. Range from
�922,337,203,685,477.5808 through +922,337,203,685,477.5807,
with accuracy to a ten-thousandth of a monetary unit.
Decimal�can set precision and scale. Range �1038 +1 through 1038 �1.
4-byte datetime. Range from January 1, 1900, through June 6, 2079,
with an accuracy of one minute.
2-byte integer. Range from �32,768 through 32,767.
4-byte money. Range from 214,748.3648 through +214,748.3647,
with accuracy to a ten-thousandth of a monetary unit.
Variable-length text, maximum length 2,147,483,647 characters.
1-byte integer. Range from 0 through 255.
Variable-length character, length 0 to 8,000 bytes.

Data Type Description
BLOB
CHAR(n)
DATE
INTEGER
NUMBER(n,d)
VARCHAR(n)
or
VARCHAR2(n)

Binary large object. Up to 4 gigabytes in length.
Fixed-length character field of length n. Maximum 2,000 characters.
7-byte field containing both date and time.
Whole number of length 38.
Numeric field of length n, d places to the right of the decimal.
Variable-length character field up to n characters long. Maximum
value of n = 4,000.

(a) Common Data Types in SQL Server

(b) Common Data Types in Oracle

Figure 7-4

SQL Data Types in DBMS
Products

Chapter 7 SQL for Database Construction and Application Processing 251

NumericData Type Description
BIT (M)
TINYINT
TINYINT UNSIGNED
BOOLEAN
SMALLINT
SMALLINT UNSIGNED
MEDIUMINT
MEDIUMINT UNSIGNED
INT or INTEGER
INT UNSIGNED or
INTEGER UNSIGNED
BIGINT
BIGINT UNSIGNED
FLOAT (P)
FLOAT (M, D)

DOUBLE (M, B)

DEC (M[,D]) or
DECIMAL (M[,D]) or
FIXED (M[,D])

M = 1 to 64
�128 to 127
0 to 255
0 = FALSE; 1 = TRUE
�32,768 to 32,767
0 to 65535
�8,388,608 to 8,388,607
0 to 16,777,215
�2,147,483,648 to 2,147,483,647
0 to 4,294,967,295

�9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
0 to 1,844,674,073,709,551,615
P = Precision; 0 to 24
Small (single-precision) floating-point number:
M = Display width D = Number of significant digits
Normal (double-precision) floating-point number:
M = Display width B = Precision; 25 to 53
Fixed-point number:
M = Total number of digits
D = Number of decimals

Date and Time
Data Types

Description

DATE
DATETIME

TIMESTAMP
TIME
YEAR (M)

YYYY-MM-DD : 1000-01-01 to 9999-12-31
YYYY-MM-DD HH:MM:SS
1000-01-01 00:00:00 to 9999-12-31 23:59:59
See documentation.
HH:MM:SS�00:00:00 to 23:59:59
M = 2 or 4 (default)
IF 2 = 1970 to 2069 (70 to 60)
IF 4 = 1901 to 2155

(c) Common Data Types in MySQL

String Data Types Description
CHAR (M)
VARCHAR (M)
BLOB (M)

TEXT (M)
TINYBLOB
MEDIUMBLOB
LONGBLOB
TINYTEXT
MEDIUMTEXT
LONGTEXT
ENUM (�value1�,
�value2�, . . .)
SET (�value1�,
�value2�, . . .)

M = 0 to 255
M = 1 to 255
BLOB = Binary Large Object;
maximum 65,535 characters
Maximum 65,535 characters
See documentation.

An enumeration. Only one value, but chosen from list.
See documentation.
A set. Zero or more values, all chosen from list.
See documentation.

Figure 7-4

Continued

252 Part 3 Database Implementation

Creating the ARTIST Table

We will start by considering two of the tables in the View Ridge database design we developed
at the end of Chapter 6, the ARTIST table and the WORK table. These tables are shown in
Figure 7-1, and Figures 7-5 and 7-6 show the column characteristics for these tables. Three
new features are shown in these figures.

The first is the Microsoft SQL Server IDENTITY({StartValue}, {Increment}) property,
which is used to specify surrogate keys. In the ARTIST table, the expression IDENTITY (1, 1) means
that ArtistID is to be a surrogate key with values starting at 1 and incremented by 1. Thus, the value
of ArtistID for the second row in ARTIST will be (1 + 1) = 2. In the WORK table, the expression
IDENTITY (500, 1) means that WorkID is to be a surrogate key with values starting at 500 and
incremented by 1. Thus, the value of WorkID for the second row in WORK will be (500 + 1) = 501.

The second new feature is the designation of (LastName, FirstName) in ARTIST as an
alternative key. This indicates that (LastName, FirstName) is a candidate key for the ARTIST
table. Alternative keys are defined using the UNIQUE constraint.

The third new feature is the use of the DEFAULT column constraint in the Description
column of the WORK table. The DEFAULT constraint is used to set a value that will be
inserted into each row unless some other value is specified.

Figure 7-7 describes in tabular form the M-O relationship between ARTIST and WORK
shown in Figure 7-1, and Figure 7-8 [based on the template in Figure 6-28(a)] details the
referential integrity actions that will be needed to enforce the minimum cardinalities in
the ARTIST-to-WORK relationship.

Column Name

ArtistID

LastName

FirstName

Nationality

DateOfBirth

DateDeceased

Type

Int

Char (25)

Char (25)

Char (30)

Numeric (4)

Numeric (4)

Key

Primary Key

Alternate Key

Alternate Key

No

No

No

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NULL

Remarks

Surrogate Key
IDENTITY (1,1)

AK1

AK1

ARTIST

Figure 7-5

Column Characteristics for
the ARTIST Table

Column Name

WorkID

Title

Copy

Medium

Description

ArtistID

Type

Int

Char (35)

Char (12)

Char (35)

Varchar
(1000)

Int

Key

Primary Key

No

No

No

No

Foreign Key

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NOT NULL

Remarks

Surrogate Key
IDENTITY (500,1)

DEFAULT
value =
�Unknown
provenance�

WORK

Figure 7-6

Column
Characteristics
for the WORK
Table

Even though Microsoft Access reads standard SQL and the SQL used by
SQL Server 2008 R2, the results may be a bit different. For example,

Microsoft Access ANSI-89 SQL converts both the Char and Varchar SQL data types to
a fixed Text data type.

Chapter 7 SQL for Database Construction and Application Processing 253

Parent Child

Relationship Cardinality

ARTIST WORK

Type

Nonidentifying

MAX

1:N

MIN

M-O

Figure 7-7

The ARTIST-to-WORK
Relationship

ARTIST
Is Required Parent

Action on ARTIST
(Parent)

Action on WORK
(Child)

Insert None Get a parent

Modify key or
Foreign key

Prohibit�ARTIST uses a
surrogate key

Prohibit�ARTIST uses a
surrogate key

Delete Prohibit if WORK exists�
 data related to a
 transaction is never deleted
 (business rule)
Allow if no WORK exists
 (business rule)

None

Figure 7-8

Actions to Enforce Minimum
Cardinality for the ARTIST-
to-WORK Relationship

Figure 7-9 shows the SQL CREATE TABLE statement for constructing the ARTIST table.
(All of the SQL in this chapter runs on SQL Server. If you are using a different DBMS, you may
need to make adjustments so consult the chapter or appendix for the DBMS you are using.) The
format of CREATE TABLE is the name of the table followed by a list of all column definitions
and constraints enclosed in parentheses and ending with the ubiquitous SQL semicolon (;).

As stated earlier, SQL has several column and table constraints: PRIMARY KEY, NULL,
NOT NULL, UNIQUE, FOREIGN KEY, and CHECK. The PRIMARY KEY constraint is used to
define the primary key of the table. Although it can be used as a column constraint, because it
has to be used as a table constraint to define compound primary keys, we prefer to always use
it as a table constraint, as shown in Figure 7-9. The NULL and NOT NULL column constraints
are used to set the NULL status of a column, indicating whether data values are required in
that column. The UNIQUE constraint is used to indicate that the values of a column or
columns must not use repeated values. The FOREIGN KEY constraint is used to define
referential integrity constraints, and the CHECK constraint is used to define data constraints.

In the first section of the CREATE TABLE statement for the ARTIST table, each column is
defined by giving its name, data type, and null status. If you do not specify the null status using
NULL or NOT NULL, then NULL is assumed.

In this database, DateOfBirth and DateDeceased are years. YearOfBirth and YearDeceased
would have been better column names, but that is not how the gallery personnel refer to them.
Because the gallery is not interested in the month and day of an artist�s birth and death, those
columns are defined as Numeric (4, 0), which means a four-digit number with zero places to
the right of the decimal point.

The last two expressions in the SQL table definition statement in Figure 7-9 are constraints
that define the primary key and a candidate, or alternate, key. As stated in Chapter 6, the

Figure 7-9

SQL Statements to Create
the Initial Version of the
ARTIST Table

254 Part 3 Database Implementation

primary purpose of an alternate key is to ensure uniqueness of column values. Thus, in SQL,
alternate keys are defined using the UNIQUE constraint.

The format of such constraints is the word CONSTRAINT followed by a constraint name
provided by the developer followed by either the PRIMARY KEY or UNIQUE keyword and then
one or more columns in parentheses. For example, the following statement defines a constraint
named MyExample that ensures that the combination of first and last name is unique:

CONSTRAINT MyExample UNIQUE (FirstName, LastName),

As stated in Chapter 6, primary key columns must be NOT NULL, but candidate keys can be
NULL or NOT NULL.

SQL originated in the era of punch-card data processing. Punched cards had
only uppercase letters, so there was no need to think about case sensitivity.

When cards were replaced by regular keyboards, DBMS vendors chose to ignore the
difference between uppercase and lowercase letters. Thus, CREATE TABLE, create table,
and CReatE taBle are all the same in SQL. NULL, null, and Null are all the same as well.

Notice that the last line of the SQL statement in Figure 7-9 is a closed parenthesis followed
by a semicolon. These characters could be placed on the line above, but dropping them to a
new line is a style convention that makes it easy to determine the boundaries of CREATE
TABLE statements. Also notice that column descriptions and constraints are separated by
commas but that there is no comma after the last one.

Many organizations have developed SQL coding standards of their own.
Such standards specify not only the format of SQL statements, but also

conventions for naming constraints. For example, in the figures in this chapter we use
the suffix PK on the names of all primary key constraints and the suffix FK for all foreign
key constraints. Most organizations have standards that are more comprehensive. You
should follow your organization�s standards, even if you disagree with them. Consistent
SQL coding improves organizational efficiency and reduces errors.

Creating the WORK Table and the 1:N ARTIST-to-WORK Relationship

Figure 7-10 shows SQL statements for creating the ARTIST and WORK tables and their
relationship. Note that the column name Description is written as [Description], because
Description is an SQL Server 2008 R2 reserved keyword (see Chapter 10 on SQL Server 2008 R2),
and we must use the square brackets ([and]) to create a delimited identifier. This is the same
reason that in Chapter 6 we decided to use the table name TRANS instead of TRANSACTION.

The only new syntax in Figure 7-10 is the FOREIGN KEY constraint at the end of WORK.
Such constraints are used to define referential integrity constraints. The FOREIGN KEY
constraint in Figure 7-10 is equivalent to the following referential integrity constraint:

ArtistID in WORK must exist in ArtistID in ARTIST

Note that the foreign key constraint contains two SQL clauses that implement the
minimum cardinality enforcement requirements of Figure 7-8. The SQL ON UPDATE clause
specifies whether updates should cascade form ARTIST to WORK, and the SQL ON DELETE
clause specifies whether deletions in ARTIST should cascade to WORK.

The expression ON UPDATE NO ACTION indicates that updates to the primary key for a
table that has children should be prohibited (this is the standard setting for surrogate keys that
should never change). The expression ON UPDATE CASCADE would indicate that updates
should cascade. ON UPDATE ON ACTION is the default.

Chapter 7 SQL for Database Construction and Application Processing 255

Figure 7-10

SQL Statements to Create
The ARTIST-to-WORK 1:N
Relationship

Similarly, the expression ON DELETE NO ACTION indicates that deletions of rows that
have children should be prohibited. The expression ON DELETE CASCADE would indicate
that deletions should cascade. ON DELETE ON ACTION is the default.

In the present case, the ON UPDATE NO ACTION is meaningless because the primary key
of ARTIST is a surrogate and will never be changed. The ON UPDATE action would need to be
specified for nonsurrogate data keys, however, and we show the option here so you will know
how to code it.

Note that you must define parent tables before child tables. In this case,
you must define ARTIST before WORK. If you try to reverse the order of

definition, the DBMS will generate an error message on the FOREIGN KEY constraint
because it will not yet know about the ARTIST table.

Similarly, you must delete tables in the opposite order. You must DROP (described
later) a child before a parent. Better SQL parsers would sort out all of this so that state-
ment order would not matter, but, alas, that�s not the way it�s done! Just remember the
following: Parents are first in and last out.

Implementing Required Parent Rows

In Chapter 6, you learned that to enforce a required parent constraint you must define the ref-
erential integrity constraint and set the foreign key to NOT NULL in the child table. The SQL
CREATE TABLE statement for the WORK table in Figure 7-10 does both. In this case, ARTIST
is the required parent table, and WORK is the child. Thus, ArtistID in the WORK table is
specified as NOT NULL (using the NOT NULL column constraint), and the ArtistFK
FOREIGN KEY table constraint is used to define the referential integrity constraint. Together,
these specifications thus cause the DBMS to enforce the required parent.

If the parent were not required, then we would specify ArtistID in WORK as NULL. In that
case, WORK would not need to have a value for ArtistID, and thus not need a parent. However,
the FOREIGN KEY constraint would still ensure that all values of ArtistID in WORK would be
present in the ArtistID in ARTIST.

256 Part 3 Database Implementation

Relationship Type

1:N relationship, parent optional Specify FOREIGN KEY constraint. Set
foreign key NULL.

CREATE TABLE Constraints

1:N relationship, parent required Specify FOREIGN KEY constraint. Set
foreign key NOT NULL.

1:1 relationship, parent optional Specify FOREIGN KEY constraint.
Specify foreign key UNIQUE constraint.
Set foreign key NULL.

1:1 relationship, parent required Specify FOREIGN KEY constraint.
Specify foreign key UNIQUE constraint.
Set foreign key NOT NULL.

Casual relationship Create a foreign key column, but do not
specify FOREIGN KEY constraint. If
relationship is 1:1, specify foreign key
UNIQUE.

Figure 7-11

Summary of Relationship
Definitions Using the SQL
CREATE TABLE Statement

Implementing 1:1 Relationships

SQL for implementing 1:1 relationships is almost identical to that for 1:N relationships, as just
shown. The only difference is that the foreign key must be declared as unique. For example, if
the relationship were 1:1 between ARTIST and WORK (i.e., each artist could have only one
work at View Ridge), then in Figure 7-10 we would add the constraint:

CONSTRAINT UniqueWork UNIQUE (ArtistID)

Note that the ARTIST-to-WORK relationship in Figure 7-1 is of course not 1:1, so we will
not specify this constraint to our current SQL statements. As before, if the parent is required,
then the foreign key should be set to NOT NULL. Otherwise, it should be NULL.

Casual Relationships

Sometimes it is appropriate to create a foreign key column but not specify a FOREIGN KEY
constraint. In that case, the foreign key value may or may not match a value of the primary key
in the parent. If, for example, you define the column DepartmentName in EMPLOYEE but do
not specify a FOREIGN KEY constraint, then a row may have a value of DepartmentName that
does not match a value of DepartmentName in the DEPARTMENT table.

Such relationships, which we call casual relationships, occur frequently in applications
that process tables with missing data. For example, you might buy consumer data that
includes names of consumers� employers. Assume that you have an EMPLOYER table that
does not contain all of the possible companies for which the consumers might work. You want
to use the relationship if you happen to have the values, but you do not want to require having
those values. In that case, create a casual relationship by placing the key of EMPLOYER in the
consumer data table but do not define a FOREIGN KEY constraint.

Figure 7-11 summarizes the techniques for creating relationships using FOREIGN KEY,
NULL, NOT NULL, and UNIQUE constraints in 1:N, 1:1, and casual relationships.

Creating Default Values and Data Constraints with SQL

Figure 7-12 shows an example set of default value and example data constraints for the View Ridge
database. The Description column in the WORK table is given the default value of �Unknown
provenance�. The ARTIST table and TRANS tables are assigned various data constraints.

In the ARTIST table, Nationality is limited to the values in the domain constraint shown,
and DateOfBirth is limited by the intrarelation constraint (within the same table) that Date-
OfBirth occurs before DateDeceased. Further, DateOfBirth and DateDeceased, which as noted
earlier are years, are limited to the domain defined by specifying that the first digit be a 1 or a 2

Chapter 7 SQL for Database Construction and Application Processing 257

Table

WORK Description

Column

�Unknown
provenance�

Default Value Constraint

ARTIST Nationality IN (�Candian�, �English�,
�French�, �German�, �Mexican�,
�Russian�, �Spainish�,
�United States�.

ARTIST DateOfBirth Less than DateDeceased.

ARTIST DateOfBirth Four digits�1 or 2 is first digit,
0 to 9 for remaining three digits.

ARTIST DateDeceased Four digits�1 or 2 is first digit,
0 to 9 for remaining three digits.

TRANS SalesPrice Greater than 0 and less than
or equal to 500,000.

TRANS DateAcquired Less than or equal to DateSold.

Figure 7-12

Default Values and Data
Constraints for the View
Ridge Database

and the remaining three digits be any decimal numbers. Thus, they can have any value between
1000 and 2999. SalesPrice in the TRANS table is limited by a range constraint to a value greater
than 0 but less than or equal to $500,000, and PurchaseDate is limited by an intrarelation
constraint that the DateSold be no earlier than the DateAcquired (i.e., DateAcquired is less than
or equal to DateSold).

Figure 7-12 shows no interrelation constraints between tables. Although the SQL-92
specification defined facilities for creating such constraints, no DBMS vendor has imple-
mented those facilities. Such constraints must be implemented in triggers. An example of this
is shown later in this chapter. Figure 7-13 shows the SQL statements to create the ARTIST and
WORK tables modified with the appropriate default values and data constraints.

Implementing Default Values
Default values are created by specifying the DEFAULT keyword in the column definition just
after the NULL/NOT NULL specification. Note how in Figure 7-13 the Description column in
the WORK table is given the default value of �Unknown provenance� using this technique.

Implementing Data Constraints
The data constraints are created using the SQL CHECK constraint. The format for the CHECK
constraint is the word CONSTRAINT followed by a developer-provided constraint name
followed by the word CHECK and then by the constraint specification in parentheses. Expres-
sions in CHECK constraints are akin to those used in the WHERE clause of SQL statements.
Thus, the SQL IN keyword is used to provide a list of valid values. The SQL NOT IN keyword
also can be used for negatively expressed domain constraints (not shown in this example). The
SQL LIKE keyword is used for the specification of decimal places. Range checks are specified
using comparison operators such as the less than (<) and greater than (>) symbols. Because
interrelation constraints are unsupported, comparisons can be made as intrarelation
constraints between columns in the same table.

DBMS products are inconsistent in their implementation of CHECK
constraints. The use of the SQL LIKE keyword in Figure 7-13, for example,

will not work with Oracle Database 11g. However, Oracle Database 11g implements
other types of constraints. Unfortunately, you must learn the peculiarities of the DBMS
you use to know how best to implement constraints.

258 Part 3 Database Implementation

Figure 7-13

SQL Statements to Create
the ARTIST and WORK
Tables with Default Values
and Data Constraints

Creating the View Ridge Database Tables

Figure 7-14 shows SQL for creating all of the tables in the View Ridge database documented at
the end of Chapter 6. Read each line and be certain that you understand its function and pur-
pose. Notice that deletions cascade for the relationships between CUSTOMER and CUS-
TOMER_ARTIST_INT and between ARTIST and CUSTOMER_ARTIST_INT.

Any DBMS reserved words used as table or column names need to be enclosed in square
brackets ([and]), and thus converted to delimited identifiers. We have already decided to use the
table name TRANS instead of TRANSACTION so that we do not use the transaction reserved word.
The table name WORK is also a potential problem; the word work is a reserved word in most DBMS
products, as are the column names Description in the WORK table and State in the TRANS table.
Enclosing such terms in brackets signifies to the SQL parser that these terms have been provided
by the developer and are not to be used in the standard way. Ironically, SQL Server can process the
word WORK without problem, but Oracle Database cannot, whereas SQL Server chokes on the
word TRANSACTION, but Oracle Database has no problem with it. Because Figure 7-14 shows SQL
Server 2008 R2 T-SQL statements, we use WORK (no brackets), [Description], and [State].

You can find a list of reserved words in the documentation for the DBMS product that you
use, and we deal with some specific cases in the chapters dedicated to SQL Server 2008 R2,
Oracle Database 11g, and MySQL 5.5. Be assured that if you use any keyword from the SQL
syntax, such as SELECT, FROM, WHERE, LIKE, ORDER, ASC, DESC, for table or column
names, you will have problems. Enclose such words in square brackets. And, of course, your life
will be easier if you can avoid using such terms for tables or columns altogether.

Chapter 7 SQL for Database Construction and Application Processing 259

Every now and then, the DBMS might generate bizarre syntax-error
messages. For example, suppose you define a table with the name

ORDER. When you submit the statement SELECT * FROM ORDER;, you will get very
strange messages back from the DBMS because ORDER is an SQL reserved word.

If you do receive odd messages back from statements that you know are coded
correctly, think about reserved words. If a term might be reserved, enclose it in brackets
and see what happens when you submit it to the DBMS. No harm is done by enclosing
SQL terms in brackets.

If you want to torture your DBMS, you can submit queries like SELECT [SELECT]
FROM [FROM] WHERE [WHERE] < [NOT FIVE];. Most likely, you have better ways to
spend your time, however. Without a doubt, the DBMS has better ways to spend its time!

Figure 7-14

SQL Statements
to Create the View
Ridge Database
Table Structure

(continued)

260 Part 3 Database Implementation

Figure 7-14

Continued

Figure 7-15

SQL Server 2008 R2 View
Ridge Database Diagram

Running the SQL statements in Figure 7-14 (or the specific variant in Chapter 10A for
Oracle Database 11g or Chapter 10B for MySQL) with your DBMS will generate all of the
tables, relationships, and constraints for the View Ridge database. Figure 7-15 shows the
completed table structure in SQL Server 2008 R2 as a database diagram. It is far easier to
create these tables and relationships using SQL code than by using GUI displays, which are
discussed in Chapter 10 (SQL Server 2008), Chapter 10A (Oracle Database 11g), and
Chapter 10B (MySQL 5.5).

Chapter 7 SQL for Database Construction and Application Processing 261

Microsoft Access 2007 ANSI-89 SQL, unfortunately,
does not support a number of standard SQL features
we have examined in this discussion. However, you
can run a basic SQL CREATE TABLE statement in

ANSI-89 SQL, and then use the Microsoft Access GUI display to finish building the tables
and relationships. Specifically:

1. Although Microsoft Access supports a Number data type, it does not support
the (m, n) extension to specify the number of digits and the number of digits
to the right of the decimal place.

Solution: You can set these values in the table Design view after the column is
created.

2. Although Microsoft Access does support an AutoNumber data type, it always
starts at 1 and increments by 1. Further, AutoNumber cannot be used as an SQL
data type.

Solution: Set AutoNumber data type manually after the table is created. Any
other numbering system must be supported manually or by application code.

3. Microsoft Access ANSI-89 SQL does not support the UNIQUE and CHECK
column constraints, nor the DEFAULT keyword.

Solution: Equivalent constraints and initial values can be set in the GUI table
Design view.

4. Microsoft Access does completely support foreign key CONSTRAINT phrases.
Although the basic referential integrity constraint can be created using SQL, the
ON UPDATE and ON DELETE clauses are not supported.

Solution: ON UPDATE and ON DELETE actions can be set manually after the
relationship is created.

5. Unlike SQL Server, Oracle Database, and MySQL, Microsoft Access does not
support SQL scripts.

Solution: You can still create tables by using the SQL CREATE command and
insert data by using the SQL INSERT command (discussed later in this chapter),
but you must do so one command at a time.

The SQL ALTER TABLE Statement

The SQL ALTER TABLE statement is an SQL DDL statement that is used to change the
structure of an existing table. It can be used to add, remove, or change columns. It also can be
used to add or remove constraints.

Adding and Dropping Columns
The following statement will add a column named MyColumn to the CUSTOMER table by
using the SQL ADD clause in the SQL ALTER TABLE Statement:

/* *** SQL-ALTER-TABLE-CH07-01 *** */

ALTER TABLE CUSTOMER ADD MyColumn Char(5) NULL;

You can drop an existing column by using the SQL DROP COLUMN clause in the SQL
ALTER TABLE statement:

/* *** SQL-ALTER-TABLE-CH07-02 *** */

ALTER TABLE CUSTOMER DROP COLUMN MyColumn;

Note the asymmetry in syntax; the keyword COLUMN is used in the DROP COLUMN
clause, but not in the ADD clause. You can also use the ALTER statement to change column
properties, as you will see in the next three chapters.

262 Part 3 Database Implementation

The SQL ALTER TABLE statement can be used to add or drop any of the
SQL constraints. You can use it to create primary keys and alternate keys,

to set null status, to create referential integrity constraints, and to create data constraints.
In fact, another SQL coding style uses CREATE TABLE only to declare the table�s columns;
all constraints are added using the ALTER TABLE statement. We do not use that style in
this text, but be aware that it does exist and that your employer might require it.

The SQL DROP TABLE Statement

It is very easy to remove a table in SQL. In fact, it is far too easy. The following SQL DROP
TABLE statement will drop the TRANS table and all of its data:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-DROP-TABLE-CH07-01 *** */

DROP TABLE TRANS;

Because this simple statement drops the table and all of its data, be very careful when using it.
Do not code this statement on the wrong table!

The DBMS will not drop a table that is the parent in a FOREIGN KEY constraint. It will not
do so even if there are no children, or even if you have coded DELETE CASCADE. Instead, to
drop such a table, you must first either drop the foreign key constraint or drop the child table.
Then you can delete the parent table. As mentioned earlier, parent tables must be first in and
last out.

The following statements are needed to drop the CUSTOMER table:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-DROP-TABLE-CH07-02 *** */

DROP TABLE CUSTOMER_ARTIST_INT;

DROP TABLE TRANS;

DROP TABLE CUSTOMER;

Alternatively, you could drop CUSTOMER with:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH07-05 *** */

ALTER TABLE CUSTOMER_ARTIST_INT

Adding and Dropping Constraints
The ALTER TABLE statement can be used with an SQL ADD CONSTRAINT clause to add a
constraint as follows:

/* *** SQL-ALTER-TABLE-CH07-03 *** */

ALTER TABLE CUSTOMER ADD CONSTRAINT MyConstraint CHECK

(LastName NOT IN (’RobertsNoPay’));

You can also use the ALTER TABLE statement with an SQL DROP CONSTRAINT clause to
DROP a constraint:

/* *** SQL-ALTER-TABLE-CH07-04 *** */

ALTER TABLE CUSTOMER DROP CONSTRAINT MyConstraint;

Chapter 7 SQL for Database Construction and Application Processing 263

DROP CONSTRAINT Customer_Artist_Int_CustomerFK;

ALTER TABLE TRANS

DROP CONSTRAINT TransactionCustomerFK;

/* *** SQL-DROP-TABLE-CH07-03 *** */

DROP TABLE CUSTOMER;

The SQL TRUNCATE TABLE Statement

The SQL TRUNCATE TABLE statement was officially added in the SQL:2008 standard, so it
is one of the latest additions to SQL. It is used to remove all data from a table, while leaving the
table structure itself in the database. The SQL TRUNCATE TABLE statement does not use an
SQL WHERE clause to specify conditions for the data deletion�all the data in the table is
always removed when TRUNCATE it used.

The following statement could be used remove all the data in the CUSTOMER_ARTIST_INT
table:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-TRUNCATE-TABLE-CH07-01 *** */

TRUNCATE TABLE CUSTOMER_ARTIST_INT;

The TRUNCATE TABLE table cannot be used with a table that is referenced by a foreign
key constraint because this could create foreign key values that have no corresponding
primary key value. Thus, while we can use TRUNCATE TABLE with the CUSTOMER_
ARTIST_INT table, we cannot use it with the CUSTOMER table.

SQL DML Statements

At this point, you have learned how to query tables using SQL SELECT statements (in Chapter 2),
and you know how to create, alter, and drop tables, columns, and constraints. You do not yet
know, however, how to use SQL statements to insert, modify, and delete data. We consider those
statements next.

The SQL INSERT Statement

The SQL INSERT statement is used to add rows of data to a table. The statement has a
number of different options.

The SQL INSERT Statement Using Column Names
The standard version of the INSERT statement is to name the table, name the columns for
which you have data, and then list the data in the following format:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-INSERT-CH07-01 *** */

INSERT INTO ARTIST
(LastName, FirstName, Nationality, DateOfBirth, DateDeceased)

VALUES (’Miro’, ’Joan’, ’Spanish’, 1893, 1983);

Note that both column names and values are enclosed in parentheses, and DBMS populated
surrogate keys are not included in the statement. If you are providing data for all of the
columns, if that data is in the same order as the columns in the table, and if you have no
surrogate keys, then you can omit the column list.

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-INSERT-CH07-02 *** */

INSERT INTO ARTIST VALUES (’Miro’, ’Joan’, ’Spanish’, 1893, 1983);

264 Part 3 Database Implementation

Further, you need not provide the values in the same order as the columns in the table. If
for some reason you want to provide Nationality first, you can revise the column names and
the data value, as shown in the following example:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-INSERT-CH07-03 *** */

INSERT INTO ARTIST

(Nationality, LastName, FirstName, DateOfBirth, DateDeceased)

VALUES (’Spanish’, ’Miro’, ’Joan’, 1893, 1983);

If you have partial values, just code the names of the columns for which you have data. For
example, if you have only LastName, FirstName, and Nationality for an artist, you would use
the SQL statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-INSERT-CH07-04 *** */

INSERT INTO ARTIST

(LastName, FirstName, Nationality)

VALUES (’Miro’, ’Joan’, ’Spanish’);

You must, of course, have values for all NOT NULL columns.

Bulk INSERT
One of the most often used forms of INSERT uses an SQL SELECT statement to provide
values. Suppose you have the names, nationalities, birth dates, and dates deceased of a number
of artists in a table named IMPORTED_ARTIST. In this case, you can add those data to the
ARTIST table with the following statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-INSERT-CH07-05 *** */

INSERT INTO ARTIST

(LastName, FirstName, Nationality, DateOfBirth, DateDeceased)

SELECT LastName, FirstName, Nationality,

DateOfBirth, DateDeceased

FROM IMPORTED_ARTIST;

Note that the SQL keyword VALUES is not used with this form of insert. This syntax should
seem familiar. We used it for normalization and denormalization examples in Chapters 3 and 4.

Populating the View Ridge Database Tables

Now that we know how to use the SQL INSERT statement to add rows of data to a table, we
can put data into the View Ridge database. Sample data for the View Ridge database is shown
in Figure 7-16.

However, we need to be careful about exactly how we enter this data into the View Ridge
database. Notice that in the SQL CREATE TABLE statements in Figure 7-14 that CustomerID,
ArtistID, WorkID, and TransactionID are all surrogate keys with values automatically inserted
by the DBMS. This will produce sequential numbers. For example, if we insert the ARTIST
table data shown in Figure 7-16(b) using the automatic ArtistID numbering from
IDENTITY(1, 1), the ArtistID numbers for the nine artists will be (1, 2, 3, 4, 5, 6, 7, 8, 9). But in
Figure 7-12(b), the ArtistID numbers are (1, 2, 3, 4, 5, 11, 17, 18, 19).

This happens because the View Ridge data shown in Figure 7-16 is sample data, not the
complete data for the database. Therefore, the primary key numbers for CustomerID, ArtistID,
WorkID, and TransactionID in the data set are not sequential.

Chapter 7 SQL for Database Construction and Application Processing 265

1000 Janes Jeffrey

LastName FirstNameCustomerID

1001 Smith David

1015 Twilight Tiffany

1033 Smathers Fred

1034 Frederickson Mary Beth

123 W. Elm St

Street

813 Tumbleweed Lane

88 1st Avenue

10899 88th Ave

Renton

City

Durango

Langley

Bainbridge Island

WA

State

CO

WA

WA

CO25 South Lafayette Denver

1036 Warning Selma

1037 Wu Susan

205 Burnaby Vancouver BC

GA105 Locust Ave Atlanta

98055

ZipPostalCode

81201

98260

98110

80201

V6Z 1W2

30322

1040 Gray Donald

1041 Johnson Lynda

1051 Wilkens Chris

55 Bodega Ave

117 C Street

87 Highland Drive

Bodega Bay

Washington

Olympia

CA

DC

WA

94923

20003

98508

1000 Janes Jeffrey

LastName FirstNameCustomerID

1001 Smith David

1015 Twilight Tiffany

1033 Smathers Fred

1034 Frederickson Mary Beth

USA

Country

USA

USA

USA

425

AreaCode

970

360

206

543-2345

PhoneNumber

654-9876

765-5566

876-9911

513-8822USA 303

1036 Warning Selma

1037 Wu Susan

Canada 604 988-0512

653-3465USA 404

Jeffrey.James@somewhere.com

Email

David.Smith@somewhere.com

Tiffany.Twilight@somewhere.com

Fred.Smathers@somewhere.com

MaryBeth.Frederickson@somewhere.com

Selma.Warning@somewhere.com

Susan.Wu@somewhere.com

1040 Gray Donald

1041 Johnson Lynda

1051 Wilkens Chris

USA

USA

USA

707

202

360

568-4839

438-5498

765-7766

Donald.Gray@somewhere.com

NULL

Chris.Wilkens@somewhere.com

(a) CUSTOMER Table Data

Figure 7-16

Sample Data for the View
Ridge Database

This, of course, raises the question of how to override DBMS mechanisms that provide
automatic surrogate key numbering. The answer to this question varies among DBMS
products (as does the method for generating the surrogate values). A discussion of this
topic and the complete set of SQL INSERT statements needed to enter the data for the
DBMS products discussed in this text are in Chapters 10 (SQL Server 2008 R2), 10A (Oracle
Database 11g), and 10B (MySQL 5.5). At this point, we recommend that you read the appro-
priate section for the DBMS product you are using and populate the View Ridge database
in your DBMS.

(continued)

266 Part 3 Database Implementation

1 Miro Joan

LastName FirstNameArtistID

2 Kandinsky Wassily

3 Klee Paul

4 Matisse Henri

5 Chagall Marc

Spanish

Nationality

Russian

German

French

1893

DateOfBirth

1866

1879

1869

French 1887

11 Sargent John Singer

17 Tobey Mark

United States 1856

United States 1890

1983

DateDeceased

1944

1940

1954

1985

1925

1976

18 Horiuchi Paul

19 Graves Morris

United States

United States

1906

1920

1999

2001

(b) ARTIST Table Data

CustomerIDArtistID

17 1033

17 1040

17 1051

18 1000

18 1015

18 1033

18 1040

18 1051

19 1000

19 1015

19 1033

19 1036

19 1040

19 1051

1 1001

CustomerIDArtistID

1 1034

2 1001

2 1034

4 1001

4 1034

5 1001

5 1034

5 1036

11 1001

11 1015

11 1036

17 1000

17 1015

(c) CUSTOMER_ARTIST_INT Table Data

Figure 7-16

Continued

Title MediumWorkID

511 Surf and Bird High Quality Limited Print

500 Memories IV Casein rice paper collage

521 The Tilled Field High Quality Limited Print

522 La Lecon de Ski High Quality Limited Print

523 On White II High Quality Limited Print

31 x 24.8 in.

Description

Northwest School Expressionist style

Early Surrealist style

Surrealist style

Unique

Copy

142/500

788/1000

353/500

18

ArtistID

19

1

1

2Bauhaus style of Kandinsky 435/500

524 Woman with a Hat High Quality Limited Print

537 The Woven World Color lithograph

A very colorful Impressionist piece 596/750 4

17Signed 17/750

548 Night Bird Watercolor on Paper

551 Der Blaue Reiter High Quality Limited Print

552 Angelus Novus High Quality Limited Print

50 x 72.5 cm.�Signed

�The Blue Rider��Early Pointilism influence

Bauhaus style of Klee

Unique

236/1000

659/750

19

2

3

553 The Dance High Quality Limited Print

554 I and the Village High Quality Limited Print

555 Claude Monet Painting High Quality Limited Print

561 Sunflower Watercolor and ink

562 The Fiddler High Quality Limited Print

An Impressionist masterpiece

Shows Belarusian folk-life themes and symbology

Shows French Impressionist influence of Monet

33.3 x 16.1 cm.�Signed

734/1000

834/1000

684/1000

Unique

4

5

11

19

5Shows Belarusian folk-life themes and symbology 251/1000

563 Spanish Dancer High Quality Limited Print

564 Farmer�s Market #2 High Quality Limited Print

American realist style�From work in Spain 583/750 11

17Northwest School Abstract Expressionist style 267/500

(d) WORK Table Data

Figure 7-16

Continued

267

(continued)

Title MediumWorkID Description Copy ArtistID

565 Farmer�s Market #2 High Quality Limited Print

566 Into Time High Quality Limited Print

570 Untitled Number 1 Monotype with tempera

Northwest School Abstract Expressionist style

Northwest School Abstract Expressionist style

4.3 x 6.1 in.�Signed

268/500

323/500

Unique

17

18

17

571 Yellow covers blue Oil and collage

578 Mid Century Hibernation High Quality Limited Print

580 Forms in Progress I Color aquatint

581 Forms in Progress II Color aquatint

585 The Fiddler High Quality Limited Print

71 x 78 in.�Signed

Northwest School Expressionist style

19.3 x 24.4 in.�Signed

19.3 x 24.4 in.�Signed

Unique

362/500

Unique

18

19

17

17

5Shows Belarusian folk-life themes and symbology

Unique

586 Spanish Dancer High Quality Limited Print

587 Broadway Boggie High Quality Limited Print

American Realist style�From work in Spain

252/1000

11

17Northwest School Abstract Expressionist style

588/750

588 Universal Field High Quality Limited Print

589 Color Floating in Time High Quality Limited Print

590 Blue Interior Tempera on card

Northwest School Abstract Expressionist style

Northwest School Abstract Expressionist style

43.9 x 28 in.

433/500

114/500

487/500

17

18

17

593 Surf and Bird Gouache 1926.5 x 29.75 in.�Signed

Unique

594 Surf and Bird High Quality Limited Print

596 Surf and Bird High Quality Limited Print

595 Surf and Bird High Quality Limited Print

Northwest School Expressionist style

Northwest School Expressionist style

Northwest School Expressionist style

Unique

366/500

366/500

366/500

19

19

19

(d) WORK Table Data

Figure 7-16

Continued

268

Chapter 7 SQL for Database Construction and Application Processing 269

DateAcquired AcquisitionPriceTransactionID AskingPrice DateSoldID SalesPrice CustomerID WorkID

100

101

102

103

104

105

115

121

125

126

127

128

129

151

152

153

154

155

156

161

171

175

181

201

202

225

226

227

228

229

241

251

252

253

254

11/4/2007

11/7/2007

11/17/2007

11/17/2007

11/17/2007

11/17/2007

3/3/2008

9/21/2008

11/21/2008

11/21/2008

11/21/2008

11/21/2008

11/21/2008

5/7/2009

5/18/2009

5/18/2009

5/18/2009

5/18/2009

5/18/2009

6/28/2009

8/23/2009

9/29/2009

10/11/2009

2/28/2010

2/28/2010

6/8/2010

6/8/2010

6/8/2010

6/8/2010

6/8/2010

8/29/2010

10/25/2010

10/27/2010

10/27/2010

10/27/2010

$30,000.00

$250.00

$125.00

$250.00

$250.00

$200.00

$1,500.00

$15,000.00

$125.00

$200.00

$125.00

$125.00

$125.00

$10,000.00

$125.00

$200.00

$250.00

$250.00

$250.00

$7,500.00

$35,000.00

$40,000.00

$250.00

$2,000.00

$2,000.00

$125.00

$200.00

$250.00

$250.00

$250.00

$2,500.00

$25,000.00

$250.00

$250.00

$250.00

$45,000.00

$500.00

$250.00

$500.00

$250.00

$500.00

$3,000.00

$30,000.00

$250.00

$400.00

$500.00

$250.00

$250.00

$20,000.00

$250.00

$400.00

$500.00

$500.00

$500.00

$15,000.00

$60,000.00

$75,000.00

$500.00

$3,500.00

$3,500.00

$250.00

$400.00

$500.00

$500.00

$500.00

$5,000.00

$50,000.00

$500.00

$500.00

$500.00

12/14/2007

12/19/2007

1/18/2008

12/12/2008

1/18/2008

12/12/2008

6/7/2008

11/28/2008

12/18/2008

12/22/2008

3/16/2009

3/16/2009

6/28/2009

8/15/2009

8/15/2009

9/28/2009

9/27/2009

9/29/2009

9/29/2009

12/18/2009

4/26/2010

4/26/2010

9/27/2010

9/27/2010

9/27/2010

$42,500.00

$500.00

$200.00

$400.00

$200.00

$400.00

$2,750.00

$27,500.00

$200.00

$400.00

$225.00

$225.00

$17,500.00

$225.00

$350.00

$400.00

$400.00

$13,750.00

$55,000.00

$72,500.00

$3,250.00

$3,250.00

$225.00

$475.00

$4,750.00

1000

1015

1001

1034

1001

1034

1033

1015

1001

1034

1036

1036

1036

1001

1001

1040

1040

1033

1000

1036

1040

1040

1051

1051

1015

500

511

521

522

523

524

537

548

551

552

553

554

555

561

562

563

564

565

566

570

571

500

578

580

581

585

586

587

588

589

590

593

594

595

596

(e) TRANS Table Data

Figure 7-16

Continued

270 Part 3 Database Implementation

The SQL UPDATE Statement

The SQL UPDATE statement is used to change values of existing rows. For example, the
following statement will change the value of City to �New York City� for the View Ridge
customer whose CustomerID is 1000 (Jeffrey Janes):

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-01 *** */

UPDATE CUSTOMER

SET City = ’New York City’

WHERE CustomerID = 1000;

To change the value of both City and State, we would use the SQL statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-02 *** */

UPDATE CUSTOMER

SET City = ’New York City’, State = ’NY’

WHERE CustomerID = 1000;

The DBMS will enforce all referential integrity constraints when processing UPDATE
commands. For the View Ridge database, all keys are surrogate keys, but for tables with data
keys the DBMS will cascade or disallow (NO ACTION) updates according to the specification
in the FOREIGN KEY constraint. Also, if there is a FOREIGN KEY constraint, the DBMS will
enforce the referential integrity constraint on updates to a foreign key.

Bulk Updates
It is quite easy to make bulk updates with the UPDATE statement. It is so easy, in fact, that it is
dangerous. Consider the SQL UPDATE statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-03 *** */

UPDATE CUSTOMER

SET City = ’New York City’;

This statement will change the value of City for every row of the CUSTOMER table. If we had
intended to change just the value for customer 1000, we would have an unhappy result�every
customer would have the value �New York City�.

You can also perform bulk updates using an SQL WHERE clause that finds multiple rows.
If, for example, we wanted to change the AreaCode for every customer who lives in Denver, we
would code:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-04 *** */

UPDATE CUSTOMER

SET AreaCode = ’303’

WHERE City = ’Denver’;

Updating Using Values from Other Tables
The SQL UPDATE statement can set a column equal to the value of a column in a different
table. The View Ridge database has no appropriate example for this operation, so suppose
instead that we have a table named TAX_TABLE with columns (Tax, City), where Tax is the
appropriate tax rate for the City.

Chapter 7 SQL for Database Construction and Application Processing 271

Now suppose we have a table named PURCHASE_ORDER that includes the columns
TaxRate and City. We can update all rows for purchase orders in the city of Bodega Bay with
the following SQL statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-05 *** */

UPDATE PURCHASE_ORDER

SET TaxRate =

(SELECT Tax

FROM TAX_TABLE

WHERE TAX_TABLE.City = ’Bodega Bay’)

WHERE PURCHASE_ORDER.City = ’Bodega Bay’;

More likely, we want to update the value of the tax rate for a purchase order without specifying
the city. Say we want to update the TaxRate for purchase order number 1000. In that case, we
use the slightly more complex SQL statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-06 *** */

UPDATE PURCHASE_ORDER

SET TaxRate =

(SELECT Tax

From TAX_TABLE

WHERE TAX_TABLE.City = PURCHASE_ORDER.City)

WHERE PURCHASE_ORDER.Number = 1000;

SQL SELECT statements can be combined with UPDATE statements in many different
ways. We need to move on to other topics, but try these and other variations of UPDATE on
your own.

The SQL MERGE Statement

The SQL MERGE statement was introduced in SQL: 2003, and like the previously discussed SQL
TRUNCATE TABLE statement, is one of the newest additions to SQL. The SQL MERGE statement
essentially combines the SQL INSERT and SQL UPDATE statements into one statement that can
either insert or update data depending upon whether or not some condition is meet.

For example, suppose that before VRG staff inserts data into the ARTIST table, they care-
fully research data about each artist and store it in a table named ARTIST_DATA_RESEARCH.
Data on new artists is initially stored in ARTIST_DATA_RESEARCH, along with corrections to
data on artists already in ARTIST. The VRG business rule is that ARTIST names are never
changed after they have been entered, but if errors in Nationality, DateOfBirth, or DateDeceased
are discovered then these errors will be corrected. In this case, new ARTIST data can be inserted
and ARTIST data updated by using the following SQL MERGE statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-MERGE-CH07-01 *** */

MERGE INTO ARTIST AS A USING ARTIST_DATA_RESEARCH AS ADR

ON (A.LastName = ADR.LastName

AND

A.FirstName = ADR.FirstName)

WHEN MATCHED THEN

UPDATE SET
(continued)

272 Part 3 Database Implementation

A.Nationality = ADR.Nationality,

A.DateOfBirth = ADR.DateOfBirth,

A.DateDeceased = ADR.DateDeceased

WHEN NOT MATCHED THEN

INSERT (LastName, FirstName, Nationality,

DateOfBirth, DateDeceased);

The SQL DELETE Statement

The SQL DELETE statement is also quite easy to use. The following SQL statement will delete
the row for a customer with a CustomerID of 1000:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-DELETE-CH07-01 *** */

DELETE FROM CUSTOMER

WHERE CustomerID = 1000;

Of course, if you omit the WHERE clause, you will delete every customer row, so be careful
with this command as well. Note that the DELETE statement without the WHERE clause is
the logical equivalent of the SQL TRUNCATE TABLE statement previously discussed.
However, the two statements use different methods to remove the data from the table and are
not identical. For example, the DELETE statement may fire a trigger (as discussed later in this
chapter), but the TRUNCATE TABLE statement never fires triggers.

The DBMS will enforce all referential integrity constraints when processing DELETE
commands. For example, in the View Ridge database, you will be unable to delete a
CUSTOMER row if that row has any TRANS children. Further, if a row with no TRANS children
is deleted, any existing CUSTOMER_ARTIST_INT children will be deleted as well. This latter
action occurs because of the CASCADE DELETE specification on the relationship between
CUSTOMER and CUSTOMER_ARTIST_INT.

New Forms of Join

In Chapter 2, you learned how to perform SQL joins. Here we extend that discussion to show a
different join syntax and to address ways of processing joins on tables with null values. We will
be using the View Ridge database and the data in Figure 7-16 as our example, so if you want to
try out these commands, you will need to have completed building and populating your VRG
database based on the SQL CREATE TABLE statements and INSERT statements appropriate
for your DBMS product.

The SQL JOIN ON Syntax

In Chapter 2, you learned to code joins using the following syntax:

/* *** SQL-Query-CH07-01 *** */

SELECT *

FROM ARTIST, WORK

WHERE ARTIST.ArtistID = WORK.ArtistID;

Another way to code this same join is:

/* *** SQL-Query-CH07-02 *** */

SELECT *

FROM ARTIST JOIN WORK

ON ARTIST.ArtistID = WORK.ArtistID;

Chapter 7 SQL for Database Construction and Application Processing 273

These two joins are equivalent. Some people think that the second format, which uses the SQL
JOIN ON syntax, is easier to understand than the first.

You can use the SQL JOIN ON syntax as an alternate format for joins of three or more
tables, as well. If, for example, you want to obtain a list of the names of customers and the
names of the artists in which they are interested, code:

/* *** SQL-Query-CH07-03 *** */

SELECT CUSTOMER.LastName, CUSTOMER.FirstName,

ARTIST.LastName AS ArtistName

FROM CUSTOMER JOIN CUSTOMER_ARTIST_INT

ON CUSTOMER.CustomerID = CUSTOMER_ARTIST_INT.CustomerID

JOIN ARTIST

ON CUSTOMER_ARTIST_INT.ArtistID = ARTIST.ArtistID;

You can make that statement even simpler by using the SQL AS keyword to create table
aliases as well as for naming output columns:

/* *** SQL-Query-CH07-04 *** */

SELECT C.LastName, C.FirstName,

A.LastName AS ArtistName

FROM CUSTOMER AS C JOIN CUSTOMER_ARTIST_INT AS CAI

ON C.CustomerID = CAI.CustomerID

JOIN ARTIST AS A

ON CAI.ArtistID = A.ArtistID;

When a query produces a result table with many rows, we may want to limit the number
of rows that we see. We can do this using the SQL TOP {NumberOfRows} syntax, which,
along with an ORDER BY clause to sort the data, produces our final SQL query statement:

/* *** SQL-Query-CH07-05 *** */

SELECT TOP 10 C.LastName, C.FirstName,

A.LastName AS ArtistName

FROM CUSTOMER AS C JOIN CUSTOMER_ARTIST_INT AS CAI

ON C.CustomerID = CAI.CustomerID

JOIN ARTIST AS A

ON CAI.ArtistID = A.ArtistID

ORDER BY C.LastName, C.FirstName;

The result of this statement is:

274 Part 3 Database Implementation

Outer Joins

Suppose that we to see information about customer purchases at the View Ridge Gallery. To do
this, we can use the SQL query:

/* *** SQL-Query-CH07-06 *** */
SELECT C.LastName, C.FirstName, T.TransactionsID, T.SalesPrice
FROM CUSTOMER AS C JOIN TRANS AS T

ON C.CustomerID = T.CustomerID
ORDER BY T.TransactionID;

This query produces the large result set shown in Figure 7-17.
This result is correct, but it shows the names of only 8 of the 10 customers in the CUSTOMER

table. What happened to the other two customers? Look closely at the data in Figure 7-16 and you
will see that the two customers that do not appear in the results (Susan Wu and Lynda Johnson)
are customers who have never made a purchase at the gallery. Therefore, the primary key value of
these two customers does not match any foreign key value in the TRANS table, and because they
have no match, they do not appear in the result of this join statement.

Because knowing which customers have not made any purchase is important information
for View Ridge Gallery management, we want to include these customers in the query results.
We can cause all of the rows in CUSTOMER to appear using what is called an SQL outer join.
The SQL outer join syntax is shown in the query:

/* *** SQL-Query-CH07-07 *** */
SELECT C.LastName, C.FirstName, T.TransactionsID, T.SalesPrice
FROM CUSTOMER AS C LEFT JOIN TRANS AS T

Figure 7-17

Result of JOIN of
CUSTOMER and TRANS

(continued)

Chapter 7 SQL for Database Construction and Application Processing 275

ON C.CustomerID = T.CustomerID

ORDER BY T.TransactionID;

The result of this query is shown in Figure 7-18. Notice that the values of TransactionID and
SalesPrice are NULL for all customers (Susan Wu and Lynda Johnson) who have not made
purchases.

Outer joins can be either from the left or the right. If the outer join is from the left, an SQL
left outer join, which uses the SQL LEFT JOIN syntax, then all of the rows on the table on the
left (or first table in the join statement) will be included in the result. Therefore Figure 7-18,
which shows the results of a LEFT JOIN on CUSTOMER and TRANS, shows every
CUSTOMER.LastName and CUSTOMER.FirstName value (because CUSTOMER is the table
on the left�the first table in the JOIN), but displays matching values for TRANS.TransactionID
and TRANS.SalesPrice only if they exist. If there are no matching TRANS.TransactionID and
TRANS.SalesPrice and uses, then NULL values are displayed. This occurs 2 times�for Susan
Wu (row 1) and Lynda Johnson (row 2).

If the outer join is on the right, an SQL right outer join, which uses the SQL RIGHT JOIN
syntax, then all rows on the table on the right (or second table in the join statement) will be
included in the result. To illustrate the use of a right outer join, we will use a modification of
the preceding query we used to associate customers with transactions. With the left outer join,
the NULLs showed customers who had not purchased a work. With the right outer join, the

Figure 7-18

Result of LEFT OUTER JOIN
of CUSTOMER and TRANS

276 Part 3 Database Implementation

NULL will show works that have not been purchased by customers (and are therefore still in
inventory and available for sale):

/* *** SQL-Query-CH07-08 *** */

SELECT C.LastName, C.FirstName, T.TransactionsID, T.SalesPrice

FROM CUSTOMER AS C RIGHT JOIN TRANS AS T

ON C.CustomerID = T.CustomerID

ORDER BY T.TransactionID;

The result for this right join query is shown in Figure 7-19.

Figure 7-19

Result of RIGHT OUTER
JOIN of CUSTOMER and
TRANS

Chapter 7 SQL for Database Construction and Application Processing 277

Figure 7-19, which shows the results of a RIGHT JOIN on CUSTOMER and TRANS, shows
every TRANS.TransactionID and TRANS.SalesPrice value (because TRANS is the table on the
right�the second table in the JOIN), but displays matching values for CUSTOMER.LastName
and CUSTOMER.FirstName only if they exist. If there are no matching values, then NULL val-
ues are displayed. This occurs ten times�for TransactionIDs 126 (row 10), 155 (row 18), 181
(row 23), 226 (row 27), 228 (row 29), 229 (row 30), 251 (row 32), 252 (row 33), 253 (row 34), and
254 (row 35). Each of these rows show NULL values for CUSTOMER columns because no cus-
tomer has purchased the WORK referenced by the TransactionID value, and therefore there is
no matching row in CUSTOMER for these rows in TRANS. Note that the NULL values in the
SalesPrice column are not a result of the RIGHT JOIN, but exist simply because the referenced
WORK has not been sold�they could show up in the results of a query against TRANS regard-
less of whether or not it was a RIGHT join.

Joins that are not outer joins are called inner joins. All of the joins we have presented up
to this discussion of outer have been inner joins, though we did not use that term. Outer joins
can be combined to any level, just as inner joins can. The following SQL statement will obtain
a list of every customer and the artists in which they have an interest:

/* *** SQL-Query-CH07-09 *** */

SELECT C.LastName, C.FirstName, A.LastName AS ArtistName

FROM CUSTOMER AS C LEFT JOIN CUSTOMER_ARTIST_INT AS CAI

ON C.CustomerID = CAI.CustomerID

LEFT JOIN ARTIST AS A

ON CAI.ArtistID = A.ArtistID

ORDER BY C.LastName, C.FirstName;

The result for this query is in Figure 7-20. Note that if we leave either LEFT keyword out of the
expression the rows with NULL values for ArtistName will not appear in Figure 7-20. A variant of
this query using right joins can also be run (if you are running these queries in a DBMS, then try it
out), but note that because there is at least one customer interested in each artist (as shown in the
data in Figure 7-16) there will be no NULL values in the result. Of course, that is a significant result,
showing that customers are interested in all the artists featured at the View Ridge Gallery.

It is easy to forget that inner joins will drop nonmatching rows. Some years
ago, one of the authors had a very large organization as a consulting client.

The client had a budgetary-planning application that included a long sequence of
complicated SQL statements. One of the joins in that sequence was an inner join that
should have been an outer join. As a result, some 3,000 employees dropped out of the
budgetary calculations. The mistake was discovered only months later when the actual
salary expense exceeded the budget salary expense by a large margin. The mistake
was an embarrassment all the way to the board of directors.

Using SQL Views

An SQL view is a virtual table that is constructed from other tables or views. A view has no data
of its own, but obtains data from tables or other views. Views are constructed from SQL SELECT
statements using the SQL CREATE VIEW statement, and view names are then used just as
table names would be in the FROM clause of other SQL SELECT statements. The only limitation
on the SQL statements that are used to create views is that they may not contain an ORDER BY
clause.1 The sort order must be provided by the SELECT statement that processes the view.

1 This limitation appears in the SQL-92 standard, but how views are actually implemented varies by DBMS
product. For example, Oracle Database allows views to include ORDER BY, whereas SQL Server will only allow
ORDER BY in very limited circumstances.

278 Part 3 Database Implementation

Figure 7-20

Result of Nested LEFT
OUTER JOINS of
CUSTOMER,
CUSTOMER_ARTIST_INT,
and ARTIST

Views are a standard and popular SQL construct. Microsoft Access,
however, does not support them. Instead, in Microsoft Access you can

create a view-equivalent query, name it, and then save it. You can then process the
query in the same ways that we process views in the following discussion.

SQL Server, Oracle Database, and MySQL all support views, and they are an
important structure with many uses. Do not conclude from Microsoft Access� lack of
support that views are unimportant. Read on, and, if possible, use SQL Server, Oracle
Database, or MySQL to process the statements in this section.

The following statement defines a view named CustomerNameView on the CUSTOMER table:

/* *** SQL-CREATE-VIEW-CH07-01 *** */

CREATE VIEW CustomerNameView AS

SELECT LastName AS CustomerLastName,

FirstName AS CustomerFirstName,

FROM CUSTOMER;

Chapter 7 SQL for Database Construction and Application Processing 279

Note that the results from executing this statement will be only a system message stating the
action completed. With GUI utilities such as SQL Server Management Studio, an appropriately
named object will also be created.

The current versions of SQL Server, Oracle Database, and MySQL all process
the CREATE VIEW statements as written here without difficulty. However, an

earlier version of SQL Server, SQL Server 2000, has a quirk: to create views, you have to
remove the semicolon from the CREATE VIEW statement. We have no idea why SQL Server
2000 accepts a semicolon for all other SQL statements but will not accept one for SQL
statements that create views. If by chance you are still using SQL Server 2000, be aware
that you must remove the semicolon when writing CREATE VIEW statements.

Once the view is created, it can be used in the FROM clause of SELECT statements, just
like a table. The following obtains a list of customer names in sorted order:

/* *** SQL-Query-View-CH07-01 *** */
SELECT *
FROM CustomerNameView
ORDER BY CustomerLastName, CustomerFirstName;

The result for the sample data in Figure 7-16 is:

Note that the number of columns returned in the result depends on the number of columns
in the view, not on the number of columns in the underlying table. In this example, the SELECT
clause produces just two columns because CustomerNameView itself has just two columns.

Also notice that the columns LastName and FirstName in the CUSTOMER table have
been renamed to CustomerLastName and CustomerFirstName in the view. Because of this, the
ORDER BY phrase in the SELECT statement uses CustomerLastName and CustomerFirst-
Name, not LastName and FirstName. Also, the DBMS uses the labels CustomerLastName and
CustomerFirstName when producing results.

If you need to change an SQL view after you have created it, use the SQL
ALTER VIEW statement. For example, if you wanted to reverse the order of

LastName and FirstName in the CustomerNameView, you would use the SQL statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */
/* *** SQL-ALTER-VIEW-CH07-01 *** */
ALTER VIEW CustomerNameView AS
SELECT FirstName AS CustomerFirstName,

LastName AS CustomerLastName,
FROM CUSTOMER;

280 Part 3 Database Implementation

Figure 7-21 lists the uses for SQL views. SQL views can hide columns or rows. They also can be
used to display the results of computed columns, to hide complicated SQL syntax, and to layer the
use of built-in functions to create results that are not possible with a single SQL statement.
Additionally, SQL views can provide an alias for table names and thus hide the true table names
from applications and users. SQL views also are used to assign different processing permissions
and different triggers to different views of the same table. We will show examples for each of these.

Using SQL Views to Hide Columns and Rows

SQL views can be used to hide columns to simplify results or to prevent the display of sensitive
data. For example, suppose the users at View Ridge want a simplified list of customers that has
just names and phone numbers. The following SQL statement defines a view, BasicCustomer-
DataView, that will produce that list:

/* *** SQL-CREATE-VIEW-CH07-02 *** */

CREATE VIEW CustomerBasicDataView AS

SELECT LastName AS CustomerLastName,

FirstName AS CustomerFirstName,

AreaCode, PhoneNumber

FROM CUSTOMER;

To use this view, we can run the SQL statement:

/* *** SQL-Query-View-CH07-02 *** */

SELECT *

FROM CustomerBasicDataView

ORDER BY CustomerLastName, CustomerFirstName;

The result is:

� Hide columns or rows
� Display results of computations
� Hide complicated SQL syntax
� Layer built-in functions
� Provide level of isolation between
 table data and users� view of data
� Assign different processing permissions
 to different views of the same table
� Assign different triggers to different views
 of the same table

Figure 7-21

Uses of SQL Views

Chapter 7 SQL for Database Construction and Application Processing 281

If the management of the View Ridge Gallery wants to hide the columns AcquisitionPrice
and SalesPrice in TRANS, they can define a view that does not include those columns. One use
for such a view is to populate a Web page.

SQL views also can hide rows by providing a WHERE clause in the view definition. The
next SQL statement defines a view of customer name and phone data for all customers with an
address in Washington State:

/* *** SQL-CREATE-VIEW-CH07-03 *** */

CREATE VIEW CustomerBasicDataWAView AS

SELECT LastName AS CustomerLastName,

FirstName AS CustomerFirstName,

AreaCode, PhoneNumber

FROM CUSTOMER

WHERE State=’WA’;

To use this view, we can run the SQL statement:

/* *** SQL-Query-View-CH07-03 *** */

SELECT *

FROM CustomerBasicDataWAView

ORDER BY CustomerLastName, CustomerFirstName;

The result is:

As desired, only customers who live in Washington are shown in this view. This limitation
is not obvious from the results because State is not included in the view. This characteristic is
good or bad, depending on the use of the view. It is good if this view is used in a setting in
which only Washington customers matter; it is bad if the view miscommunicates that these
customers are the only View Ridge customers.

Using SQL Views to Display Results of Computed Columns

Another purpose of views is to show the results of computed columns without requiring
the user to enter the computation expression. For example, the following view combines the
AreaCode and PhoneNumber columns and formats the result:

/* *** SQL-CREATE-VIEW-CH07-04 *** */

CREATE VIEW CustomerPhoneView AS

SELECT LastName AS CustomerLastName,

FirstName AS CustomerFirstName,

(’(’ + AreaaCode + ’)’ + PhoneNumber) AS CustomerPhone

FROM CUSTOMER;

282 Part 3 Database Implementation

When the view user executes the SQL statement:

/* *** SQL-Query-View-CH07-04 *** */

SELECT *

FROM CustomerPhoneView

ORDER BY CustomerLastName, CustomerFirstName;

the results2 will be:

Placing computations in views has two major advantages. First, it saves users from having
to know or remember how to write an expression to get the results they want. Second, it
ensures consistent results. If each developer who uses a computation writes his or her own
SQL expression, that developer may write it differently and obtain inconsistent results.

Using SQL Views to Hide Complicated SQL Syntax

Another use of SQL views is to hide complicated SQL syntax. Using a view, developers need not
enter a complex SQL statement when they want a particular result. Also, such views give the
benefits of complicated SQL statements to developers who do not know how to write such
statements. This use of views also ensures consistency.

For example, suppose that the View Ridge Gallery salespeople want to see which
customers are interested in which artists. To display these interests, two joins are neces-
sary: one to join CUSTOMER to CUSTOMER_ARTIST_INT and another to join that result
to ARTIST. We can code an SQL statement that constructs these joins and define it as
an SQL view. In fact, we already have, and we will reuse a variant of our nested left outer
join example discussed earlier [we simply use equijoins (i.e., inner joins) instead of outer
joins, because we are not interested in NULL values in these results] to create the
CustomerInterestsView:

/* *** SQL-CREATE-VIEW-CH07-05 *** */

CREATE VIEW CustomerInterestsView AS

SELECT C.LastName AS CustomerLastName,

C.FirstName AS CustomerFirstName,

A.LastName AS ArtistName

FROM CUSTOMER AS C JOIN CUSTOMER_ARTIST_INT AS CAI

2 As you might expect, different DBMS products use a different operator for the concatenation operation in the
CustomerPhoneView definition. For example, in Oracle Database the plus sign (+) must be replaced by double
vertical bars (||) for string concatenation, while MySQL uses the CONCAT() string function. See the example in
Chapter 2, and the documentation for your DBMS for more details.

Chapter 7 SQL for Database Construction and Application Processing 283

ON C.CustomerID = CAI.CustomerID

JOIN ARTIST AS A

ON CAI.ArtistID = A.ArtistID;

Notice the aliasing of C.LastName to CustomerLastName and A.LastName to ArtistLastName.
We must use at least one of these column aliases, for without them the resulting table has two
columns named LastName. The DBMS would not be able to distinguish one LastName from
the other and would generate an error when an attempt is made to create such a view.

This is a complicated SQL statement to write, but once the view is created the result of
this statement can be obtained with a simple SELECT statement. For example, the following
statement shows the results sorted by CustomerLastName and CustomerFirstName:

/* *** SQL-Query-View-CH07-05 *** */

SELECT *

FROM CustomerInterestsView

ORDER BY CustomerLastName, CustomerFirstName;

Figure 7-22 displays the fairly large result set. Clearly, using the view is much simpler than
constructing the join syntax. Even developers who know SQL well will appreciate having a
simpler SQL view with which to work.

Figure 7-22

Result of SELECT on
CustomerInterestsView

284 Part 3 Database Implementation

Layering Built-in Functions

Recall from Chapter 2 that you cannot use a computation or a built-in function as part of an
SQL WHERE clause. You can, however, construct a view that computes a variable and then
write an SQL statement on that view that uses the computed variable in a WHERE clause.
To understand this, consider the SQL view definition for the ArtistWorkNetView:

/* *** SQL-CREATE-VIEW-CH07-06 *** */

CREATE VIEW ArtistWorkNetView AS

SELECT LastName AS ArtistLastName,

FirstName AS ArtistFirstName,

W.WorkID, Title, Copy, DateSold,

AcquisitionPrice, SalesPrice,

(SalesPrice � AcquisitionPrice) AS NetProfit

FROM TRANS AS T JOIN WORK AS W

ON T.WorkID = W.WorkID

JOIN ARTIST AS A

ON W.ArtistID = A.ArtistID;

This SQL view joins TRANS, WORK, and ARTIST and creates the computed column NetProfit.
We can now use NetProfit in an SQL WHERE clause in a query, as follows:

/* *** SQL-Query-View-CH07-06 *** */

SELECT ArtistLastName, ArtistFirstName,

WorkID, Title, Copy, DateSold, NetProfit

FROM ArtistWorkNetView

WHERE NetProfit > 5000

ORDER BY DateSold;

Here we are using the result of a computation in a WHERE clause, something that is not
allowed in a single SQL statement. The result of the SQL SELECT statement is:

Such layering can be continued over many levels. We can define another view with
another computation on the computation in the first view. For example, note that in the
results above the Horiuchi work Memories IV has been acquired and sold more than once by
View Ridge, and then consider the SQL view ArtistWorkTotalNetView, which will calculate the
total net profit from all sales of each work:

/* *** SQL-CREATE-VIEW-CH07-07 *** */

CREATE VIEW ArtistWorkTotalNetView AS

SELECT ArtistLastName, ArtistFirstName,

WorkID, Title, Copy,

SUM(NetProfit) AS TotalNetProfit

Chapter 7 SQL for Database Construction and Application Processing 285

FROM ArtistWorkNetView

GROUP BY ArtistLastName, ArtistFirstName,

WorkID, Title, Copy;

Now we can use TotalNetProfit in an SQL WHERE clause on the ArtistWorkTotalNet
view, as follows:

/* *** SQL-Query-View-CH07-07 *** */

SELECT *

FROM ArtistWorkTotalNetView

WHERE TotalNetProfit > 5000

ORDER BY TotalNetProfit;

In this SELECT, we are using an SQL view on an SQL view and a built-in function on a
computed variable in the WHERE clause. The results are as follows:

Using SQL Views for Isolation, Multiple Permissions,
and Multiple Triggers

SQL Views have three other important uses. First, they can isolate source data tables from
application code. To see how, suppose we define the view:

/* *** SQL-CREATE-VIEW-CH07-08 *** */

CREATE VIEW CustomerTableBasicDataView AS

SELECT *

FROM CUSTOMER;

This view assigns the alias CustomerTableBasicDataView to the CUSTOMER table, and
when we query this view, the result, as expected, is the data in the CUSTOMER table itself. If all
application code uses the CustomerTableBasicDataView as the data source in SQL statements,
then the true source of the data is hidden from application programmers.

/* *** SQL-Query-View-CH07-08 *** */

SELECT *

FROM CustomerTableBasicDataView;

286 Part 3 Database Implementation

Such table isolation provides flexibility to the database administration staff. For example,
suppose that at some future date the source of customer data is changed to a different table
(perhaps one that is imported from a different database) named NEW_CUSTOMER. In this
situation, all the database administrator needs to do is redefine CustomerTableBasicDataView
using the SQL ALTER VIEW statement, as follows:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-VIEW-CH07-08 *** */

ALTER VIEW CustomerTableBasicDataView AS

SELECT *

FROM NEW_CUSTOMER;

All of the application code that uses CustomerTableBasicDataView will now run on the new
data source without any problem.

The second important use for SQL views is to give different sets of processing permissions
to the same table. We will discuss security in more detail in Chapters 9, 10, 10A, and 10B, but
for now understand that it is possible to limit insert, update, delete, and read permissions on
tables and views.

For example, an organization might define a view of CUSTOMER called CustomerTable-
ReadView with read-only permissions on CUSTOMER and a second view of CUSTOMER
called CustomerTableUpdateView with both read and update permissions. Applications that
need not update the customer data would work with CustomerTableReadView, whereas those
that need to update this data would work with CustomerTableUpdateView.

The final use of SQL views is to enable the definition of multiple sets of triggers on the
same data source. This technique is commonly used for enforcing O-M and M-M relation-
ships. In this case, one view has a set of triggers that prohibits the deletion of a required child
and another view has a set of triggers that deletes a required child as well as the parent. The
views are assigned to different applications, depending on the authority of those applications.

Updating SQL Views

Some views can be updated, others cannot. The rules by which this is determined are both
complicated and dependent on the DBMS in use. To understand why this is so, consider the
following two update requests on views previously defined in our discussion of SQL views:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-VIEW-CH07-01 *** */

UPDATE CustomerTableBasicDataView

SET Phone = ’543-3456’

WHERE CustomerID = 1000;

and

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-VIEW-CH07-02 *** */

UPDATE ArtistWorkTotalNetView

SET TotalNetProfit = 23000

WHERE ArtistLastName = ’Tobey’;

The first request can be processed without problem because CustomerTableBasicDataView
is just an alias for the CUSTOMER table. The second update, however, makes no sense at all.
TotalNetProfit is a sum of a computed column. Nowhere in the actual tables in the database is
there any such column to be updated.

Chapter 7 SQL for Database Construction and Application Processing 287

Updatable Views:
� View based on a single table with no computed columns and all
 non-null columns present in the view.
� View based on any number of tables, with or without computed
 columns, and INSTEAD OF trigger defined for the view.
Possibly Updatable Views:
� Based on a single table, primary key in view, some required
 columns missing from view, update and delete may be allowed.
 Insert is not allowed.
� Based on multiple tables, updates may be allowed on the most

subordinate table in the view if rows of that table can be uniquely
 identified.

Figure 7-23

Guidelines for Updating SQL
Views

Figure 7-23 shows general guidelines to determine if a view is updatable. Again, the
specifics depend on the DBMS product in use. In general, the DBMS must be able to associate
the column(s) to be updated with a particular row in a particular table. A way to approach this
question is to ask yourself, �What would I do if I were the DBMS and I were asked to update
this view? Would the request make sense, and, if so, do I have sufficient data to make the
update?� Clearly, if the entire table is present and there are no computed columns, the view is
updatable. Also, the DBMS will mark the view as updatable if it has an INSTEAD OF trigger
defined for it, as described later.

However, if any of the required columns are missing, the view clearly cannot be used for
inserts. It may be used for updates and deletes, however, as long as the primary key
(or, for some DBMS products, a candidate key) is present in the view. Multitable views may be
updatable on the most subordinate table. Again, this can only be done if the primary key or
candidate key for that table is in the view. We will revisit this topic for SQL Server 2008 R2 in
Chapter 10, Oracle Database 11g in Chapter 10A, and MySQL 5.5 in Chapter 10B.

Embedding SQL in Program Code

SQL statements can be embedded in application programs, triggers, and stored procedures.
Before we discuss those subjects, however, we need to explain the placement of SQL
statements in program code.

In order to embed SQL statements in program code, two problems must be solved.
The first problem is that some means of assigning the results of SQL statements to program
variables must be available. Many different techniques are used. Some involve object-oriented
programs, whereas others are simpler. For example, in Oracle�s PL/SQL the following statement
assigns the count of the number of rows in the CUSTOMER table to the user-defined variable
named rowCount:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-01 *** */

SELECT Count(*) INTO rowCount

FROM CUSTOMER;

MySQL SQL uses the same syntax. In SQL Server T-SQL, all user-defined variables must use
the @ (�at� symbol) as the first character, and therefore the code in T-SQL uses the user-defined
variable named @rowCount:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-02 *** */

SELECT @rowCount = Count(*)

FROM CUSTOMER;

288 Part 3 Database Implementation

In either case, the execution of this code will place the number of rows in CUSTOMER into the
program variable rowCount or @rowCount.

The second problem to solve concerns a paradigm mismatch between SQL and applica-
tion programming languages. SQL is table oriented; SQL SELECT statements start with one or
more tables and produce a table as output. Programs, however, start with one or more
variables, manipulate them, and store the result in a variable. Because of this difference, an
SQL statement like the following makes no sense:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-03 *** */

SELECT LastName INTO customerLastName

FROM CUSTOMER;

If there are 100 rows in the CUSTOMER table, there will be 100 values of LastName. The
program variable customerLastName, however, is expecting to receive just one value.

To avoid this problem, the results of SQL statements are treated as pseudofiles. When an
SQL statement returns a set of rows, a cursor, which is a pointer to a particular row, is estab-
lished. The application program can then place the cursor on the first, last, or some other row
of the SQL statement output table. With the cursor placed, values of columns for that row can
be assigned to program variables. When the application is finished with a particular row, it
moves the cursor to the next, prior, or some other row, and continues processing.

The typical pattern for using a cursor is as follows:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-04 *** */

DECLARE SQLCursor CURSOR FOR (SELECT * FROM CUSTOMER);

/* Opening SQLcursor executes (SELECT * FROM CUSTOMER) */

OPEN SQLcursor;

MOVE SQLcursor to first row of (SELECT * FROM CUSTOMER);

WHILE (SQLcursor not past the last row) LOOP

SET customerLastName = LastName;

. . . other statements . . .

REPEAT LOOP UNTIL DONE;

CLOSE SQLcursor

. . . other processing . . .

In this way, the rows of an SQL SELECT are processed one at a time. You will see many examples
of these techniques and others like them in the chapters that follow.

A typical and useful example of embedding SQL statements in an application is the use of
SQL in Web database applications. We will discuss this topic in detail in Chapter 11, where we
will provide several examples of SQL statements embedded in the PHP scripting language. For
now, try to gain an intuitive understanding of how SQL is embedded in program code as we
discuss how SQL application code is embedded within databases themselves.

SQL/Persistent Stored Modules (SQL/PSM)

As discussed previously in this chapter, each DBMS product has its own variant or extension of
SQL, including features that allow SQL to function similarly to a procedural programming
language. The ANSI/ISO standard refers to these as SQL/Persistent Stored Modules
(SQL/PSM). Microsoft�s SQL Server calls its version of SQL Transact-SQL (T-SQL), and Oracle�s
Oracle Database calls its version of SQL Procedural Language/SQL (PL/SQL). MySQL�s variant
also includes SQL/PSM components, but it has no special name and is just called SQL in the
MySQL documentation.

Chapter 7 SQL for Database Construction and Application Processing 289

SQL/PSM provides the program variables and cursor functionality previously discussed. It
also includes control-of-flow language such as BEGIN . . . END blocks and IF . . . THEN . . .
ELSE logic structures, and the ability to provide usable output to users.

The most important feature of SQL/PSM, however, is that it allows the code that
implements these features in a database to be contained in that database. The SQL code can
be written as one of three module types: functions, triggers, and stored procedures. Thus the
name: Persistent�the code remains available for use over time, Stored�the code is stored for
reuse in the database, or Modules�the code is written as a function, trigger, or stored
procedure. While we will not discuss SQL/PSM functions in this book, we will discuss and use
triggers and stored procedures.

Using SQL Triggers

A trigger is a stored program that is executed by the DBMS whenever a specified event occurs.
Triggers for Oracle Database are written in Java or in Oracle�s PL/SQL. SQL Server triggers are
written in Microsoft .NET Common Language Runtime (CLR) languages, such as Visual
Basic.NET, or Microsoft�s T-SQL. MySQL triggers are written in MySQL�s variant of SQL. In this
chapter, we will discuss triggers in a generic manner without considering the particulars
of those languages. We will discuss triggers written in DBMS-specific SQL variants in
Chapters 10 (T-SQL), 10A (PL/SQL), and 10B (MySQL SQL).

A trigger is attached to a table or a view. A table or a view may have many triggers, but a
trigger is associated with just one table or view. A trigger is invoked by an SQL DML INSERT,
UPDATE, or DELETE request on the table or view to which it is attached. Figure 7-24 summa-
rizes the triggers available for SQL Server 2008 R2, Oracle Database 11g, and MySQL 5.5.

Oracle Database 11g supports three kinds of triggers: BEFORE, INSTEAD OF, and AFTER.
As you would expect, BEFORE triggers are executed before the DBMS processes the insert,
update, or delete request. INSTEAD OF triggers are executed in place of any DBMS processing
of the insert, update, or delete request. AFTER triggers are executed after the insert, update, or
delete request has been processed. Altogether, nine trigger types are possible: BEFORE
(INSERT, UPDATE, DELETE), INSTEAD OF (INSERT, UPDATE, DELETE), and AFTER
(INSERT, UPDATE, DELETE).

Since SQL Server 2005, SQL Server supports DDL triggers (triggers on such SQL DDL
statements as CREATE, ALTER and DROP) as well as DML triggers. We will only deal with the
DML triggers here, which for SQL Server 2008 R2 are INSTEAD OF and AFTER triggers on
INSERT, UPDATE, and DELETE. (Microsoft includes the FOR keyword, but this is a synonym
for AFTER in Microsoft syntax.) Thus, we have six possible trigger types.

MySQL 5.5 supports only BEFORE and AFTER triggers, thus it supports only six trigger
types. Other DBMS products support triggers differently. See the documentation of your
product to determine which trigger types it supports.

INSERT Oracle Database

MySQL

Oracle Database
SQL Server

UPDATE Oracle Database

MySQL

Oracle Database
SQL Server

DELETE Oracle Database

MySQL

Oracle Database
SQL Server

BEFORE INSTEAD OFTrigger Type

DML Action

Oracle Database
SQL Server
MySQL

Oracle Database
SQL Server
MySQL

Oracle Database
SQL Server
MySQL

AFTER
Figure 7-24

Summary of SQL Triggers
by DBMS Product

290 Part 3 Database Implementation

� Provide default values
� Enforce data constraints
� Update views
� Perform referential integrity actionsFigure 7-25

Uses for SQL Triggers

When a trigger is invoked, the DBMS makes the data involved in the requested action
available to the trigger code. For an insert, the DBMS will supply the values of columns for the
row that is being inserted. For deletions, the DBMS will supply the values of columns for
the row that is being deleted. For updates, it will supply both the old and the new values.

The way in which this is done depends on the DBMS product. For now, assume that new
values are supplied by prefixing a column name with the expression new:. Thus, during an
insert on CUSTOMER, the variable new:LastName is the value of LastName for the row being
inserted. For an update, new:LastName has the value of LastName after the update takes
place. Similarly, assume that old values are supplied by prefixing a column name with the
expression old:. Thus, for a deletion, the variable old:LastName has the value of LastName for
the row being deleted. For an update, old:LastName has the value of Name prior to the
requested update. This, in fact, is the strategy used by Oracle PL/SQL and MySQL SQL�you
will see the equivalent SQL Server strategy in Chapter 10.

Triggers have many uses. In this chapter, we consider the four uses summarized in
Figure 7-25:

� Providing default values
� Enforcing data constraints
� Updating SQL views
� Performing referential integrity actions

Using Triggers to Provide Default Values
Earlier in this chapter, you learned to use the SQL DEFAULT keyword to provide initial column
values. DEFAULT works only for simple expressions, however. If the computation of a default
value requires complicated logic, then an INSERT trigger must be used instead.

For example, suppose that there is a policy at View Ridge Gallery to set the value of
AskingPrice equal either to twice the AcquisitionPrice or to the AcquisitionPrice plus the
average net gain for sales of this art in the past, whichever is greater. The AFTER trigger in
Figure 7-26 implements this policy. Note that the code in Figure 7-26, although resembling
Oracle PL/SQL, is generic pseudocode. You will learn how to write specific code for SQL Server,
Oracle Database, and MySQL in Chapters 10, 10A, and 10B, respectively.

After declaring program variables, the trigger reads the TRANS table to find out how
many TRANS rows exist for this work. Because this is an AFTER trigger, the new TRANS
row for the work will have already been inserted. Thus, the count will be one if this is the first
time the work has been in the gallery. If so, the new value of SalesPrice is set to twice the
AcquisitionPrice.

If the user variable rowCount is greater than one, then the work has been in the gallery
before. To compute the average gain for this work, the trigger uses the ArtistWorkNetView
described on page 284 to compute SUM(NetProfit) for this work. The sum is placed in the
variable sumNetProfit. Notice that the WHERE clause limits the rows to be used in the view
to this particular work. The average is then computed by dividing this sum by rowCount
minus one.

You may be wondering, why not use AVG(NetProfit) in the SQL statement? The answer
is that the default SQL average function would have counted the new row in the computa-
tion of the average. We do not want that row to be included, so we subtract one from
rowCount when the average is computed. Once the value of avgNetProfit has been
computed, it is compared with twice the AcquisitionPrice; the larger result is used for the
new value of AskingPrice.

Chapter 7 SQL for Database Construction and Application Processing 291

Figure 7-26

Trigger Code to Insert
a Default Value

Using Triggers to Enforce Data Constraints
A second purpose of triggers is to enforce data constraints. Although SQL CHECK constraints
can be used to enforce domain, range, and intrarelation constraints, no DBMS vendor has
implemented the SQL-92 features for interrelation CHECK constraints. Consequently, such
constraints are implemented in triggers.

Suppose, for example, that the gallery has a special interest in Mexican painters
and never discounts the price of their works. Thus, the SalesPrice of a work must always
be at least the AskingPrice. To enforce this rule, the gallery database has an insert and
update trigger on TRANS that checks to see if the work is by a Mexican painter. If so, the
SalesPrice is checked against the AskingPrice. If it is less than the AskingPrice, the
SalesPrice is reset to the AskingPrice. This, of course, must happen when the art work is
actually being sold, and the customer charged the full amount! This is not a postsale
accounting adjustment.

292 Part 3 Database Implementation

Figure 7-27

Trigger Code to Enforce an
Interrelation Data Constraint

Figure 7-27 shows generic trigger code that implements this rule. This trigger will be fired
after any insert or update on a TRANS row. The trigger first checks to determine if the work is
by a Mexican artist. If not, the trigger is exited. Otherwise, the SalesPrice is checked against
the AskingPrice; if it is less than the AskingPrice, the SalesPrice is set equal to the AskingPrice.

This trigger will be called recursively; the update statement in the trigger will cause an
update on TRANS, which will cause the trigger to be called again. The second time, however,
the SalesPrice will be equal to the AskingPrice, no more updates will be made, and the
recursion will stop.

Using Triggers to Update Views
As stated earlier, the DBMS can update some views but not others, depending on the way the view
is constructed. Applications can sometimes update the views that the DBMS cannot update by
applying logic that is particular to a given business setting. In this case, the application-specific
logic for updating the view is placed in an INSTEAD OF trigger.

When an INSTEAD OF trigger is declared on a view, the DBMS performs no action other
than to call the trigger. Everything else is up to the trigger. If you declare an INSTEAD OF
INSERT trigger on view MyView, and if your trigger does nothing but send an e-mail message,
then that e-mail message becomes the result of an INSERT on the view. INSERT MyView
means �Send an e-mail,� and nothing more.

Chapter 7 SQL for Database Construction and Application Processing 293

More realistically, consider the SQL view CustomerInterestsView on page 282 and the
result of that view in Figure 7-22. This view is the result of two joins across the intersection
table between CUSTOMER and ARTIST. Suppose that this view populates a grid on a user
form, and further suppose that users want to make customer name corrections, when neces-
sary, on this form. If such changes are not possible, the users will say something like, �But, hey,
the name is right there. Why can�t I change it?� Little do they know the trials and tribulations
the DBMS went through to display those data!

In any case, if, for example, the customer LastName value happens to be unique within the
database, the view has sufficient information to update the customer�s last name. Figure 7-28
shows generic trigger code for such an update. The code just counts the number of customers
that have the old value of LastName. If only one customer has that value, then the update is
made; otherwise, an error message is generated. Notice that the update activity is on one of the
tables that underlie the view. The view, of course, has no real view data. Only actual tables can
be updated.

Using Triggers to Implement Referential Integrity Actions
The fourth use of triggers is to implement referential integrity actions. Consider, for example,
the 1:N relationship between DEPARTMENT and EMPLOYEE. Assume that the relationship is
M-M and that EMPLOYEE.DepartmentName is a foreign key to DEPARTMENT.

To enforce this constraint, we will construct two views, both based on EMPLOYEE. The
first view, DeleteEmployeeView, will delete an EMPLOYEE row only if that row is not the last
child in the DEPARTMENT. The second view, DeleteEmployeeDepartmentView, will delete an
EMPLOYEE row, and if that row is the last EMPLOYEE in the DEPARTMENT, it will also delete
the DEPARTMENT row.

Figure 7-28

Trigger Code to Update an
SQL View

294 Part 3 Database Implementation

Figure 7-29

Trigger Code to Delete All
But Last Child

An organization would make the view DeleteEmployeeView available to applications that do
not have permission to delete a row in DEPARTMENT. The view DeleteEmployeeDepartmentView
would be given to applications that have permission to delete both employees and departments
that have no employees.

Both of the views DeleteEmployeeView and DeleteEmployeeDepartmentView have the
identical structure:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-CREATE-VIEW-CH07-09 *** */

CREATE VIEW DeleteEmployeeView AS

SELECT *

FROM EMPLOYEE;

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-CREATE-VIEW-CH07-10 *** */

CREATE VIEW DeleteEmployeeDepartmentView AS

SELECT *

FROM EMPLOYEE;

The trigger on DeleteEmployeeView, shown in Figure 7-29, determines if the employee is
the last employee in the department. If not, the EMPLOYEE row is deleted. If, however, the
employee is the last employee in the department, nothing is done. Note again that the DBMS
does nothing when an INSTEAD OF trigger is declared on the deletion. All activity is up to the
trigger. If the employee is the last employee, then this trigger does nothing, which means that
no change will be made to the database because the DBMS left all processing tasks to the
INSTEAD OF trigger.

Chapter 7 SQL for Database Construction and Application Processing 295

The trigger on DeleteEmployeeDepartment, shown in Figure 7-30, treats the employee
deletion a bit differently. First, the trigger checks to determine if the employee is the last
employee in the department. If so, the EMPLOYEE is deleted, and then the DEPARTMENT
itself is deleted. Notice that the row in EMPLOYEE is deleted in either case.

Triggers such as those in Figures 7-29 and 7-30 are used to enforce the referential integrity
actions for O-M and M-M relationships, as described at the end of Chapter 6. You will learn
how to write them for SQL Server 2008 R2 in Chapter 10, Oracle Database 11g in Chapter 10A,
and for MySQL 5.5 in Chapter 10B.

Using Stored Procedures

A stored procedure is a program that is stored within the database and compiled when used.
In Oracle Database, stored procedures can be written in PL/SQL or in Java. With SQL Server
2008 R2, stored procedures are written in T-SQL or a .NET CLR language, such as Visual
Basic.NET, C#.NET, or C++.NET. With MySQL, stored procedures are written in MySQL�s
variant of SQL.

Stored procedures can receive input parameters and return results. Unlike triggers,
which are attached to a given table or view, stored procedures are attached to the database.
They can be executed by any process using the database that has permission to use the
procedure. Differences between triggers and stored procedures are summarized in
Figure 7-31.

Stored procedures are used for many purposes. Although database administrators use
them to perform common administration tasks, their primary use is within database applica-
tions. They can be invoked from application programs written in languages such as COBOL, C,
Java, C#, or C++. They also can be invoked from Web pages (as we will in Chapter 11) using, for
example, VBScript, JavaScript or PHP. Ad hoc users can run them from DBMS management
products such as SQL*Plus or SQL Developer in Oracle Database, SQL Server Management
Studio in SQL Server, or the MySQL Workbench in MySQL.

Figure 7-30

Trigger Code to Delete Last
Child and Parent When
Necessary

296 Part 3 Database Implementation

� Trigger
 � Module of code that is called by the DBMS when INSERT,
 UPDATE, or DELETE commands are issued
 � Assigned to a table or view
 � Depending on the DBMS, may have more than one trigger per
 table or view
 � Triggers may issue INSERT, UPDATE, and DELETE commands
 and thereby may cause the invocation of other triggers
� Stored Procedure
 � Module of code that is called by a user or database administrator
 � Assigned to a database, but not to a table or a view
 � Can issue INSERT, UPDATE, DELETE, and MERGE commands
 � Used for repetitive administration tasks or as part of an application

Figure 7-31

Triggers Versus Stored
Procedures

� Greater security
� Decreased network traffic
� SQL can be optimized
� Code sharing
 � Less work
 � Standardized processing
 � Specialization among developers

Figure 7-32

Advantages of Stored
Procedures

Advantages of Stored Procedures
The advantages of using stored procedures are listed in Figure 7-32. Unlike application code,
stored procedures are never distributed to client computers. They always reside in the
database and are processed by the DBMS on the database server. Thus, they are more secure
than distributed application code, and they also reduce network traffic. Increasingly, stored
procedures are the preferred mode of processing application logic over the Internet or
corporate intranets. Another advantage of stored procedures is that their SQL statements can
be optimized by the DBMS compiler.

When application logic is placed in a stored procedure, many different application program-
mers can use that code. This sharing results not only in less work, but also in standardized
processing. Further, the developers best suited for database work can create the stored procedures
while other developers, say, those who specialize in Web-tier programming, can do other work.
Because of these advantages, it is likely that stored procedures will see increased use in the future.

The WORK_AddWorkTransaction Stored Procedure
Figure 7-33 shows a stored procedure that records the acquisition of a work in the View Ridge
database. Again, this code is generic, but the code style in Figure 7-33 is closer to that used in
SQL Server T-SQL rather than the Oracle PL/SQL style that was used for the trigger examples
in the prior section. If you compare the pseudocode examples in both sections, you can gain a
sense of the differences between code written in PL/SQL and T-SQL.

The WORK_addWorkTransaction procedure receives five input parameters and returns
none. In a more realistic example, a return parameter would be passed back to the caller to
indicate the success or failure of the operation. That discussion takes us away from database
concepts, however, and we will omit it here. This code does not assume that the value of
ArtistID that is passed to it is a valid ID. Instead, the first step in the stored procedure is to
check whether the ArtistID value is valid. To do this, the first block of statements counts the
number of rows that have the given ArtistID value. If the count is zero, then the ArtistID value
is invalid, and the procedure writes an error message and returns.

Otherwise,3 the procedure then checks to determine if the work has been in the View
Ridge Gallery before. If so, the WORK table will already contain a row for this ArtistID, Title,

3 This code does not check for more than one row having the given ArtistID, because ArtistID is a surrogate key.

Figure 7-33

Stored Procedure to Record
the Acquisition of a Work

297

298 Part 3 Database Implementation

and Copy. If no such row exists, the procedure creates a new WORK row. Once that has been
done, it then uses a SELECT to obtain a value for the WorkID value. If the WORK row was just
created, this statement is necessary to obtain the new value of the WorkID surrogate key. If the
work was not created, the SELECT on WorkID is necessary to obtain the WorkID of the
existing row. Once a value of WorkID has been obtained, the new row is inserted into TRANS.
Notice that the system function GetDate() is used to supply a value for DateAcquired in the
new row.

This procedure illustrates how SQL is embedded in stored procedures. It is not complete,
because we need to do something to ensure that either all updates are made to the database or
none of them are. You will learn how to do this in Chapter 9. For now, just concentrate on how
SQL can be used as part of a database application.

SQL DDL statements are used to manage the structure of
tables. This chapter presented three SQL DDL statements:
CREATE TABLE, ALTER TABLE, DROP TABLE, and TRUN-
CATE TABLE. SQL is preferred over graphical tools for creat-
ing tables because it is faster, it can be used to create the
same table repeatedly, tables can be created from program
code, and it is standardized and DBMS independent.

The IDENTITY (N, M) data type is used to create
surrogate key columns, where N is the starting value and M is
the increment to be added. The SQL CREATE TABLE state-
ment is used to define the name of the table, its columns, and
constraints on columns. There are five types of constraints:
PRIMARY KEY, UNIQUE, NULL/NOT NULL, FOREIGN KEY,
and CHECK.

The purposes of the first three constraints are obvious.
FOREIGN KEY is used to create referential integrity constraints;
CHECK is used to create data constraints. Figure 7-11 summa-
rizes techniques for creating relationships using SQL constraints.

Simple default values can be assigned using the
DEFAULT keyword. Data constraints are defined using
CHECK constraints. Domain, range, and intratable con-
straints can be defined. Although SQL-92 defined facilities
for interrelation CHECK constraints, those facilities were
not implemented by DBMS vendors. Instead, interrelation
constraints are enforced using triggers.

The ALTER statement is used to add and remove
columns and constraints. The DROP statement is used to
drop tables. In SQL DDL, parents need to be created first and
dropped last.

The DML SQL statements are INSERT, UPDATE,
DELETE, and MERGE. Each statement can be used on a single
row, on a group of rows, or on the entire table. Because of their
power, both UPDATE and DELETE need to be used with care.

Some people believe the JOIN ON syntax is an easier
form of join. Rows that have no match in the join condition
are dropped from the join results. To keep such rows, use a
LEFT OUTER or RIGHT OUTER join rather than a regular,
or INNER, join.

An SQL view is a virtual table that is constructed from
other tables and views. SQL SELECT statements are used to

define views. The only restriction is that a view definition
may not include an ORDER BY clause.

Views are used to hide columns or rows and to show the
results of computed columns. They also can hide complicated
SQL syntax, such as that used for joins and GROUP BY
queries, and layer computations and built-in functions so that
computations can be used in WHERE clauses. Some organiza-
tions use views to provide table aliases. Views also can be used
to assign different sets of processing permissions to tables and
to assign different sets of triggers as well. The rules for deter-
mining whether a view can be updated are both complicated
and DBMS specific. Guidelines are shown in Figure 7-23.

SQL statements can be embedded in program code in
functions, triggers, stored procedures, and application code.
To do so, there must be a way to associate SQL table columns
with program variables. Also, there is a paradigm mismatch
between SQL and programs. Most SQL statements return
sets of rows; an application expects to work on one row at a
time. To resolve this mismatch, the results of SQL state-
ments are processed as pseudofiles using a cursor. Web data-
base applications are a good example of SQL statements
embedding in application program code.

SQL/PSM is the portion of the SQL standard that
provides for storing reusable modules of program code within
a database. SQL/PSM specifies that SQL statements will be
embedded in functions, triggers, and stored procedures in a
database. It also specifies SQL variables, cursors, control-
of-flow statements, and output procedures.

A trigger is a stored program that is executed by the DBMS
whenever a specified event occurs on a specified table or view.
In Oracle, triggers can be written in Java or in a proprietary
Oracle language called PL/SQL. In SQL Server, triggers can be
written in a propriety SQL Server language called TRANSACT-
SQL, or T-SQL, and in Microsoft CLR languages, such as Visual
Basic.NET, C# .NET, and C++ .NET. With MySQL, triggers can
be written in MySQL�s variant of SQL.

Possible triggers are BEFORE, INSTEAD OF, and AFTER.
Each type of trigger can be declared for insert, update, and
delete actions, so nine types of triggers are possible. Oracle
supports all nine trigger types, SQL Server supports only

Chapter 7 SQL for Database Construction and Application Processing 299

INSTEAD OF and AFTER triggers, and MySQL supports the
BEFORE and AFTER triggers. When a trigger is fired, the
DBMS supplies old and new values for the update. New values
are provided for inserts and updates, and old values are
provided for updates and deletions. How these values are
provided to the trigger depends on the DBMS in use.

Triggers have many uses. This chapter discussed four: set-
ting default values, enforcing interrelation data constraints,
updating views, and enforcing referential integrity actions.

A stored procedure is a program that is stored within
the database and compiled when used. Stored procedures
can receive input parameters and return results. Unlike trig-
gers, their scope is database-wide; they can be used by any
process that has permission to run the stored procedure.

Stored procedures can be called from programs written
in the same languages used for triggers. They also can be
called from DBMS SQL utilities. The advantages of using
stored procedures are summarized in Figure 7-32.

casual relationship
CHECK constraint
cursor
data definition language (DDL)
data manipulation language (DML)
DEFAULT keyword
FOREIGN KEY constraint
IDENTITY({StartValue}, {Increment}) property
inner join
interrelation constraint
intrarelation constraint
NOT NULL constraint
NULL constraint
PRIMARY KEY constraint
procedural programming language
Procedural Language/SQL (PL/SQL)
pseudofile
SQL/Persistent Stored Modules (SQL/PSM)
SQL ADD clause
SQL ADD CONSTRAINT clause
SQL ALTER TABLE statement
SQL ALTER VIEW statement
SQL AS keyword
SQL CREATE TABLE statement

SQL CREATE VIEW statement
SQL DELETE statement
SQL DROP COLUMN clause
SQL DROP CONSTRAINT clause
SQL DROP TABLE statement
SQL INSERT statement
SQL JOIN ON syntax
SQL LEFT JOIN syntax
SQL left outer join
SQL MERGE statement
SQL ON DELETE clause
SQL ON UPDATE clause
SQL outer join
SQL RIGHT JOIN syntax
SQL right outer join
SQL TOP {NumberOfRows} syntax
SQL TRUNCATE TABLE statement
SQL UPDATE statement
SQL view
stored procedure
Transact-SQL (T-SQL)
trigger
UNIQUE constraint

7.1 What does DDL stand for? List the SQL DDL statements.

7.2 What do es DML stand for? List the SQL DML statements.

7.3 Explain the meaning of the following expression: IDENTITY (4000, 5).

For this set of Review Questions, we will create and use a database for the Review
Wedgewood Pacific Corporation (WPC) that is similar to the Microsoft Access
database we created and used in Chapters 1 and 2. Founded in 1957 in Seattle,
Washington, WPC has grown into an internationally recognized organization. The
company is located in two buildings. One building houses the Administration,
Accounting, Finance, and Human Resources departments, and the second houses the

300 Part 3 Database Implementation

Production, Marketing, and Information Systems departments. The company database
contains data about employees; departments; projects; assets, such as computer
equipment; and other aspects of company operations.

The database will be named WPC and will contain the following four tables:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)
PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

EmployeeNumber is a surrogate key that starts at 1 and increments by
1. ProjectID is a surrogate key that starts at 1000 and increases by 100.
DepartmentName is the text name of the department, and is therefore not a
surrogate key.

The WPC database has the following referential integrity constraints:

Department in EMPLOYEE must exist in Department in DEPARTMENT
Department in PROJECT must exist in Department in DEPARTMENT
ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber in EMPLOYEE

The relationship from EMPLOYEE to ASSIGNMENT is 1:N, M-O and the
relationship from PROJECT to ASSIGNMENT is 1:N, M-O.

The database also has the following business rules:

� If an EMPLOYEE row is to be deleted and that row is connected to any
ASSIGNMENT, the EMPLOYEE row deletion will be disallowed.

� If a PROJECT row is deleted, then all the ASSIGNMENT rows that are connected to
the deleted PROJECT row will also be deleted.

The business sense of these rules is as follows:

� If an EMPLOYEE row is deleted (e.g., if the employee is transferred), then someone
must take over that employee�s assignments. Thus, the application needs someone
to reassign assignments before deleting the employee row.

� If a PROJECT row is deleted, then the project has been canceled, and it is unneces-
sary to maintain records of assignments to that project.

The column characteristics for these tables are shown in Figures 1-26
(DEPARTMENT), 1-28 (EMPLOYEE), 2-29 (PROJECT), and 2-31 (ASSIGNMENT). The
data for these tables are shown in Figures 1-27 (DEPARTMENT), 1-29 (EMPLOYEE),
2-30 (PROJECT), and 2-32 (ASSIGNMENT).

If at all possible, you should run your SQL solutions to the following questions against
an actual database. Because we have already created this database in Microsoft Access,
you should use an SQL-oriented DBMS such as Oracle Database 11g, SQL Server 2008
R2, or MySQL 5.5 in these exercises. If that is not possible, create a new Microsoft Access
database named WPC-CH07.accdb, and use the SQL capabilities in these exercises. In all
the exercises, use the data types appropriate for the DBMS you are using.

Answer Review Questions 7.4�7.13 without running them on your DBMS.

7.4 Write a CREATE TABLE statement for the DEPARTMENT table.

7.5 Write a CREATE TABLE statement for the EMPLOYEE table. Email is required and is an
alternate key, and the default value of Department is Human Resources. Cascade
updates but not deletions from DEPARTMENT to EMPLOYEE.

7.6 Write a CREATE TABLE statement for PROJECT table. The default value for MaxHours
is 100. Cascade updates but not deletions from DEPARTMENT to EMPLOYEE.

Chapter 7 SQL for Database Construction and Application Processing 301

7.7 Write a CREATE TABLE statement for the ASSIGNMENT table. Cascade only
deletions from PROJECT to ASSIGNMENT; do not cascade either deletions or updates
from EMPLOYEE to ASSIGNMENT.

7.8 Modify your answer to Review Question 7.7 to include the constraint that StartDate be
prior to EndDate.

7.9 Write an alternate SQL statement that modifies your answer to Review Question 7.7 to
make the relationship between EMPLOYEE and ASSIGNMENT a 1:1 relationship.

7.10 Write an ALTER statement to add the column AreaCode to EMPLOYEE. Assume that
AreaCode is not required.

7.11 Write an ALTER statement to remove the column AreaCode from EMPLOYEE.

7.12 Write an ALTER statement to make Phone an alternate key in EMPLOYEE.

7.13 Write an ALTER statement to drop the constraint that Phone is an alternate key in
EMPLOYEE.

If you are using a DBMS, then at this point you should create a database named
WPC and run the SQL statements from Review Questions 7.4, 7.5, 7.6, and 7.8 only.
(Hint: Write and test an SQL script, and then run the script. Save the script as
DPB-e12-WPC-Create-Tables.sql for future use.) Do not run your answers to Review
Questions 7.7 or 7.9! After the tables are created, run your answers to Review
Questions 7.10 through 7.13. Note that after these four statements have been run the
table structure is exactly the same as it was before you ran them.

7.14 Write INSERT statements to add the data shown in Figure 1-30 to the DEPARTMENT
table. Run these statements to populate the DEPARTMENT table. (Hint: Write and test
an SQL script, and then run the script. Save the script as DBP-e12-WPC-Insert-
DEPARTMENT-Data.sql for future use.)

7.15 Write INSERT statements to add the data shown in Figure 2-32 to the EMPLOYEE
table. Run these statements to populate the EMPLOYEE table. (Hint: Write and test an
SQL script, and then run the script. Save the script as DBP-e12-WPC-Insert-
EMPLOYEE-Data.sql for future use.)

7.16 Write INSERT statements to add the data shown in Figure 2-30 to the PROJECT table.
Run these statements to populate the PROJECT table. (Hint: Write and test an SQL
script, and then run the script. Save the script as DBP-e12-WPC-Insert-PROJECT-
Data.sql for future use.)

7.17 Write INSERT statements to add the data shown in Figure 2-32 to the ASSIGNMENT
table. Run these statements to populate the ASSIGNMENT table. (Hint: Write and test an
SQL script, and then run the script. Save the script as DBP-e12-WPC-Insert-ASSIGNMENT-
Data.sql for future use.)

7.18 Why were the tables populated in the order shown in Review Questions 7.14�7.17?

7.19 Assume that you have a table named NEW_EMPLOYEE that has the columns Depart-
ment, Email, FirstName, and LastName, in that order. Write an INSERT statement to
add all of the rows from the table NEW_EMPLOYEE to EMPLOYEE. Do not attempt
to run this statement!

7.20 Write an UPDATE statement to change the phone number of employee with
EmployeeNumber 11 to 360-287-8810. Run this SQL statement.

7.21 Write an UPDATE statement to change the department of employee with Employ-
eeNumber 5 to Finance. Run this SQL statement.

7.22 Write an UPDATE statement to change the phone number of employee with
EmployeeNumber 5 to 360-287-8420. Run this SQL statement.

302 Part 3 Database Implementation

7.23 Combine your answers to Review Questions 7.21 and 7.22 into one SQL statement. Run
this statement.

7.24 Write an UPDATE statement to set the HoursWorked to 60 for every row in ASSIGN-
MENT having the value 10 for EmployeeNumber. Run this statement.

7.25 Assume that you have a table named NEW_EMAIL, which has new values of Email for
some employees. NEW_EMAIL has two columns: EmployeeNumber and NewEmail.
Write an UPDATE statement to change the values of Email in EMPLOYEE to those in
the NEW_EMAIL table. Do not run this statement.

7.26 Write one DELETE statement that will delete all data for project �2011 Q3 Product Plan�
and all of its rows in ASSIGNMENT. Do not run this statement.

7.27 Write a DELETE statement that will delete the row for the employee named �Smith�. Do
not run this statement. What happens if this employee has rows in ASSIGNMENT?

7.28 Write an SQL statement to join EMPLOYEE, ASSIGNMENT, and PROJECT using the
JOIN ON syntax. Run this statement.

7.29 Write an SQL statement to join EMPLOYEE and ASSIGNMENT and include all rows of
EMPLOYEE in your answer, regardless of whether they have an ASSIGNMENT. Run
this statement.

7.30 What is an SQL view? What purposes do views serve?

7.31 What is the limitation on SELECT statements used in SQL views?

7.32 Write an SQL statement to create a view named EmployeePhoneView that shows the
values of EMPLOYEE.LastName as EmployeeLastName, EMPLOYEE.FirstName as
EmployeeFirstName, and EMPLOYEE.Phone as EmployeePhone. Run this statement,
and then test the view with an SQL SELECT statement.

7.33 Write an SQL statement to create a view named FinanceEmployeePhoneView that shows
the values of EMPLOYEE.LastName as EmployeeLastName, EMPLOYEE.FirstName as
EmployeeFirstName, and EMPLOYEE.Phone as EmployeePhone for employees who work
in the Finance department. Run this statement, and then test the view with an SQL
SELECT statement.

7.34 Write an SQL statement to create a view named CombinedNameEmployeePhoneView that
shows the values of EMPLOYEE.LastName, EMPLOYEE.FirstName, and EMPLOYEE.Phone
as EmployeePhone, but that combines EMPLOYEE.LastName and EMPLOYEE.FirstName
into one column named EmployeeName that displays the employee name first name first.
Run this statement, and then test the view with an SQL SELECT statement.

7.35 Write an SQL statement to create a view named EmployeeProjectAssignmentView that
shows the values of EMPLOYEE.LastName as EmployeeLastName, EMPLOYEE.FirstName
as EmployeeFirstName, EMPLOYEE.Phone as EmployeePhone, and PROJECT.Name as
ProjectName. Run this statement, and then test the view with an SQL SELECT statement.

7.36 Write an SQL statement to create a view named DepartmentEmployeeProjectAssign-
mentView that shows the values of EMPLOYEE.LastName as EmployeeLastName,
EMPLOYEE.FirstName as EmployeeFirstName, EMPLOYEE.Phone as EmployeePhone,
DEPARTMENT.DepartmentName, Department.PHONE as DepartmentPhone, and
PROJECT.Name as ProjectName. Run this statement, and then test the view with an
SQL SELECT statement.

7.37 Write an SQL statement to create a view named ProjectHoursToDateView that shows the
values of PROJECT.ProjectID, PROJECT.Name as ProjectName, PROJECT.MaxHours as
ProjectMaxHour and the sum of ASSIGNMENT.HoursWorked as ProjectHoursWorked-
ToDate. Run this statement, and then test the view with an SQL SELECT statement.

7.38 Describe how views are used to provide an alias for tables. Why is this useful?

7.39 Explain how views can be used to improve data security.

Chapter 7 SQL for Database Construction and Application Processing 303

7.40 Explain how views can be used to provide additional trigger functionality.

7.41 Give an example of a view that is clearly updatable.

7.42 Give an example of a view that is clearly not updatable.

7.43 Summarize the general idea for determining whether a view is updatable.

7.44 If a view is missing required items, what action on the view is definitely not allowed?

7.45 Explain the paradigm mismatch between SQL and programming languages.

7.46 How is the mismatch in your answer to Review Question 7.45 corrected?

7.47 Describe the SQL/PSM component of the SQL standard. What are PL/SQL and T-SQL?
What is the MySQL equivalent?

7.48 What is a trigger?

7.49 What is the relationship between a trigger and a table or view?

7.50 Name nine possible trigger types.

7.51 Explain, in general terms, how new and old values are made available to a trigger.

7.52 Describe four uses for triggers.

7.53 Assume that the View Ridge Gallery will allow a row to be deleted from WORK if the
work has never been sold. Explain, in general terms, how to use a trigger to accomplish
such a deletion.

7.54 Assume that the Wedgewood Pacific Corporation will allow a row to be deleted from
EMPLOYEE if the employee has no project assignments. Explain, in general terms,
how to use a trigger to accomplish such a deletion.

7.55 What is a stored procedure? How do they differ from triggers?

7.56 Summarize how to invoke a stored procedure.

7.57 Summarize the key advantages of stored procedures.

These Project Questions extend the Wedgewood Pacific Corporation database you
created and used in the Review Questions with two new tables named COMPUTER
and COMPUTER_ASSIGNMENT.

The data model for these modifications is shown in Figure 7-34. The column
characteristics for the COMPUTER table are shown in Figure 7-35, and those for the

EmployeeNumber
SerialNumber

DateAssigned
DateReassigned

EmployeeNumber

FirstName
LastName
Department
Phone
Email

EMPLOYEE

SerialNumber

Make
Model
ProcessorType
ProcessorSpeed
MainMemory
DiskSize

COMPUTER

COMPUTER_ASSIGNMENT

Figure 7-34

WPC Data Model Extension

Figure 7-36

Column
Characteristics for the
COMPUTER_ASSIGNMENT
Table

304 Part 3 Database Implementation

ColumnName

SerialNumber

Make

Model

ProcessorType

ProcessorSpeed

DiskSize

Type

Number

Text (12)

Text (24)

Text (24)

Number

Text (15)

Key

Primary Key

No

No

No

No

No

Required

Yes

Yes

Yes

No

Yes

Yes

Remarks

Long Integer

Double [3,2],
Between 1.0
and 4.0

MainMemory Text (15) No Yes

Must be �Dell�
or �Gateway� or
�HP� or �Other�

COMPUTER

Figure 7-35

Column
Characteristics
for the
COMPUTER
Table

ColumnName

SerialNumber

EmployeeNumber

DateAssigned

DateReassigned

Type

Number

Number

Date/Time

Date/Time

Key

Primary Key,
Foreign Key

Primary Key,
Foreign Key

No

No

Required

Yes

Yes

Yes

No

Remarks

Long Integer

Long Integer

Medium Date

Medium Date

COMPUTER_ASSIGNMENT

7.58 Describe the relationships in terms of type (identifying or nonidentifying) and
maximum and minimum cardinality.

7.59 Explain the need for each of the foreign keys.

7.60 Define referential integrity actions (such as ON UPDATE CASCADE) for the
COMPUTER-to-COMPUTER_ASSIGNMENT relationship only. Explain the need for
these actions.

7.61 Assume that COMPUTER_ASSIGNMENT in the EMPLOYEE-to-COMPUTER_ASSIGN-
MENT relationship is now mandatory (i.e., every employee must have at least one
computer). Use Figure 6-28(b) as a boilerplate to define triggers for enforcing the
required child between EMPLOYEE and COMPUTER_ASSIGNMENT. Define the
purpose of any necessary triggers.

7.62 Explain the interaction between the trigger in your answer to Project Question 7.61
and the COMPUTER-to-COMPUTER_ASSIGNMENT relationship. What, if any,
cascading behavior do you want to occur? Explain how you can test to find out if it
works the way that you want it to.

7.63 Write CREATE TABLE statements for the COMPUTER and COMPUTER_ASSIGN-
MENT tables in Figure 7-34 using the column characteristics shown in Figures 7-35
and 7-36. Write CHECK constraints to ensure that Make is Dell, HP, or Other.
Also, write constraints to ensure that ProcessorSpeed is between 2.0 and 5.0 (these are

COMPUTER_ASSIGNMENT table are shown in Figure 7-36. Data for the COMPUTER
table are shown in Figure 7-37, and data for the COMPUTER_ASSIGNMENT table are
shown in Figure 7-38.

Chapter 7 SQL for Database Construction and Application Processing 305

Make ModelSerialNumber ProcessorType ProcessorSpeed MainMemory DiskSize

3.20

3.20

3.20

3.20

3.20

3.20

3.20

3.20

3.20

3.20

3.20

3.20

HP

HP

HP

HP

HP

HP

Dell

Dell

Dell

Dell

Dell

Dell

Compaq 8100 Elite

Compaq 8100 Elite

Compaq 8100 Elite

Compaq 8100 Elite

Compaq 8100 Elite

Compaq 8100 Elite

OptiPlex 980

OptiPlex 980

OptiPlex 980

OptiPlex 980

OptiPlex 980

OptiPlex 980

9871234

9871245

9871256

9871267

9871278

9871289

6541001

6541002

6541003

6541004

6541005

6541006

Intel i3-550

Intel i3-550

Intel i3-550

Intel i3-550

Intel i3-550

Intel i3-550

Intel i3-650

Intel i3-650

Intel i3-650

Intel i3-650

Intel i3-650

Intel i3-650

2.0 GBytes

2.0 GBytes

2.0 GBytes

2.0 GBytes

2.0 GBytes

2.0 GBytes

4.0 GBytes

4.0 GBytes

4.0 GBytes

4.0 GBytes

4.0 GBytes

4.0 GBytes

500 GBytes

500 GBytes

500 GBytes

500 GBytes

500 GBytes

500 GBytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

Figure 7-37

WPC COMPUTER Data

EmployeeNumberSerialNumber DateAssigned DateReassigned

21-Oct-11

21-Oct-11

11

12

4

5

8

9

11

12

1

2

3

6

7

10

9871234

9871245

9871256

9871267

9871278

9871289

6541001

6541002

6541003

6541004

6541005

6541006

9871234

9871245

15-Sep-11

15-Sep-11

15-Sep-11

15-Sep-11

15-Sep-11

15-Sep-11

21-Oct-11

21-Oct-11

21-Oct-11

21-Oct-11

21-Oct-11

21-Oct-11

21-Oct-11

21-Oct-11

Figure 7-38

WPC
COMPUTER_ASSIGNMENT
Data

units of Gigahertz). Run these statements on your WPC database to extend the
database structure.

7.64 Using the sample data for the COMPUTER table shown in Figure 7-37 and the
COMPUTER_ASSIGNMENT table shown in 7-38, write INSERT statements to add
this data to these tables in the WPC database. Run these INSERT statements to
populate the tables.

306 Part 3 Database Implementation

7.65 Create a view of COMPUTER named ComputerView that displays SerialNumber
together with Make and Model as one attribute named ComputerType. Place a colon
and a space between Make and Model in the format: Dell: OptiPlex 980. Run this state-
ment, and then test the view with an SQL SELECT statement.

7.66 Create a view called ComputerMakeView that shows the Make and average Processor-
Speed for all computers. Run this statement, and then test the view with an SQL
SELECT statement.

7.67 Create a view called ComputerUserView that has all of the data of COMPUTER and
ASSIGNMENT. Run this statement, and then test the view with an SQL SELECT
statement.

7.68 Use the view you created called ComputerView to show the computer SerialNumber,
ComputerType, and Employee name. Run this statement.

7.69 Suppose you want to use a stored procedure to store a new row in COMPUTER. List
the minimum list of parameters that need to be in the procedure. Describe, in general
terms, the logic of the stored procedure.

Suppose that you have designed a database for Marcia�s Dry Cleaning that has the
following tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,
ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

If you are going to use a DBMS product with this assignment, see the Marcia’s Dry
Cleaning Project Questions in Chapter 10 for SQL Server 2008 R2, Chapter 10A for
Oracle Database 11g, or Chapter 10B for MySQL 5.5 for additional instructions.

A. Specify NULL/NOT NULL constraints for each table column.

B. Specify alternate keys, if any.

C. State relationships as implied by foreign keys, and specify the maximum and minimum
cardinality of each relationship. Justify your choices.

D. Explain how you will enforce the minimum cardinalities in your answer to part C. Use
referential integrity actions for required parents, if any. Use Figure 6-28(b) as a boiler-
plate for required children, if any.

E. Write CREATE TABLE statements for each of the tables using your answers to parts
A�D, as necessary. Set the first value of CustomerID to 100 and increment it by 5. Use
FOREIGN KEY constraints to create appropriate referential integrity constraints. Set
UPDATE and DELETE behavior in accordance with your referential integrity action
design. Set the default value of Quantity to 1. Write a constraint that SERVICE.UnitPrice
be between 1.50 and 10.00.

F. Explain how you would enforce the data constraint that ORDER_ITEM.UnitPrice be
equal to SERVICE.UnitPrice, where ORDER_ITEM.ServiceID = SERVICE.ServiceID.

G. Write INSERT statements to insert the data shown in Figures 7-39, 7-40, 7-41, and 7-42.
Note the apostrophes used in the data for the SERVICE.ServiceDescription column, and
consult your DBMS documentation for information about how to insert data values
that have an apostrophes in your DBMS.

H. Write an UPDATE statement to change values of SERVICE.Description from Mens Shirt
to Mens� Shirts.

Chapter 7 SQL for Database Construction and Application Processing 307

FirstName LastNameCustomerID Phone Email

Nikki.Kaccaton@somewhere.com

Brenda.Catnazaro@somewhere.com

Bruce.LeCat@somewhere.com

Betsy.Miller@somewhere.com

George.Miller@somewhere.com

Kathy.Miller@somewhere.com

Betsy.Miller@elsewhere.com

Nikki

Brenda

Bruce

Betsy

George

Kathy

Betsy

Kaccaton

Catnazaro

LeCat

Miller

Miller

Miller

Miller

100

105

110

115

120

125

130

723-543-1233

723-543-2344

723-543-3455

723-654-3211

723-654-4322

723-514-9877

723-514-8766

Figure 7-39

Sample Data
for the CUSTOMER
Table

ServiceDescription UnitPriceServiceID

Men�s Shirt

Dress Shirt

Women�s Shirt

Blouse

Slacks�Men�s

Slacks�Women�s

Skirt

Dress Skirt

Suit�Men�s

Suit�Women�s

Tuxedo

Formal Gown

$1.50

$2.50

$1.50

$3.50

$5.00

$6.00

$5.00

$6.00

$9.00

$8.50

$10.00

$10.00

10

11

15

17

20

25

30

31

40

45

50

60

Figure 7-40

Sample Data for the
SERVICE Table

CustomerID DateInInvoiceNumber DateOut SubTotal Tax TotalAmount

$158.50

$25.00

$55.00

$17.50

$12.00

$152.50

$7.00

$140.50

$27.00

100

105

100

115

125

110

110

130

120

04-Oct-11

04-Oct-11

06-Oct-11

06-Oct-11

07-Oct-11

11-Oct-11

11-Oct-11

12-Oct-11

12-Oct-11

2011001

2011002

2011003

2011004

2011005

2011006

2011007

2011008

2011009

06-Oct-11

06-Oct-11

08-Oct-11

08-Oct-11

11-Oct-11

13-Oct-11

13-Oct-11

14-Oct-11

14-Oct-11

$12.52

$1.98

$3.87

$1.38

$0.95

$12.05

$0.55

$11.10

$2.13

$171.02

$26.98

$58.87

$18.88

$12.95

$164.55

$7.55

$151.60

$29.13

Figure 7-41

Sample Data for the
INVOICE Table

308 Part 3 Database Implementation

ItemNumber ServiceIDInvoiceNumber Quantity UnitPrice ExtendedPrice

$3.50

$2.50

$10.00

$5.00

$6.00

$9.00

$2.50

$5.00

$6.00

$2.50

$3.50

$2.50

$3.50

$2.50

$5.00

$6.00

$3.50

$3.50

$2.50

$5.00

$6.00

$9.00

1

2

3

4

5

6

1

1

2

1

1

2

1

2

3

4

1

1

2

3

4

1

16

11

50

20

25

40

11

20

25

11

16

11

16

11

20

25

16

16

11

20

25

40

2011001

2011001

2011001

2011001

2011001

2011001

2011002

2011003

2011003

2011004

2011005

2011005

2011006

2011006

2011006

2011006

2011007

2011008

2011008

2011008

2011008

2011009

2

5

2

10

10

1

10

5

4

7

2

2

5

10

10

10

2

3

12

8

10

3

$7.00

$12.50

$20.00

$50.00

$60.00

$9.00

$25.00

$25.00

$24.00

$17.50

$7.00

$5.00

$17.50

$25.00

$50.00

$60.00

$7.00

$10.50

$30.00

$40.00

$60.00

$27.00

Figure 7-42

Sample Data for the
INVOICE_ITEM Table

I. Write a DELETE statement(s) to delete an ORDER and all of the items on that ORDER.

J. Create a view called OrderSummaryView that contains ORDER.InvoiceNumber,
ORDER.DateIn, ORDER.DateOut, ORDER_ITEM.ItemNumber, ORDER_ITEM.Service,
and ORDER_ITEM.ExtendedPrice.

K. Create a view called CustomerOrderSummaryView that contains ORDER.InvoiceNumber,
CUSTOMER.FirstName, CUSTOMER.LastName, CUSTOMER.Phone, ORDER.DateIn,
ORDER.DateOut, ORDER.SubTotal, ORDER_ITEM.ItemNumber, ORDER_ITEM.Service,
and ORDER_ITEM.ExtendedPrice.

L. Create a view called CustomerOrderHistoryView that (1) includes all columns of Customer-
OrderSummaryView except ORDER_ITEM.ItemNumber and ORDER_ITEM.Service;
(2) groups orders by CUSTOMER.LastName, CUSTOMER.FirstName, and ORDER.
InvoiceNumber, in that order; and (3) sums and averages ORDER_ITEM.ExtendedPrice for
each order for each customer.

Chapter 7 SQL for Database Construction and Application Processing 309

Suppose that you have designed a database for Morgan Importing that has the
following tables:

STORE (StoreName, City, Country, Phone, Fax, Email, Contact)
PURCHASE_ITEM (PurchaseItemID, StoreName, PurchaseDate, ItemDescription,
Category, PriceUSD)
SHIPMENT (ShipmentID, ShipperID, ShipperInvoiceNumber, Origin, Destination,
DepartureDate, Arrival Date)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, PurchaseItemID, InsuredValue)
SHIPPER (ShipperID, ShipperName, Phone, Fax, Email, Contact)

If you are going to use a DBMS product with this assignment, see the Morgan
Importing Project Questions in Chapter 10 for SQL Server 2008 R2, Chapter 10A for
Oracle Database 11g, or Chapter 10B for MySQL 5.5 for additional instructions.

A. Do you think STORE should have a surrogate key? If so, create it and make required
adjustments in the design. If not, explain why not or make other adjustments to STORE
and other tables that you think are appropriate.

B. Specify NULL/NOT NULL constraints for each table column.

C. Specify alternate keys, if any.

D. State relationships as implied by foreign keys, and specify the maximum and minimum
cardinality of each relationship. Justify your choices.

E. Explain how you will enforce the minimum cardinalities in your answer to part D. Use
referential integrity actions for required parents, if any. Use Figure 6-28(b) as a boiler-
plate for required children, if any.

F. Write CREATE TABLE statements for each of the tables using your answers to the parts
A�E, as necessary. Set the first value of PurchaseID to 500 and increment it by 5. Set the
first value of ShipmentID to 100 and increment it by 1. Use FOREIGN KEY constraints to
create appropriate referential integrity constraints. Set UPDATE and DELETE behavior
in accordance with your referential integrity action design. Set the default value of
InsuredValue to 100. Write a constraint that STORE.Country be limited to seven
countries (you can pick the seven countries you want to purchase from, but be sure to
include the countries for the ITEM.City locations shown in Figure 2-41).

G. Explain how you would enforce the rule that SHIPMENT_ITEM.InsuredValue be at least
as great as PURCHASE_ITEM.PriceUSD.

H. Write INSERT statements to insert the data shown in Figures 7-43, 7-44, 7-45, 7-46, and 7-47.

I. Write an UPDATE statement to change values of STORE.City from New York City to NYC.

J. Write a DELETE statement(s) to delete a SHIPMENT and all of the items on that SHIPMENT.

K. Create a view called PurchaseSummaryView that shows only
PURCHASE_ITEM.PurchaseItemID, PURCHASE_ITEM.PurchaseDate,
PURCHASE_ITEM.ItemDescription, and PURCHASE_ITEM.PriceUSD.

M. Create a view called CustomerOrderCheckView that uses CustomerOrderHistoryView
and that shows that any customers for whom the sum of ORDER_ITEM.ExtendedPrice
is not equal to ORDER.SubTotal.

N. Explain, in general terms, how you will use triggers to enforce minimum cardinality
actions as required by your design. You need not write the triggers, just specify which
triggers you need and describe, in general terms, their logic.

City CountryStore Phone Fax Email

65-543-1239

63-2-654-2349

65-543-3459

51-14-765-4569

852-876-5679

91011-987-6789

800-432-8769

Singapore

Manila

Singapore

Lima

Hong Kong

New Delhi

New York City

Singapore

Philippines

Singapore

Peru

People�s Republic of China

India

United States

Eastern Sales

Eastern Treasures

Jade Antiques

Andes Treasures

Eastern Sales

Eastern Treasures

European Imports

StoreID

1

2

3

4

5

6

7

65-543-1233

63-2-654-2344

65-543-3455

51-14-765-4566

852-876-5677

91-11-987-6788

800-432-8766

Sales@EasternSales.com.sg

Sales@EasternTreasures.com.ph

Sales@JadeAntiques.com.sg

Sales@AndesTreasures.com.pe

Sales@EasternSales.com.hk

Sales@EasternTreasures.com.in

Sales@EuropeanImports.com.sg

Contact

Jeremy

Gracielle

Swee Lai

Juan Carlos

Sam

Deepinder

Marcello

Figure 7-43

Sample Data for the STORE
Table

310

Chapter 7 SQL for Database Construction and Application Processing 311

PurchaseDate ItemDescriptionStoreID Category PriceUSD

$13,415.00

$13,300.00

$38,500.00

$3,200.00

$14,300.00

$88,545.00

$22,135.00

$147,575.00

$12,040.00

$1,200.00

$5,375.00

$4,500.00

$9,500.00

$1,200.00

12/10/2010

12/12/2010

12/15/2010

12/16/2010

4/7/2011

5/18/2011

5/19/2011

5/20/2011

5/20/2011

6/14/2011

6/16/2011

7/15/2011

7/17/2011

7/20/2011

Antique Large Bureaus

Porcelain Lamps

Gold Rim Design China

Gold Rim Design Serving Dishes

QE Dining Set

Misc Linen

Large Masks

Willow Design China

Willow Design Serving Dishes

Woven Goods

Antique Leather Chairs

Willow Design Serving Dishes

Large Bureau

Brass Lamps

1050

1050

1200

1200

1050

1100

1000

1100

1100

1150

1150

1100

1000

1100

PurchaseItemID

500

505

510

515

520

525

530

535

540

545

550

555

560

565

Furniture

Lamps

Tableware

Tableware

Furniture

Linens

Decorations

Tableware

Tableware

Decorations

Furniture

Tableware

Furniture

Lamps

Figure 7-44

Sample Data for the
PURCHASE_ITEM Table

ShipperInvoiceNumber OriginShipperID Destination DepartureDate

10-Dec-10

10-Jan-11

05-May-11

02-Jun-11

10-Jul-11

05-Aug-11

ArrivalDate

15-Mar-11

20-Mar-11

17-Jun-11

17-Jun-11

28-Jun-11

11-Sep-11

2010651

2011012

49100300

399400

84899440

488955

Manila

Hong Kong

Manila

Singapore

Lima

Singapore

1

1

3

2

3

2

ShipmentID

100

101

102

103

104

105

Seattle

Seattle

Seattle

Portland

Seattle

Portland

Figure 7-45

Sample Data for the
SHIPMENT Table

L. Create a view called StorePurchaseHistoryView that shows STORE.StoreName, STORE.Phone,
STORE.Contact, PURCHASE_ITEM.PurchaseItemID, PURCHASE_ITEM.PurchaseDate,
PURCHASE_ITEM.ItemDescription, and PURCHASE_ITEM.PriceUSD.

M. Create a view called StoreHistoryView that sums the PriceUSD column of Store-
PurchaseHistoryView for each store into a column named TotalPurchases.

N. Create a view called MajorSources that uses StoreHistoryView and selects only those stores
that have TotalPurchases greater than 100000.

O. Explain, in general terms, how you will use triggers to enforce minimum cardinality actions
as required by your design. You need not write the triggers, just specify which triggers you
need and describe, in general terms, their logic.

312 Part 3 Database Implementation

PurchaseItemID InsuredValueShipmentItemID

500

505

510

515

520

525

530

535

540

545

550

555

560

565

$15,000.00

$15,000.00

$40,000.00

$3,500.00

$15,000.00

$90,000.00

$25,000.00

$150,000.00

$12,500.00

$12,500.00

$5,500.00

$4,500.00

$10,000.00

$1,500.00

1

2

1

2

1

1

2

3

4

1

2

1

2

3

ShipmentID

100

100

101

101

102

103

103

103

103

104

104

105

105

105

Figure 7-46

Sample Data for the
SHIPMENT_ITEM Table

Phone FaxShipperName

800-234-5656

800-123-8898

800-123-4567

800-234-5659

800-123-8899

800-123-4569

Email

Sales@ABCTransOceanic.com

Sales@International.com

Sales@worldwide.com

Contact

Jonathan

Marylin

Jose

ABC Trans-Oceanic

International

Worldwide

ShipperID

1

2

3

Figure 7-47

Sample Data for the
SHIPPER Table

As stated in chapter 1, databases arise from three sources. They can be
created from existing tables and spreadsheets, they can be the result of a
new systems development project, or they can be the outcome of database
redesign. We have discussed the first two sources in Chapters 2 through 7.
In this chapter, we will discuss the last source: database redesign.

We begin with a discussion of the need for database redesign, and then
we will describe two important SQL statements: correlated subqueries and
EXISTS. These statements play an important role when analyzing data prior
to redesign. They also can be used for advanced queries and are important
in their own right. After that discussion, we will turn to a variety of common
database redesign tasks.

� To understand the need for database redesign

� To be able to use correlated subqueries

� To be able to use the SQL EXISTS and NOT EXISTS
keywords in correlated subqueries

� To understand reverse engineering

� To be able to use dependency graphs

Chapter Objectives

Database Redesign8
� To be able to change table names

� To be able to change table columns

� To be able to change relationship cardinalities

� To be able to change relationship properties

� To be able to add and delete relationships

313

314 Part 3 Database Implementation

The Need for Database Redesign

You may be wondering, �Why do we have to redesign a database? If we build it correctly the
first time, why would we ever need to redesign it?� This question has two answers. First, it is
not easy to build a database correctly the first time, especially databases that arise from the
development of new systems. Even if we obtain all of the users� requirements and build a
correct data model, the transformation of that data model into a correct database design is
difficult. For large databases, the tasks are daunting and may require several stages of
development. During those stages, some aspects of the database will need to be redesigned.
Also, inevitably, mistakes will be made that must be corrected.

The second answer to this question is the more important one. Reflect for a moment on
the relationship between information systems and the organizations that use them. It is
tempting to say that they influence each other; that is, that information systems influence
organizations and that organizations influence information systems.

In truth, however, the relationship is much stronger than that. Information systems
and organizations do not just influence each other; they create each other. When a new
information system is installed, the users can behave in new ways. As the users behave in
those new ways, they will want changes to the information system to accommodate their
new behaviors. As those changes are made, the users will have more new behaviors, they will
request more changes to the information system, and so forth, in a never-ending cycle.

This circular process, which is known as the Systems Development Life Cycle (SDLC) and
discussed in Appendix B, means that changes to an information system are not the sad
consequence of a poor implementation, but rather are a natural outcome of information
system use. Therefore, the need for change to information systems never goes away; it neither
can nor should be removed by better requirements definition, better initial design, better
implementation, or anything else. Instead, change is part and parcel of information systems
use. Thus, we need to plan for it. In the context of database processing, this means we need to
know how to perform database redesign.

SQL Statements for Checking Functional Dependencies

Database redesign is not terribly difficult if the database has no data. The serious difficul-
ties arise when we have to change a database that has data and when we want to make
changes with minimum impact on existing data. Telling the users that the system now
works the way they want but that all of their data were lost while making the change is
not acceptable.

Often, we need to know whether certain conditions or assumptions are valid in the data
before we can proceed with a change. For example, we may know from user requirements that
Department functionally determines DeptPhone, but we may not know whether that
functional dependency is correctly represented in all of the data.

Recall from Chapter 3 that if Department determines DeptPhone, every value of
Department must be paired with the same value of DeptPhone. If, for example, Accounting
has a DeptPhone value of 834-1100 in one row, it should have that value in every row in which
it appears. Similarly, if Finance has a DeptPhone of 834-2100 in one row, it should have that
value in all rows in which it appears. Figure 8-1 shows data that violate this assumption. In
the third row, the DeptPhone for Finance is different than for the other rows; it has too many
zeroes. Most likely, someone made a keying mistake when entering DeptPhone. Such errors
are typical.

Now, before we make a database change, we need to find all such violations and correct
them. For the small table shown in Figure 8-1, we can just look at the data, but what if the
EMPLOYEE table has 4,000 rows? Two SQL statements are particularly helpful in this
regard: correlated subqueries and their cousins, the SQL EXISTS and NOT EXISTS
keywords. We will consider each of these in turn.

Chapter 8 Database Redesign 315

100 Johnson

LastNameEmployeeNumber

200 Abernathy

300 Smathers

400 Caruthers

500 Jackson

834-1100

DeptPhone

834-2100

834-2100

834-1100

834-4100

600 Caldera

700 Bandalone

834-3100

834-3100

Accounting

Department

Finance

Finance

Accounting

Production

Legal

Legal

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

TJ@somewhere.com

EC@somewhere.com

RB@somewhere.com

Figure 8-1

Table Showing Constraint
Assumption Violation

What Is a Correlated Subquery?

A correlated subquery looks very much like the noncorrelated subqueries we discussed
in Chapter 2, but, in actuality, correlated subqueries are very different. To understand the
difference, consider the following noncorrelated subquery, which is like those in Chapter 2:

/* *** SQL-Query-CH08-01 *** */

SELECT A.FirstName, A.lastName

FROM ARTIST AS A

WHERE A.ArtistID IN

(SELECT W.ArtistID

FROM WORK AS W

WHERE W.Title = ’Blue Interior’);

The DBMS can process such subqueries from the bottom up; that is, it can first find all of
the values of ArtistID in WORK that have the title �Blue Interior� and then process the upper
query using that set of values. There is no need to move back and forth between the two
SELECT statements. The result of this query is the artist Mark Tobey, as we would expect
based on the data in the Figure 7-16:

Searching for Multiple Rows with a Given Title
Now, to introduce correlated subqueries, suppose that someone at View Ridge Gallery proposes
that the Title column of WORK be an alternate key. If you look at the data in Figure 7-16(d), you
can see that although there is only one copy of �Blue Interior�, there are two or more copies of
other titles, such as �Surf and Bird�. Therefore, Title cannot be an alternate key, and we can
determine this by a simply looking at the dataset.

However, if the WORK table had 10,000 or more rows, this would be difficult to determine.
In that case, we need a query that examines the WORK table and displays the Title and Copy of
any works that share the same title.

If we were asked to write a program to perform such a query, our logic would be as follows:
Take the value of Title from the first row in WORK and examine all of the other rows in the
table. If we find a row that has the same title as the one in the first row, we know there are

316 Part 3 Database Implementation

duplicates, so we print the Title and Copy of the first work. We continue searching for
duplicate title values until we came to the end of the WORK table.

Then, we take the value of Title in the second row and compare it with all other rows in
the WORK table, printing out the Title and Copy of any duplicate works. We proceed in this
way until all rows of WORK have been examined.

A Correlated Subquery That Finds Rows with the Same Title
The following correlated subquery performs the action just described:

/* *** SQL-Query-CH08-02 *** */
SELECT W1.Title, W1.Copy
FROM WORK AS W1
WHERE W1.Title IN

(SELECT W2.Title
FROM WORK AS W2
WHERE W1.Title = W2.Title

AND W1.WorkID <> W2.WorkID);

The result of this query for the data in Figure 7-16 (d) is:

Looking at these results, it is easy to see the nonunique, duplicated Title data that prevents
Title from being used as an alternate key. When you are interpreting these results, note that a
value of Unique in the Copy column indicates the original piece of art itself, which is by
definition unique. Numbers such as 142/500 indicate one numbered print from a set of num-
bered reproduction prints of that artwork.

This subquery, which is a correlated subquery, looks deceptively similar to a regular,
noncorrelated subquery. To the surprise of many students, this subquery and the one above are
drastically different. Their similarity is only superficial.

Before explaining why, first notice the notation in the correlated subquery. The WORK
table is used in both the upper and the lower SELECT statements. In the upper statement, it is
given the alias W1; in the lower SELECT statement, it is given the alias W2.

In essence, when we use this notation, it is as if we have made two copies of the WORK table.
One copy is called W1, and the second copy is called W2. Therefore, in the last two lines of the
correlated subquery, values in the W1 copy of WORK are compared with values in the W2 copy.

What Is the Difference Between Regular and Correlated Subqueries?
Now, consider what makes this subquery so different. Unlike a regular, noncorrelated subquery,
the DBMS cannot run the bottom SELECT by itself, obtain a set of Titles, and then use that set
to execute the upper query. The reason for this appears in the last two lines of the query:

WHERE W1.Title = W2.Title
AND W1.WorkID <> W2.WorkID);

Chapter 8 Database Redesign 317

In these expressions, W1.Title (from the top SELECT statement) is being compared with
W2.Title (from the bottom SELECT statement). The same is true for W1.WorkID and
W2.WorkID. Because of this fact, the DBMS cannot process the subquery portion independent
of the upper SELECT.

Instead, the DBMS must process this statement as a subquery that is nested within the
main query. The logic is as follows: Take the first row from W1. Using that row, evaluate
the second query. To do that, for each row in W2, compare W1.Title with W2.Title and
W1.WorkID with W2.WorkID. If the titles are equal and the values of WorkID are not equal,
return the value of W2.Title to the upper query. Do this for every row in W2.

Once all of the rows in W2 have been evaluated for the first row in W1, move to the second
row in W1 and evaluate it against all the rows in W2. Continue in this way until all rows of W1
have been compared with all of the rows of W2.

If this is not clear to you, write out two copies of the WORK data from Figure 7-16 (d) on a
piece of scratch paper. Label one of them W1 and the second W2 and then work through the
logic as described. From this, you will see that correlated subqueries always require nested
processing.

A Common Trap
By the way, do not fall into the following common trap:

/* *** SQL-Query-CH08-03 *** */

SELECT W1.Title, W1.Copy

FROM WORK AS W1

WHERE W1.WorkID IN

(SELECT W2.WorkID

FROM WORK AS W2

WHERE W1.Title = W2.Title

AND W1.WorkID <> W2.WorkID);

The logic here seems correct, but it is not. Compare SQL-Query-CH08-03 to SQL-Query-CH02-02,
and note the differences between the two SQL statements. The result of SQL-Query-CH08-03
when run on the View Ridge Gallery data in Figure 7-16(d) is an empty set:

In fact, no row will ever be displayed by this query, regardless of the underlying data (see if you
can figure out why this is so before continuing to the next paragraph).

The bottom query will indeed find all rows that have the same title and different
WorkIDs. If one is found, it will produce the W2.WorkID of that row. But that value will
then be compared with W1.WorkID. These two values will always be different because of the
condition

W1.WorkID <> W2.WorkID

No rows are returned because the values of the two unequal WorkIDs are used in the IN
instead of the values of the two equal Titles.

Using Correlated Subqueries to Check Functional Dependencies
Correlated subqueries can be used to advantage during database redesign. As mentioned,
one application of correlated subqueries is to verify functional dependencies. For example,
suppose we have EMPLOYEE data like that in Figure 8-1 in a database, and we want to

318 Part 3 Database Implementation

know whether the data conform to the functional dependency Department : DeptPhone.
If so, every time a given value of Department occurs in the table, that value will be matched
with the same value of DeptPhone.

The following correlated subquery will find any rows that violate this assumption:

/* *** SQL-Query-CH08-04 *** */

SELECT E1.EmployeeNumber, E1.Department, E1.DeptPhone

FROM EMPLOYEE AS E1

WHERE E1.Department IN

(SELECT E2.Department

FROM EMPLOYEE AS E2

WHERE E1.Department = E2.Department

AND E1.DeptPhone <> E2.DeptPhone);

The results of this query for the data in Figure 8-1 are:

A listing like this can readily be used to find and fix any rows that violate the functional
dependency.

EXISTS and NOT EXISTS
When we use the SQL EXISTS keyword or the SQL NOT EXISTS keyword in a query, we are
creating another form of correlated subquery. We can write the last correlated subquery using
the SQL EXISTS keyword, as follows:

/* *** SQL-Query-CH08-05 *** */

SELECT E1.EmployeeNumber, E1.Department, E1.DeptPhone

FROM EMPLOYEE AS E1

WHERE EXISTS

(SELECT E2.Department

FROM EMPLOYEE AS E2

WHERE E1.Department = E2.Department

AND E1.DeptPhone <> E2.DeptPhone);

Because using EXISTS creates a form of a correlated subquery, the processing of the
SELECT statements is nested. The first row of E1 is input to the subquery. If the subquery
finds any row in E2 for which the department names are the same and the department phone
numbers are different, then the EXISTS is true and the Department and DeptPhone for the
first row are selected. Next, the second row of E1 is input to the subquery, the SELECT is
processed, and the EXISTS is evaluated. If true, the Department and DeptPhone of the second
row are selected. This process is repeated for all of the rows in E1.

The results of SQL-Query-Ch08-05 are identical to the previous results:

Chapter 8 Database Redesign 319

Using NOT EXISTS in a Double Negative
The SQL EXISTS keyword will be true if any row in the subquery meets the condition. The SQL
NOT EXISTS keyword will be true only if all rows in the subquery fail to meet the condition.
Consequently, the double use of NOT EXISTS can be used to find rows that do not not match a
condition. And, yes, the word not is supposed to be there twice�this is a double negative.

Because of the logic of a double negative, if a row does not not match any row, then it
matches every row! For example, suppose that at View Ridge the users want to know the name
of any artist that every customer is interested in. We can proceed as follows:

� First, produce the set of all customers who are interested in a particular artist.
� Then, take the complement of that set, which will be the customers who are not

interested in that artist.
� If that complement is an empty set, then all customers are interested in the given artist.

The doubly nested NOT EXISTS pattern is famous in one guise or another
among SQL practitioners. It is often used as a test of SQL knowledge in job

interviews and in bragging sessions, and it can be used to advantage when assessing
the desirability of certain database redesign possibilities, as you will see in the last
section of this chapter. Therefore, even though this example involves some serious study,
it is worth your while to understand it.

The Double NOT EXISTS Query
The following SQL statement implements the strategy just described:

/* *** SQL-Query-CH08-06 *** */

SELECT A.FirstName, A.LastName

FROM ARTIST AS A

WHERE NOT EXISTS

(SELECT C.CustomerID

FROM CUSTOMER AS C

WHERE NOT EXISTS

(SELECT CAI.CustomerID

FROM CUSTOMER_ARTIST_INT AS CAI

WHERE C.CustomerID = CAI.CustomerID

AND A.ArtistID = CAI.ArtistID));

The result of this query is an empty set, indicating that there is no artist that every
customer is interested in:

Let�s see how this works. The bottom SELECT (the third SELECT in the SQL statement)
finds all of the customers who are interested in a particular artist. As you read this SELECT
(the last SELECT in the query), keep in mind that this is a correlated subquery; this SELECT is
nested inside the query on CUSTOMER, which is nested inside the query on ARTIST.
C.CustomerID is coming from the SELECT on CUSTOMER in the middle, and A.ArtistID is
coming from the SELECT on ARTIST at the top.

Now, the NOT EXISTS in the sixth line of the query will find the customers who are not
interested in the given artist. If all customers are interested in the given artist, the result of the

320 Part 3 Database Implementation

middle SELECT will be null. If the result of the middle SELECT is null, the NOT EXISTS in the
third line of the query will be true, and the name of that artist will be produced, just as we want.

Consider what happens for artists who do not qualify in this query. Suppose that every
customer except Tiffany Twilight is interested in the artist Joan Miro. (This is not the case for
the data in Figure 7-16, but assume that it were true.) Now, for the preceding query, when
Miro�s row is considered, the bottom SELECT will retrieve every customer except Tiffany
Twilight. In this case, because of the NOT EXISTS in the sixth line of the query, the middle
SELECT will produce the CustomerID for Tiffany Twilight (because her row is the only
one that does not appear in the bottom SELECT). Now, because there is a result from the
middle SELECT, the NOT EXISTS in the top SELECT is false, and the name Joan Miro will not
be included in the output of the query. This is correct because there is a customer who is not
interested in Joan Miro.

Again, take some time to study this pattern. It is a famous one, and if you become a
database professional, you will certainly see it again in one form or another. In fact, you will not
not see it again!

How Do I Analyze an Existing Database?

Before we proceed with a discussion of database redesign, reflect for a moment on what this
task means for a real company whose operations are dependent on the database. Suppose, for
example, that you work for a company such as Amazon.com. Further suppose that you have
been tasked with an important database redesign assignment, say to change the primary key
of the vendor table.

To begin, you may wonder, why would Amazon want to do this? It could be that in the
early days, when it only sold books, Amazon used company names for vendors. But, as
Amazon began to sell more types of products, company name was no longer sufficient.
Perhaps there are too many duplicates, and Amazon may have decided to switch to an
Amazon-created VendorID.

Now, what does it mean to switch primary keys? Besides adding the new data to the
correct rows, what else does it mean? Clearly, if the old primary key has been used as a foreign
key, all of the foreign keys need to be changed as well. So we need to know all of the relation-
ships in which the old primary key was used. But what about views? Do any views use the old
primary key? If so, they will need to be changed. What about triggers and stored procedures?
Do any of them use the old primary key? Not to mention any application code that may break
when the old key is removed.

Now, to create a nightmare, what happens if you get partway through the change process
and something fails? Suppose you encounter unexpected data, and you receive errors from the
DBMS while trying to add the new primary key. Amazon cannot change its Web site to display
�Sorry, our database is broken�come back tomorrow (we hope)!�

This nightmare brings up many topics, most of which relate to systems analysis and
design (see Appendix B for a brief introduction to systems analysis and design). But with
regard to database processing, three principles become clear. First, as the carpenters say,
�Measure twice and cut once.� Before we attempt any structural changes to a database, we
must clearly understand the current structure and contents of the database, and we must
know what depends on what. Second, before we make any structural changes to an operational
database, we must test those changes on a realistically sized test database that has all of the
important test data cases. Finally, if at all possible, we need to create a complete backup of the
operational database prior to making any structural changes. If all goes awry, the backup can
be used to restore the database while problems are corrected. We will consider each of these
important topics next.

Reverse Engineering

Reverse engineering is the process of reading a database schema and producing a data model
from that schema. The data model produced is not truly a logical model because entities will
be generated for every table, including entities for intersection tables that have no nonkey data
and should not appear in a logical model at all. The model generated by reverse engineering is

Chapter 8 Database Redesign 321

Figure 8-2

Reverse-Engineered Data
Model

a thing unto itself, a table-relationship diagram that is dressed in entity-relationship clothes. In
this text, we will call it the reverse engineered (RE) data model.

Figure 8-2 shows the RE database design of the View Ridge Gallery database produced by
Microsoft Visio 2010 from an SQL Server 2008 R2 Express version of the View Ridge database
created in Chapter 7. Note that due to the limitations of Microsoft Visio, this is a physical
database design rather than a logical data model. Nonetheless, it illustrates the reverse
engineering technique we are discussing.

We used Microsoft Visio here because of its general availability. This means, however, that
we have to work with Microsoft Visio�s nonstandard database modeling notation. Note that by
default Microsoft Visio uses a directed arrow to indicate relationships (the relationship line
starts at the child entity and the arrowhead points to the parent entity). Although Microsoft
Visio does differentiate between identifying and nonidentifying relationships in the database
properties, it does not do so visually, as we have been doing. Microsoft Visio also stores cardinal-
ities as relationship properties, but it does not display them as we do with the IE Crow�s Foot
notation. We have added color to indicate the strong and weak entities, because Microsoft Visio
only uses a table structure. Note the notations PK indicating a primary key, FK indicating a
foreign key, and U indicating a UNIQUE constraint (this corresponds to the AKm.n notation we
have been using). Columns set to NOT NULL are in bold; columns set to NULL are not in bold.
All in all, however, this is a reasonable representation of the View Ridge Gallery database
schema. For more information about using Microsoft Visio 2010, see Appendix F.

322 Part 3 Database Implementation

Table
View
Trigger

ARTIST

TRANS_CheckSalesPrice

WORK

ArtistWorkNetView

ArtistWorkTotalNetView

TRANS

TRANS_AskingPriceInitialValue

CUSTOMER

Figure 8-3

Example Dependency Graph
(Partial)

Although Microsoft Visio produces only a database design, and not a data model, some
other design software, such as Computer Associates� ERwin, can create both logical (data
model) and physical (database design) versions of the database structure. In addition to tables
and views, some data modeling products will capture constraints, triggers, and stored
procedures from the database.

These constructs are not interpreted, but their text is imported into the data model. With
some products, the relationship of the text to the items it references also is obtained. The
redesign of constraints, triggers, and stored procedures is beyond the scope of our discussion
here. You should realize that they, too, are part of the database, however, and are subject to
redesign.

Dependency Graphs

Before making changes to database structures, it is vitally important to understand the
dependencies of those structures. What changes will impact what? For example, consider
changing the name of a table. Where is the table name used? In which triggers? In which
stored procedures? In which relationships? Because of the need to know all of the dependen-
cies, many database redesign projects begin by making a dependency graph.

The term graph arises from the mathematical topic of graph theory. Dependency graphs
are not graphical displays like bar charts, rather they are diagrams that consist of nodes and
arcs (or lines) that connect those nodes.

Figure 8-3 shows a partial dependency graph that was drawn using the results of the RE model,
but manually interpreting views and triggers we developed in Chapter 7. For simplicity, this graph
does not show the views and triggers of CUSTOMER, nor does it show CUSTOMER_ARTIST_INT
and related structures. Also, the stored procedure WORK_AddWorkTransaction is not shown, nor
are the constraints.

Even this partial diagram reveals the complexity of dependencies among database
constructs. You can see that it would be wise to tread lightly, for example, when changing
anything in the TRANS table. The consequences of such a change need to be assessed against
two relationships, two triggers, and two views. Again, measure twice and cut once!

Database Backup and Test Databases

Because of the potential damage that can be done to a database during redesign, a complete
backup of the operational database should be made prior to making any changes. Equally
important, it is essential that any proposed changes be thoroughly tested. Not only must
structural changes proceed successfully, but all triggers, stored procedures, and applications
must also run correctly on the revised database.

Chapter 8 Database Redesign 323

Typically, at least three different copies of the database schema are used in the redesign
process. One is a small test database that can be used for initial testing. The second is a large
test database, which may even be a full copy of the operational database. Sometimes, there are
several large test databases. Finally, there is the operational database.

A means must be created to restore all test databases to their original state during the
testing process. In that way, the test can be rerun as necessary against the same starting point.
Depending on the facilities of the DBMS, backup and recovery or other means are used to
restore the database after a test run.

Obviously, for enterprises with very large databases, it is not possible to have a test
database that is a copy of the operational database. Instead, smaller test databases need to be
created, but those test databases must have all the important data characteristics of the
operational database; otherwise, they will not provide a realistic test environment. The
construction of such test databases is in itself a difficult and challenging job. In fact, many inter-
esting career opportunities are available for developing test databases and database test suites.

Finally, for organizations that have very large databases, it may not be possible to make a
complete copy of the operational database prior to making structural changes. In this case, the
database is backed up in pieces, and the changes are made in pieces as well. This task is very
difficult and requires great knowledge and expertise. It also requires weeks or months of
planning. You may participate as a junior member of a team to make such a change, but you
should have years of database experience before you attempt to make structural changes to
such large databases. Even then, it is a daunting task.

Changing Table Names and Table Columns

In this section, we will consider alterations to tables and their columns. To accomplish these
changes, we will use only SQL statements. Many DBMS products have features to facilitate
changing structures other than SQL. For example, some products have graphical design tools
that simplify this process. But such features are not standardized, and you should not depend
on them. The statements shown in this chapter will work with any enterprise-class DBMS
product, and most will work with Microsoft Access as well.

Changing Table Names

At first glance, changing a table name seems like an innocent and easy operation. A review of
Figure 8-3, however, shows that the consequences of such a change are greater than you would
think. If, for example, we want to change the name of the table WORK to WORK_VERSION2,
several tasks are necessary. The constraint that defines the relationship from WORK to TRANS
must be altered, ArtistWorkNetView view must be redefined, and then the TRANS_Check-
SalesPrice trigger must be rewritten to use the new name.

Oracle Database and MySQL have an SQL RENAME {Name01} TO {Name02} statement
that can be used to rename tables, while SQL Server uses the system stored procedure
sp_rename to accomplish the same task. However, while the table name itself is changed, other
objects that use that table name, such as triggers and stored procedures, will not be modified!
Therefore, these methods of renaming a table are useful only in certain situations. Instead, we
will use the following strategy for making table name changes. First, create the new table with
all attendant structures and then drop the old one once everything is working with the new
table. If the table to be renamed is too large to be copied, other strategies will have to be used,
but they are beyond the scope of this discussion.

This strategy has one serious problem, however. WorkID is a surrogate key. When we
create the new table, the DBMS will create new values of WorkID in the new table. The new
values will not necessarily match the values in the old table, which means values of the foreign
key TRANS.WorkID will be wrong. The easiest way to solve this problem is first to create the
new version of the WORK table and not define WorkID as a surrogate key. Then, fill the
table with the current values of WORK, including the current values of WorkID. Then, change
WorkID to a surrogate key.

First, we create the table by submitting an SQL CREATE TABLE WORK_VERSION2
statement to the DBMS. We make WorkID an integer, but not a surrogate key. We also must

324 Part 3 Database Implementation

give new names to the WORK constraints. The prior constraints still exist, and if new names
are not used, the DBMS will issue a duplicate constraint error when processing the CREATE
TABLE statements. Examples of new constraint names are:

/* *** EXAMPLE CODE � DO NOT RUN *** */

CONSTRAINT WorkV2PK PRIMARY KEY (WorkID),

CONSTRAINT WorkV2AK1 UNIQUE (Title, Copy),

CONSTRAINT ArtistV2FK FOREIGN KEY(ArtistID)

REFERENCES ARTIST(ArtistID)

ON DELETE NO ACTION

ON UPDATE NO ACTION

Next, copy the data into the new table with the following SQL statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-INSERT-CH08-01 *** */

INSERT INTO WORK_VERSION2 (WorkID, Copy, Title, Medium,
Description, ArtistID)

SELECT WorkID, Copy, Title, Medium, Description, ArtistID

FROM WORK;

At this point, alter the WORK_VERSION2 table to make WorkID a surrogate key. In SQL
Server, the easiest way to do that is to open the graphical table designer and redefine WorkID as
an IDENTITY column (there is no standard SQL for making this change). Set the Identity Seed
property to the original value of 500, and SQL Server will set the next new value of WorkID to be
the maximum largest value of WorkID plus one. A different strategy is used for surrogate keys
with Oracle Database and MySQL, and these topics will be discussed in Chapters 10A and 10B.

Now all that remains is to define the two triggers. This can be done by copying the text of
the old triggers and changing the name WORK to WORK_VERSION2.

At this point, test suites should be run against the database to verify that all changes have
been made correctly. After that, stored procedures and applications that use WORK can be
changed to run against the new table name.1 If all is correct, then the foreign key constraint
TransWorkFK and the WORK table can be dropped with the following:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-01 *** */

ALTER TABLE TRANS DROP CONSTRAINT TransWorkFK;

/* *** SQL-DROP-TABLE-CH08-01 *** */

DROP TABLE WORK;

The TransWorkFK constraint then can be added back to TRANS using the new name for
the work table:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-02 *** */

ALTER TABLE TRANS ADD CONSTRAINT TransWorkFK FOREIGN KEY(WorkID)

REFERENCES WORK_VERSION2(WorkID)

ON UPDATE NO ACTION

ON DELETE NO ACTION;

1 The timing is important. The WORK_VERSION2 table was created from WORK. If triggers, stored procedures,
and applications continue to run against WORK while the verification of WORK_VERSION2 is underway, then
WORK_VERSION2 will be out-of-date. Some action will need to be taken to bring it up-to-date before switch-
ing the stored procedures and applications over to WORK_VERSION2.

Chapter 8 Database Redesign 325

Clearly, there is more to changing a table name than you would think. You now can see
why some organizations do not allow programmers or users to employ the true name of a
table. Instead, views are described that serve as table aliases, as explained in Chapter 7. If this
were done here, only the views that define the aliases would need to be changed when the
source table name is changed.

Adding and Dropping Columns

Adding null columns to a table is straightforward. For example, to add the null column
DateCreated to WORK, we simply use the ALTER TABLE statement as follows:

/* *** SQL-ALTER-TABLE-CH08-03 *** */

ALTER TABLE WORK

ADD DateCreated DateTime NULL;

If there are other column constraints, such as DEFAULT or UNIQUE, include them with
the column definition, just as you would if the column definition were part of a CREATE
TABLE statement. However, if you include a DEFAULT constraint, be aware that the default
value will be applied to all new rows, but existing rows will have null values.

Suppose, for example, that you want to set the default value of DateCreated to 1/1/1900
to signify that the value has not yet been entered. In this case, you would use the ALTER
TABLE statement:

/* *** SQL-ALTER-TABLE-CH08-04 *** */

ALTER TABLE WORK

ADD DateCreated DateTime NULL DEFAULT ’01/01/1900’;

This statement causes DateCreated for new rows in WORK to be set to 1/1/1900 by
default. To set existing rows, you would need to execute the following query:

/* *** SQL-UPDATE-CH08-01 *** */

UPDATE WORK

SET DateCreated =’01/01/1900’

WHEREDateCreated IS NULL;

Adding NOT NULL Columns
To add a new NOT NULL column, first add the column as NULL. Then, use an UPDATE state-
ment like that just shown to give the column a value in all rows. After the update, the following
SQL ALTER TABLE ALTER COLUMN statement can be executed to change DateCreated from
NULL to NOT NULL.

/* *** SQL-ALTER-TABLE-CH08-05 *** */

ALTER TABLE WORK

ALTER COLUMN DateCreated DateTime NOT NULL;

Note that this statement will fail if DateCreated has not been given values in all rows.

Dropping Columns
Dropping nonkey columns is easy. For example, eliminating the DateCreated column from
WORK can be done with the following:

/* *** SQL-ALTER-TABLE-CH08-06 *** */

ALTER TABLE WORK

DROP COLUMN DateCreated;

326 Part 3 Database Implementation

To drop a foreign key column, the constraint that defines the foreign key must first be
dropped. Making such a change is equivalent to dropping a relationship, and that topic is
discussed later in this chapter.

To drop the primary key, the primary key constraint first needs to be dropped. To drop
that, however, all foreign keys that use the primary key must first be dropped. Thus, to drop the
primary key of WORK and replace it with the composite primary key (Title, Copy, ArtistID),
the following steps are necessary:

� Drop the constraint WorkFK from TRANS.
� Drop the constraint WorkPK from WORK.
� Create a new WorkPK constraint using (Title, Copy, ArtistID).
� Create a new WorkFK constraint referencing (Title, Copy, ArtistID) in TRANS.
� Drop the column WorkID.

It is important to verify that all changes have been made correctly before dropping WorkID.
Once it is dropped, there is no way to recover it except by restoring the WORK table from a backup.

Changing a Column Data Type or Column Constraints

To change a column data type or to change column constraints, the column is redefined using
the ALTER TABLE ALTER COLUMN command. However, if the column is being changed from
NULL to NOT NULL, then all rows must have a value in that column for the change to succeed.

Also, some data type changes may cause data loss. Changing Char(50) to Date, for
example, will cause loss of any text field that the DBMS cannot successfully transform into a
date value. Or, alternatively, the DBMS may simply refuse to make the column change. The
results depend on the DBMS product in use.

Generally, converting numeric to Char or Varchar will succeed. Also, converting Date or
Money or other more specific data types to Char or Varchar will usually succeed. Converting
Char or Varchar back to Date, Money, or Numeric is risky, and it may or may not be possible.

In the View Ridge schema, if DateOfBirth had been defined as Char(4), then a risky but
sensible data type change would be to modify DateOfBirth in the ARTIST table to Numeric(4,0).

This would be a sensible change because all of the values in this column are numeric.
Recall the check constraint that was used to define DateOfBirth (refer to Figure 7-14). The
following makes that change and simplifies the CHECK constraint.

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-07 *** */

ALTER TABLE ARTIST

ALTER COLUMN DateOfBirth Numeric(4,0) NULL;

ALTER TABLE ARTIST

ADD CONSTRAINT NumericBirthYearCheck

CHECK (DateOfBirth > 1900 AND DateOfBirth < 2100);

The prior check constraints on DateOfBirth should now be deleted.

Adding and Dropping Constraints

As already shown, constraints can be added and removed using the ALTER TABLE ADD
CONSTRAINT and ALTER TABLE DROP CONSTRAINT statements.

Changing Relationship Cardinalities and Properties

Changing cardinalities is a common database redesign task. Sometimes, the need is to change
minimum cardinalities from zero to one or from one to zero. Another common task is to
change the maximum cardinality from 1:1 to 1:N or from 1:N to N:M. Another possibility,
which is less common, is to decrease maximum cardinality from N:M to 1:N or from 1:N to 1:1.
This latter change can only be made with data loss, as you will see.

Chapter 8 Database Redesign 327

Changing Minimum Cardinalities

The action to be taken in changing minimum cardinalities depends on whether the change is
on the parent side or on the child side of the relationship.

Changing Minimum Cardinalities on the Parent Side
If the change is on the parent side, meaning that the child will or will not be required to have a
parent, making the change is a matter of changing whether null values are allowed for the
foreign key that represents the relationship. For example, suppose that in the 1:N relationship
from DEPARTMENT to EMPLOYEE the foreign key DepartmentNumber appears in the
EMPLOYEE table. Changing whether an employee is required to have a department is simply a
matter of changing the null status of DepartmentNumber.

If the change is from a minimum cardinality of zero to one, then the foreign key, which
would have been null, must be changed to NOT NULL. Changing a column to NOT NULL
can only be done if all the rows in the table have a value. In the case of a foreign key, this
means that every record must already be related. If not, all records must be changed so that
all have a relationship before the foreign key can be made NOT NULL. In the previous
example, every employee must be related to a department before DepartmentNumber can
be changed to NOT NULL.

Depending on the DBMS product in use, the foreign key constraint that defines the
relationship may have to be dropped before the change is made to the foreign key. Then the
foreign key constraint can be re-added. The following SQL will work for the preceding
example:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-09 *** */

ALTER TABLE EMPLOYEE

DROP CONSTRAINT DepartmentFK;

ALTER TABLE EMPLOYEE

ALTER COLUMN DepartmentNumber Int NOT NULL;

ALTER TABLE EMPLOYEE

ADD CONSTRAINT DepartmentFK FOREIGN KEY (DepartmentNumber)

REFERENCES DEPARTMENT (DepartmentNumber)

ON UPDATE CASCADE;

Also, cascade behavior for UPDATE and DELETE must be specified when changing the
minimum cardinality from zero to one. In this example, updates are to cascade, but deletions
will not (recall that the default behavior is NO ACTION).

Changing the minimum cardinality from one to zero is simple. Just change Department-
Number from NOT NULL to NULL. You also may want to change the cascade behavior on
updates and deletions, if appropriate.

Changing Minimum Cardinalities on the Child Side
As noted in Chapter 6, the only way to enforce a minimum cardinality other than zero on the
child side of a relationship is to write triggers or application code that enforce the constraint.
So, to change the minimum cardinality from zero to one, it is necessary to write the appropri-
ate triggers. Design the trigger behavior using Figure 6-28, and then write the triggers. To
change the minimum cardinality from one to zero, just drop the triggers that enforce that
constraint.

In the DEPARTMENT-to-EMPLOYEE relationship example, to require each DEPART-
MENT to have an EMPLOYEE triggers would need to be written on INSERT of DEPARTMENT
and on UPDATE and DELETE of EMPLOYEE. The trigger code in DEPARTMENT ensures that
an EMPLOYEE is assigned to the new DEPARTMENT, and the trigger code in EMPLOYEE
ensures that the employee being moved to a new department or the employee being deleted is
not the last employee in the relationship to its parent.

328 Part 3 Database Implementation

EmployeeNumber: NOT NULL

Name: NOT NULL
Phone: NOT NULL
Email: NOT NULL

EMPLOYEE

PermitNumber: NOT NULL

DateIssued: NOT NULL
LotNumber: NOT NULL
EmployeeNumber: NOT NULL (FK) (AK1.1)

PARKING_PERMITFigure 8-4

The Employee-to-
Parking_Permit 1:1
Relationship

This discussion assumes that the required child constraint is enforced by triggers. If the
required child constraint is enforced by application programs, then all of those programs also
must be changed. Dozens of programs may need to be changed, which is one reason why it is
better to enforce such constraints using triggers rather than application code.

Changing Maximum Cardinalities

The only difficulty when increasing cardinalities from 1:1 to 1:N or from 1:N to N:M is
preserving existing relationships. This can be done, but it requires a bit of manipulation, as you
will see. When reducing cardinalities, relationship data will be lost. In this case, a policy must
be created for deciding which relationships to lose.

Changing a 1:1 Relationship to a 1:N Relationship
Figure 8-4 shows a 1:1 relationship between EMPLOYEE and PARKING_PERMIT. As we
discussed in Chapter 6, the foreign key can be placed in either table for a 1:1 relationship. The
action taken depends on whether EMPLOYEE is to be the parent entity in the 1:N relationship
or whether PARKING_PERMIT is to be the parent.

If EMPLOYEE is to be the parent (employees are to have multiple parking permits), then
the only change necessary is to drop the constraint that PARKING_PERMIT.EmployeeNumber
be unique. The relationship will then be 1:N.

If PARKING_PERMIT is to be the parent (e.g., if parking permits are to be allocated to
many employees, say, for a carpool), then the foreign key and appropriate values must be
moved from PARKING_PERMIT to EMPLOYEE. The following SQL will accomplish this:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-10 *** */

ALTER TABLE EMPLOYEE

ADD PermitNumber Int NULL;

/* *** SQL-UPDATE-CH08-02 *** */

UPDATE EMPLOYEE

SET EMPLOYEE.PermitNumber =

(SELECT PP.PermitNumber

FROM PARKING_PERMIT AS PP

WHERE PP.EmployeeNumber = EMPLOYEE.EmployeeNumber);

Once the foreign key has been moved over to EMPLOYEE, the EmployeeNumber column
of PARKING_PERMIT should be dropped. Next, create a new foreign key constraint to define
referential integrity. So that multiple employees can relate to the same parking permit, the new
foreign key must not have a UNIQUE constraint.

Changing a 1:N Relationship to an N:M Relationship
Suppose that View Ridge Gallery decides that it wants to record multiple purchasers for a
given transaction. It may be that some of its art is co-owned between a customer and a bank or
a trust account, for example; or perhaps it may want to record the names of both owners when
a couple purchases art. For whatever reason, this change will require that the 1:N relationship
between CUSTOMER and TRANS be changed to an N:M relationship.

Chapter 8 Database Redesign 329

ArtistID

LastName (AK1.1)
FirstName (AK1.2)
Nationality
DateOfBirth
DateDeceased

ARTISTCustomerID

LastName
FirstName
AreaCode
LocalNumber
Street
City
State
ZipPostalCode
Country
Email (AK1.1)

CUSTOMER

TransactionID

DateAcquired
AcquisitionPrice
DateSold
SalesPrice
AskingPrice
WorkID (FK)

TRANS

WorkID

Title
Description
Medium
Copy
ArtistID (FK)

WORK

ArtistID (FK)
CustomerID (FK)

CUSTOMER_ARTIST_INT

CustomerID (FK)
TransactionID (FK)

CUSTOMER_TRANSACTION_INT

Figure 8-5

View Ridge Gallery Database
Design with New N:M
Relationship

Changing a 1:N relationship to an N:M relationship is surprisingly easy.2 Just create the
new intersection table, fill it with data, and drop the old foreign key column. Figure 8-5
shows the View Ridge database design with a new intersection table to support the N:M
relationship.

We need to create this table and then copy the values of TransactionID and CustomerID
from TRANS for rows in which CustomerID is not null. First, create the new intersection table
using the following SQL:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-CREATE-TABLE-CH08-01 *** */

CREATE TABLE CUSTOMER_TRANSACTION_INT(

CustomerID Int NOT NULL,

TransactionID Int NOT NULL,

CONSTRAINT CustomerTransaction_PK

PRIMARY KEY(CustomerID, TransactionID),

CONSTRAINT Customer_Transaction_Int_Trans_FK

FOREIGN KEY (TransactionID) REFERENCES TRANS(TransactionID),

CONSTRAINT Customer_Transaction_Int_Customer_FK

FOREIGN KEY (CustomerID) REFERENCES CUSTOMER(CustomerID)

);

Note that there is no cascade behavior for updates because CustomerID is a surrogate key.
There is no cascade behavior for deletions because of the business policy never to delete data

2 Making the data change is easy. Dealing with the consequences of the data change with regards to views,
triggers, stored procedures, and application code will be more difficult. All of these will need to be rewritten to
join across a new intersection table. All forms and reports also will need to be changed to portray multiple
customers for a transaction; this will mean changing text boxes to grids, for example. All of this work is time
consuming, and hence expensive.

330 Part 3 Database Implementation

that involve transactions. The next task is to fill the table with data from the TRANS table
using the following SQL statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-INSERT-CH08-02 *** */

INSERT INTO CUSTOMER_TRANSACTION_INT (CustomerID, TransactionID)

SELECT CustomerID, TransactionID

FROM TRANS

WHERE CustomerID IS NOT NULL;

Once all of these changes have been made, the CustomerID column of TRANS can be dropped.

Reducing Cardinalities (with Data Loss)
It is easy to make the structural changes to reduce cardinalities. To reduce an N:M relationship
to 1:N, we just create a new foreign key in the relation that will be the child and fill it with data
from the intersection table. To reduce a 1:N relationship to 1:1, we just make the values of the
foreign key of the 1:N relationship unique and then define a unique constraint on the foreign
key. In either case, the most difficult problem is deciding which data to lose.

Consider the reduction of N:M to 1:N. Suppose, for example, that the View Ridge Gallery
decides to keep just one artist interest for each customer. Thus, the relationship will then be
1:N from ARTIST to CUSTOMER. Accordingly, we add a new foreign key column ArtistID to
CUSTOMER and set up a foreign key constraint to ARTIST on that customer. The following
SQL will accomplish this:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-11 *** */

ALTER TABLE CUSTOMER

ADD ArtistID Int NULL;

ALTER TABLE CUSTOMER

ADD CONSTRAINT ArtistInterestFK FOREIGN KEY (ArtistID)

REFERENCES ARTIST(ArtistID);

Updates need not cascade because of the surrogate key, and deletions cannot cascade
because the customer may have a valid transaction and ought not to be deleted just because
an artist interest goes away.

Now which of a customer�s potentially many artist interests should be preserved in the
new relationship? The answer depends on the business policy at the gallery. Here, suppose we
decide simply to take the first artist interest:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH08-03 *** */

UPDATE CUSTOMER

SET ArtistID =

(SELECT Top 1 ArtistID

FROM CUSTOMER_ARTIST_INT AS CAI

WHERE CUSTOMER.CustomerID = CAI.CustomerID);

The SQL Top 1 phrase is used to return the first qualifying row.
All views, triggers, stored procedures, and application code need to be changed to account

for the new 1:N relationship. Then the constraints defined on CUSTOMER_ ARTIST_INT can
be dropped. Finally, the table CUSTOMER_ARTIST_INT can be dropped.

To change a 1:N to a 1:1 relationship, we just need to remove any duplicate values of the foreign
key of the relationship and then add a unique constraint on the foreign key. See Project Question 8.51.

Chapter 8 Database Redesign 331

Adding and Deleting Tables and Relationships

Adding new tables and relationships is straightforward. Just add the tables and relationships
using CREATE TABLE statements with FOREIGN KEY constraints, as shown before. If an
existing table has a child relationship to the new table, add a FOREIGN KEY constraint using
the existing table.

For example, if a new table, COUNTRY, were added to the View Ridge database with the
primary key Name and if CUSTOMER.Country is to be used as a foreign key in the new table,
a new FOREIGN KEY constraint would be defined in CUSTOMER:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-12 *** */

ALTER TABLE CUSTOMER

ADD CONSTRAINT CountryFK FOREIGN KEY (Country)

REFERENCES COUNTRY(Name)

ON UPDATE CASCADE;

Deleting relationships and tables is just a matter of dropping the foreign key constraints
and then dropping the tables. Of course, before this is done, dependency graphs must be
constructed and used to determine which views, triggers, stored procedures, and application
programs will be affected by the deletions.

As described in Chapter 4, another reason to add new tables and relationships or to
compress existing tables into fewer tables is for normalization and denormalization. We will
not address that topic further in this chapter, except to say that normalization and denormal-
ization are common tasks during database redesign.

Forward Engineering(?)

You can use a variety of different data modeling products to make database changes on your
behalf. To do so, you first reverse engineer the database, make changes to the RE data model,
and then invoke the forward-engineering functionality of the data modeling tool.

We will not consider forward engineering here because it hides the SQL that you need to
learn. Also, the specifics of the forward-engineering process are product dependent.

Because of the importance of making data model changes correctly, many professionals
are skeptical about using an automated process for database redesign. Certainly, it is necessary
to test the results thoroughly before using forward engineering on operational data. Some
products will show the SQL they are about to execute for review before making the changes to
the database.

Database redesign is one area in which automation may not be the best idea. Much
depends on the nature of the changes to be made and the quality of the forward-engineering
features of the data modeling product. Given the knowledge you have gained in this chapter,
you should be able to make most redesign changes by writing your own SQL. There is nothing
wrong with that approach!

Database redesign is the third way in which databases can
arise. Redesign is necessary both to fix mistakes made
during the initial database design and also to adapt the
database to changes in system requirements. Such changes
are common because information systems and organiza-

tions do not just influence each other�they create each
other. Thus, new information systems cause changes in sys-
tems requirements.

Correlated subqueries and the SQL EXISTS and NOT
EXISTS keyworks are important tools. They can be used to

332 Part 3 Database Implementation

answer advanced queries. They also are useful during database
redesign for determining whether specified data conditions
exist. For example, they can be used to determine whether
possible functional dependencies exist in the data.

A correlated subquery appears deceptively similar to a
regular subquery. The difference is that a regular subquery
can be processed from the bottom up. In a regular subquery,
results from the lowest query can be determined and then
used to evaluate the upper-level queries. In contrast, in a
correlated subquery, the processing is nested; that is, a row
from an upper-level query statement is compared with rows
in a lower-level query. The key distinction of a correlated
subquery is that the lower-level SELECT statements use
columns from upper-level statements.

The SQL EXISTS and NOT EXISTS keywords create
specialized forms of correlated subqueries. When these are
used, the upper-level query produces results, depending on
the existence or nonexistence of rows in lower-level queries.
An EXISTS condition is true if any row in the subquery
meets the specified conditions; a NOT EXISTS condition
is true only if all rows in the subquery do not meet the
specified condition. NOT EXISTS is useful for queries that
involve conditions that must be true for all rows, such as a
�customer who has purchased all products.� The double
use of NOT EXISTS is a famous SQL pattern that often is
used to test a person�s knowledge of SQL.

Before redesigning a database, the existing database
needs to be carefully examined to avoid making the database
unusable by partially processing a database change. The rule is
to measure twice and cut once. Reverse engineering is used to
create a data model of the existing database. This is done to
better understand the database structure before proceeding
with a change. The data model produced, called a reverse engi-
neered (RE) data model, is not a true data model, but is a thing
unto itself. Most data modeling tools can perform reverse
engineering. The RE data model almost always has missing
information; such models should be carefully reviewed.

All of the elements of a database are interrelated.
Dependency graphs are used to portray the dependency of
one element on another. For example, a change in a table can
potentially impact relationships, views, indexes, triggers,
stored procedures, and application programs. These impacts
need to be known and accounted for before making database
changes.

A complete backup must be made to the operational
database prior to any database redesign changes. Addition-
ally, such changes must be thoroughly tested, initially on
small test databases and later on larger test databases that
may even be duplicates of the operational databases. The
redesign changes are made only after such extensive testing
has been completed.

Database redesign changes can be grouped into
different types. One type involves changing table names and
table columns. Changing a table name has a surprising
number of potential consequences. A dependency graph
should be used to understand these consequences before
proceeding with the change. Nonkey columns are readily

added and deleted. Adding a NOT NULL column must be
done in three steps: first, add the column as NULL; then add
data to every row; and then alter the column constraint to
NOT NULL. To drop a column used as a foreign key, the
foreign key constraint must first be dropped.

Column data types and constraints can be changed
using the SQL ALTER TABLE ALTER COLUMN statement.
Changing the data type to Char or Varchar from a more
specific type, such as Date, is usually not a problem. Changing
a data type from Char or Varchar to a more specific type can
be a problem. In some cases, data will be lost or the DBMS
may refuse the change.

Constraints can be added or dropped using the ADD
CONSTRAINT and DROP CONSTRAINT clauses with the SQL
ALTER TABLE statement. Use of this statement is easier if the
developers have provided their own names for all constraints.

Changing minimum cardinalities on the parent side of a
relationship is simply a matter of altering the constraint on the
foreign key from NULL to NOT NULL or from NOT NULL to
NULL. Changing minimum cardinalities on the child side of a
relationship can be accomplished only by adding or dropping
triggers that enforce the constraint.

Changing maximum cardinality from 1:1 to 1:N is
simple if the foreign key resides in the correct table. In that
case, just remove the unique constraint on the foreign key
column. If the foreign key resides in the wrong table for this
change, move the foreign key to the other table and do not
place a unique constraint on that table.

Changing a 1:N relationship to an N:M relationship
requires building a new intersection table and moving the
primary key and foreign key values to the intersection table.
This aspect of the change is relatively simple. It is more
difficult to change all of the views, triggers, stored proce-
dures, application programs, and forms and reports to use
the new intersection table.

Reducing cardinalities is easy, but such changes may
result in data loss. Prior to making such reductions, a
policy must be determined to decide which data to keep.
Changing N:M to 1:N involves creating a foreign key in the
parent table and moving one value from the intersection
table into that foreign key. Changing 1:N to 1:1 requires
first eliminating duplicates in the foreign key and then
setting a uniqueness constraint on that key. Adding and
deleting relationships can be accomplished by defining
new foreign key constraints or by dropping existing
foreign key constraints.

Most data modeling tools have the capacity to
perform forward engineering, which is the process of
applying data model changes to an existing database. If
forward engineering is used, the results should be
thoroughly tested before using it on an operational
database. Some tools will show the SQL that they will
execute during the forward-engineering process. Any SQL
generated by such tools should be carefully reviewed. All in
all, there is nothing wrong with writing database redesign
SQL statements by hand rather than using forward
engineering.

Chapter 8 Database Redesign 333

correlated subquery
dependency graph
reverse engineered (RE) data model

SQL EXISTS keyword
SQL NOT EXISTS keyword
Systems Development Life Cycle (SDLC)

8.1 Explain, one more time, the three ways that databases arise.

8.2 Describe why database redesign is necessary.

8.3 Explain the following statement in your own words: �Information systems and organi-
zations create each other.� How does this relate to database redesign?

8.4 Suppose that a table contains two nonkey columns: AdviserName and AdviserPhone.
Further suppose that you suspect that AdviserPhone : AdviserName. Explain how to
examine the data to determine if this supposition is true.

8.5 Write a subquery, other than one in this chapter, that is not a correlated subquery.

8.6 Explain the following statement: �The processing of correlated subqueries is nested,
whereas that of regular subqueries is not.�

8.7 Write a correlated subquery, other than one in this chapter.

8.8 Explain how the query in your answer to Review Question 8.5 differs from the query in
your answer to Review Question 8.7.

8.9 Explain what is wrong with the correlated subquery on page 317.

8.10 Write a correlated subquery to determine whether the data support the supposition in
Review Question 8.4.

8.11 Explain the meaning of the SQL keyword EXISTS.

8.12 Answer Review Question 8.10, but use the SQL EXISTS keyword.

8.13 Explain how the words any and all pertain to the SQL keywords EXISTS and NOT EXISTS.

8.14 Explain the processing of the query on page 319.

8.15 Using the View Ridge Gallery database, write a query that will display the names of any
customers who are interested in all artists.

8.16 Explain how the query in your answer to Review Question 8.15 works.

8.17 Why is it important to analyze the database before implementing database redesign
tasks? What can happen if this is not done?

8.18 Explain the process of reverse engineering.

8.19 Why is it important to carefully evaluate the results of reverse engineering?

8.20 What is a dependency graph? What purpose does it serve?

8.21 Explain the dependencies for WORK in the graph in Figure 8-3.

8.22 What sources are used when creating a dependency graph?

8.23 Explain two different types of test databases that should be used when testing
database redesign changes.

8.24 Explain the problems that can occur when changing the name of a table.

334 Part 3 Database Implementation

8.25 Describe the process of changing a table name.

8.26 Considering Figure 8-3, describe the tasks that need to be accomplished to change the
name of the table WORK to WORK_VERSION2.

8.27 Explain how views can simplify the process of changing a table name.

8.28 Under what conditions is the following SQL statement valid?

INSERT INTO T1 (A, B)

SELECT (C, D) FROM T2;

8.29 Show an SQL statement to add an integer column C1 to the table T2. Assume that C1
is NULL.

8.30 Extend your answer to Review Question 8.29 to add C1 when C1 is to be NOT NULL.

8.31 Show an SQL statement to drop the column C1 from table T2.

8.32 Describe the process for dropping primary key C1 and making the new primary key C2.

8.33 Which data type changes are the least risky?

8.34 Which data type changes are the most risky?

8.35 Write an SQL statement to change a column C1 to Char(10) NOT NULL. What conditions
must exist in the data for this change to be successful?

8.36 Explain how to change the minimum cardinality when a child that was required to
have a parent is no longer required to have one.

8.37 Explain how to change the minimum cardinality when a child that was not required to
have a parent is now required to have one. What condition must exist in the data for
this change to work?

8.38 Explain how to change the minimum cardinality when a parent that was required to
have a child is no longer required to have one.

8.39 Explain how to change the minimum cardinality when a parent that was not required
to have a child is now required to have one.

8.40 Describe how to change the maximum cardinality from 1:1 to 1:N. Assume that the
foreign key is on the side of the new child in the 1:N relationship.

8.41 Describe how to change the maximum cardinality from 1:1 to 1:N. Assume that the
foreign key is on the side of the new parent in the 1:N relationship.

8.42 Assume that tables T1 and T2 have a 1:1 relationship. Assume that T2 has the foreign
key. Show the SQL statements necessary to move the foreign key to T1. Make up your
own names for the primary and foreign keys.

8.43 Explain how to transform a 1:N relationship into an N:M relationship.

8.44 Suppose that tables T1 and T2 have a 1:N relationship. Show the SQL statements
necessary to fill an intersection T1_T2_INT. Make up your own names for the primary
and foreign keys.

8.45 Explain how the reduction of maximum cardinalities causes data loss.

8.46 Using the tables in your answer to Review Question 8.44, show the SQL statements
necessary to change the relationship back to 1:N. Assume that the first row in the
qualifying rows of the intersection table is to provide the foreign key. Use the keys and
foreign keys from your answer to Review Question 8.44.

8.47 Using the results of your answer to Review Question 8.46, explain what must be done
to convert this relationship to 1:1. Use the keys and foreign keys from your answer to
Review Question 8.46.

Chapter 8 Database Redesign 335

8.48 In general terms, what must be done to add a new relationship?

8.49 Suppose that tables T1 and T2 have a 1:N relationship, with T2 as the child. Show the
SQL statements necessary to remove table T1. Make your own assumptions about the
names of keys and foreign keys.

8.50 What are the risks and problems of forward engineering?

8.51 Suppose that the table EMPLOYEE has a 1:N relationship to the table PHONE_NUMBER.
Further suppose that the primary key of EMPLOYEE is EmployeeID and the columns of
PHONE_NUMBER are PhoneNumberID (a surrogate key), AreaCode, LocalNumber, and
EmployeeID (a foreign key to EMPLOYEE). Alter this design so that EMPLOYEE has a 1:1
relationship to PHONE_NUMBER. For employees having more than one phone number,
keep only the first one

8.52 Suppose that the table EMPLOYEE has a 1:N relationship to the table PHONE_NUMBER.
Further suppose that the key of EMPLOYEE is EmployeeID and the columns of
PHONE_NUMBER are PhoneNumberID (a surrogate key), AreaCode, LocalNumber, and
EmployeeID (a foreign key to EMPLOYEE). Write all SQL statements necessary to
redesign this database so that it has just one table. Explain the difference between the
result of Project Question 8.51 and the result of this question

8.53 Consider the following table:

TASK (EmployeeID, EmpLastName, EmpFirstName, Phone, OfficeNumber,
ProjectName, Sponsor, WorkDate, HoursWorked)

A. Write SQL statements to display the values of any rows that violate these functional
dependencies.

B. If no data violate these functional dependencies, can we assume that they are valid?
Why or why not?

C. Assume that these functional dependencies are true and that the data have been
corrected, as necessary, to reflect them. Write all SQL statements necessary to redesign
this table into a set of tables in BCNF and 4NF. Assume that the table has data values
that must be appropriately transformed to the new design.

Assume that Marcia has created a database with the tables described
at the end of Chapter 7:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice, ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

Assume that all relationships have been defined, as implied by the foreign keys in
this table list. If you want to run these solutions in a DBMS product, first create a
version of the of the MDC database described in Chapter 7 named MDC-CH08.

A. Create a dependency graph that shows dependencies among these tables. Explain how
you need to extend this graph for views and other database constructs, such as triggers
and stored procedures.

B. Using your dependency graph, describe the tasks necessary to change the name of the
ORDER table to CUST_ORDER.

336 Part 3 Database Implementation

Assume that Morgan has created a database with the tables described at the end of
Chapter 7 (note that STORE uses the surrogate key StoreID):

STORE (StoreID, StoreName, City, Country, Phone, Fax, Email, Contact)
PURCHASE_ITEM (PurchaseItemID, StoreID, PurchaseDate, ItemDescription,
Category, PriceUSD)
SHIPMENT (ShipmentID, ShipperID, ShipperInvoiceNumber, Origin, Destination,
DepartureDate, Arrival Date)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, PurchaseItemID, InsuredValue)
SHIPPER (ShipperID, ShipperName, Phone, Fax, Email, Contact)

Assume that all relationships have been defined as implied by the foreign keys in
this table list. If you want to run these solutions in a DBMS product, first create a
version of the of the MI database described in Chapter 7 named MI-CH08.

A. Create a dependency graph that shows dependencies among these tables. Explain how
you need to extend this graph for views and other database constructs, such as stored
procedures.

B. Using your dependency graph, describe the tasks necessary to change the name of the
SHIPMENT table to MORGAN_SHIPMENT.

C. Write all SQL statements to make the name change described in part B.

D. Suppose that Morgan decides to allocate some purchases to more than one shipment. Make
design changes in accordance with this new fact. You will need to make assumptions about
how purchases are divided and allocated to shipments. State your assumptions.

E. Code SQL statements to implement your redesign recommendations in your answer to
part D.

F. Suppose that Morgan considers changing the primary key of PURCHASE_ITEM to
(StoreID, PurchaseDate). Write correlated subqueries to display any data that indicate
that this change is not justifiable.

G. Suppose that (StoreID, PurchaseDate) can be made the primary key of PURCHASE_ITEM.
Make appropriate changes to the table design.

H. Code all SQL statements necessary to implement the changes described in part G.

C. Write all SQL statements to make the name change described in part B.

D. Suppose that Marcia decides to allow multiple customers per order (e.g., for customers�
spouses). Modify the design of these tables to accommodate this change.

E. Code SQL statements necessary to redesign the database, as described in your answer to
part D.

F. Suppose that Marcia considers changing the primary key of CUSTOMER to (FirstName,
LastName). Write correlated subqueries to display any data that indicate that this
change is not justifiable.

G. Suppose that (FirstName, LastName) can be made the primary key of CUSTOMER.
Make appropriate changes to the table design with this new primary key.

H. Code all SQL statements necessary to implement the changes described in part G.

The four chapters in Part 4 introduce and discuss the major problems of
multiuser database processing and describe the features and functions
for solving those problems offered by two important DBMS products.
We begin in Chapter 9 with a description of database administration and
the major tasks and techniques for multiuser database management.
The next three chapters illustrate the implementation of these concepts
using Microsoft SQL Server 2008 R2 (Chapter 10), Oracle�s Oracle
Database 11g (Chapter 10A), and Oracle MySQL 5.5 (Chapter 10B).

M ultiuser Database Processing

4

337

Although multiuser databases offer great value to the organizations that
create and use them, they also pose difficult problems for those same
organizations. For one, multiuser databases are complicated to design and
develop because they support many overlapping user views.

Additionally, as discussed in the last chapter, requirements change over
time, and those changes necessitate other changes to the database structure.
Such structural changes must be carefully planned and controlled so that a
change made for one group does not cause problems for another. In addition,
when users process a database concurrently, special controls are needed to

� To understand the need for and importance of database
administration

� To understand the need for concurrency control,
security, and backup and recovery

� To learn about typical problems that can occur when
multiple users process a database concurrently

� To understand the use of locking and the problem of
deadlock

� To learn the difference between optimistic and
pessimistic locking

Chapter Objectives

Managing Multiuser
Databases9

� To know the meaning of an ACID transaction

� To learn the four 1992 ANSI standard isolation levels

� To understand the need for security and specific tasks
for improving database security

� To know the difference between recovery via
reprocessing and recovery via rollback/rollforward

� To understand the nature of the tasks required for
recovery using rollback/rollforward

� To know basic administrative and managerial DBA
functions

338

Chapter 9 Managing Multiuser Databases 339

ensure that the actions of one user do not inappropriately influence the results
for another. This topic is both important and complicated, as you will see.

In large organizations, processing rights and responsibilities need to be
defined and enforced. What happens, for example, when an employee
leaves the firm? When can the employee�s records be deleted? For the
purposes of payroll processing, records can be deleted after the last pay
period. For the purposes of quarterly reporting, they can be deleted at the
end of the quarter. For the purposes of end-of-year tax record processing,
they can be deleted at the end of the year. Clearly, no department can
unilaterally decide when to delete that data. Similar comments pertain to the
insertion and changing of data values. For these and other reasons, security
systems need to be developed that enable only authorized users to take
authorized actions at authorized times.

Databases have become key components of organizational operations,
and even key components of an organization�s value. Unfortunately, database
failures and disasters do occur. Thus, effective backup and recovery plans,
techniques, and procedures are essential.

Finally, over time, the DBMS itself will need to be changed to improve per-
formance by incorporating new features and releases and to conform to
changes made in the underlying operating system. All of this requires attentive
management.

To ensure that these problems are addressed and solved, most organiza-
tions have a database administration office. We begin with a description of
the tasks of that office. We then describe the combination of software and
manual practices and procedures that are used to perform those tasks. In
the next three chapters, we will discuss and illustrate features and functions
of SQL Server 2008 R2, Oracle Database 11g, and MySQL 5.5, respectively,
for dealing with these issues.

Database Administration

The terms data administration and database administration are both used in practice. In
some cases, the terms are considered to be synonymous; in other cases, they have different
meanings. Most commonly, the term data administration refers to a function that applies to an
entire organization; it is a management-oriented function that concerns corporate data
privacy and security issues. In contrast, the term database administration refers to a more
technical function that is specific to a particular database, including the applications that
process that database. This chapter addresses database administration.

Databases vary considerably in size and scope, ranging from single-user personal databases to
large interorganizational databases, such as airline reservation systems. All of these databases have
a need for database administration, although the tasks to be accomplished vary in complexity. For
personal databases, individuals follow simple procedures for backing up their data, and they keep
minimal records for documentation. In this case, the person who uses the database also performs
the database administration functions, even though he or she is probably unaware of it.

340 Part 4 Multiuser Database Processing

For multiuser database applications, database administration becomes both more
important and more difficult. Consequently, it generally has formal recognition. For some
applications, one or two people are given this function on a part-time basis. For large Internet
or intranet databases, database administration responsibilities are often too time consuming
and too varied to be handled even by a single full-time person. Supporting a database with
dozens or hundreds of users requires considerable time as well as both technical knowledge
and diplomatic skills. Such support usually is handled by an office of database administration.
The manager of the office is often known as the database administrator. In this case, the
acronym DBA refers to either the office or the manager.

The overall responsibility of the DBA is to facilitate the development and use of the
database. Usually, this means balancing the conflicting goals of protecting the database and
maximizing its availability and benefit to users. Specific tasks are shown in Figure 9-1. We
consider each of these tasks in the following sections.

Managing the Database Structure

Managing the database structure includes participating in the initial database design and
implementation as well as controlling and managing changes to the database. Ideally, the DBA
is involved early in the development of the database and its applications; participates in the
requirements study; helps evaluate alternatives, including the DBMS to be used; and helps
design the database structure. For large organizational applications, the DBA usually is a
manager who supervises the work of technically oriented database design personnel.

Creating the database involves several different tasks. First, the database is created and
disk space is allocated for database files and logs. Then tables are generated, indexes are
created, and stored procedures and triggers are written. We will discuss examples of all of
these tasks in the next three chapters. Once the database structures are created, the database
is filled with data.

Configuration Control
After a database and its applications have been implemented, changes in requirements are
inevitable, as described in Chapter 8. Such changes can arise from new needs, from changes in
the business environment, from changes in policy, and from changes in business processes that
evolve with system use. When changes to requirements necessitate changes to the database
structure, great care must be used, because changes to the database structure seldom involve
just one application.

Hence, effective database administration includes procedures and policies by which users
can register their needs for changes, the entire database community can discuss the impacts of
the changes, and a global decision can be made whether to implement proposed changes.
Because of the size and complexity of a database and its applications, changes sometimes have
unexpected results. Thus, the DBA must be prepared to repair the database and to gather
sufficient information to diagnose and correct the problem that caused the damage. The
database is most vulnerable to failure after its structure has been changed.

Summary of Database Administration Tasks

� Manage database structure

� Control concurrent processing

� Manage processing rights and responsibilities

� Develop database security

� Provide for database recovery

� Manage the DBMS

� Maintain the data repository

Figure 9-1

Summary of Database
Administration Tasks

Chapter 9 Managing Multiuser Databases 341

Documentation
The DBA�s final responsibility in managing the database structure is documentation. It is
extremely important to know what changes have been made, how they were made, and when
they were made. A change in the database structure may cause an error that is not revealed for
6 months; without proper documentation of the change, diagnosing the problem is next to
impossible. Considerable work may be required to identify the point at which certain symptoms
first appeared. For this reason, it also is important to maintain a record of the test procedures
and test runs made to verify a change. If standardized test procedures, test forms, and
recordkeeping methods are used, recording the test results does not have to be time consuming.

Although maintaining documentation is tedious and unfulfilling, the effort pays off when
disaster strikes and the documentation is the difference between a quick problem solution and
a confused muddle of activity. Today, several products are emerging that ease the burden of
documentation. Many CASE tools, for example, can be used to document logical database
designs. Version-control software can be used to track changes. Data dictionaries provide
reports and other outputs that present database data structures.

Another reason for carefully documenting changes in the database structure is so that
historical data are used properly. If, for example, marketing wants to analyze 3-year-old sales
data that have been in the archives for 2 years, it will be necessary to know what structure was
current at the time the data were last active. Records that show the changes in the structure
can be used to answer that question. A similar situation arises when a 6-month-old backup
copy of data must be used to repair a damaged database (although this should not happen, it
sometimes does). The backup copy can be used to reconstruct the database to the state it was
in at the time of the backup. Then, transactions and structural changes can be made in
chronological order to restore the database to its current state. Figure 9-2 summarizes the
DBA�s responsibilities for managing the database structure.

Participate in Database and
Application Development

� Assist in requirements stage and data model
 creation

� Play an active role in database design and
 creation

Facilitate Changes to Database Structure

� Seek communitywide solutions

� Assess impact on all users

� Provide configuration control forum

� Be prepared for problems after changes are
 made

� Maintain documentation

Figure 9-2

Summary of DBA�s
Responsibilities for
Managing Database
Structure

Concurrency Control

Concurrency control measures are taken to ensure that one user�s work does not inappropri-
ately influence another user�s work. In some cases, these measures ensure that a user gets the
same result when processing with other users that he or she would have received if processing
alone. In other cases, it means that the user�s work is influenced by other users, but in an
anticipated way. For example, in an order entry system, a user should be able to enter an
order and get the same result, regardless of whether there are no other users or hundreds of
other users. In contrast, a user who is printing a report of the most current inventory status
may want to obtain in-process data changes from other users, even if there is a danger that
those changes may later be cancelled.

342 Part 4 Multiuser Database Processing

Unfortunately, no concurrency control technique or mechanism is ideal for every circum-
stance. All involve trade-offs. For example, a program can obtain very strict concurrency control
by locking the entire database, but no other programs will be able to do anything while it runs.
This is strict protection, but at a high cost. As you will see, other measures are available that are
more difficult to program or enforce but that allow more throughput. Still other measures are
available that maximize throughput but have a low level of concurrency control. When designing
multiuser database applications, you will need to choose among these trade-offs.

The Need for Atomic Transactions

In most database applications, users submit work in the form of transactions, which are also
known as logical units of work (LUWs). A transaction (or LUW) is a series of actions to be
taken on the database so that either all of them are performed successfully or none of them are
performed at all, in which case the database remains unchanged. Such a transaction is some-
times called atomic because it is performed as a unit.

Consider the following sequence of database actions that could occur when recording a
new order:

1. Change a customer�s row, increasing AmountDue.
2. Change a salesperson�s row, increasing CommissionDue.
3. Insert a new order row into the database.

Suppose that the last step failed, perhaps because of insufficient file space. Imagine the
confusion if the first two changes were made but the third one was not. The customer would
be billed for an order never received, and a salesperson would receive a commission on an
order that was never sent to the customer. Clearly, these three actions need to be taken as a
unit�either all of them should be done or none of them should be done.

Figure 9-3 compares the results of performing these activities as a series of independent
steps [Figure 9-3(a)] and as an atomic transaction [Figure 9-3(b)]. Notice that when the steps
are carried out atomically and one fails, no changes are made in the database. Also note that
the commands Start Transaction, Commit Transaction, and Rollback Transaction are issued
by the application program to mark the boundaries of the transaction logic. You will learn
more about these commands later in this chapter and in Chapters 10, 10A, and 10B.

Concurrent Transaction Processing
When two transactions are being processed against a database at the same time, they are termed
concurrent transactions. Although it may appear to the users that concurrent transactions are
being processed simultaneously, this cannot be true because the CPU of the machine processing
the database can execute only one instruction at a time. Usually, transactions are interleaved,
which means that the operating system switches CPU services among tasks so that some portion
of each transaction is carried out in a given interval. This switching among tasks is done so
quickly that two people seated at browsers side by side, processing the same database, may
believe that their two transactions are completed simultaneously; in reality, however, the two
transactions are interleaved.

Figure 9-4 shows two concurrent transactions. User A�s transaction reads Item 100,
changes it, and rewrites it in the database. User B�s transaction takes the same actions, but on
Item 200. The CPU processes User A�s transactions until it encounters an I/O interrupt or some
other delay for User A. The operating system shifts control to User B. The CPU now processes
User B�s transactions until an interrupt, at which point the operating system passes control
back to User A. To the users, the processing appears to be simultaneous, but it is interleaved, or
concurrent.

The Lost Update Problem
The concurrent processing illustrated in Figure 9-4 poses no problems because the users are
processing different data. But suppose that both users want to process Item 100. For example,

CUSTOMER

CNum OrderNum Description AmtDue
123 1000 400 Baseballs $2400

Name Commission Due
Total-
Sales

JONES $3200 $320

SALESPERSON

ORDER

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

OrderNum

FULL

(a) Errors Introduced Without Transaction

Before

CUSTOMER

Description
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $9700

SALESPERSON

ORDER

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FULL

After

START

1. Add new-order data to
 CUSTOMER.

2. Add new-order data to
 SALESPERSON.

3. Insert new ORDER.

STOP

123 8000 250 Basketballs $6500

Action

CNum OrderNum AmtDue

Commission Due
$970

OrderNum

Figure 9-3

Need for Transaction
Processing

343

(continued)

CUSTOMER

Description
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FULL

(b) Atomic Transaction Prevents Errors

CUSTOMER

Description
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FULL

Begin Transaction
 Change CUSTOMER data
 Change SALESPERSON data
 Insert ORDER data
If no errors then
 Commit Transactions
Else
 Rollback Transaction
End If

CNum OrderNum AmtDue

Commission Due
$320

ORDER

OrderNum

CNum OrderNum AmtDue

Commission Due
$320

ORDER

OrderNum

Before AfterTransaction

Figure 9-3

Continued

344

Chapter 9 Managing Multiuser Databases 345

1. Read item 100 for A.
2. Read item 200 for B.
3. Change item 100 for A.
4. Write item 100 for A.
5. Change item 200 for B.
6. Write item 200 for B.

1. Read item 100.
2. Change item 100.
3. Write item 100.

Order of processing at database server

User A

1. Read item 200.
2. Change item 200.
3. Write item 200.

User B

Figure 9-4

Concurrent-Processing
Example

User A wants to order five units of Item 100, and User B wants to order three units of the same
item. Figure 9-5 illustrates the problem.

User A reads a copy of Item 100�s record into memory. According to the record, there are
10 items in inventory. Then User B reads another copy of Item 100�s record into a different
section of memory. Again, according to the record, there are 10 items in inventory. Now User A
takes five, decrements the count of items in its copy of the data to five, and rewrites the record
for Item 100. Then User B takes three, decrements the count in its copy of the data to seven, and
rewrites the record for Item 100. The database now shows, incorrectly, that there are seven
Item 100s in inventory. To review: We started with 10 in inventory, User A took 5, User B took 3,
and the database shows that 7 are in inventory. Clearly, this is a problem.

Both users obtained data that were correct at the time they obtained them. But when User B
read the record, User A already had a copy that it was about to update. This situation is called
the lost update problem, or the concurrent update problem. A similar problem is the
inconsistent read problem. With this problem, User A reads data that have been processed
by a portion of a transaction from User B. As a result, User A reads incorrect data.

One remedy for the inconsistencies caused by concurrent processing is to prevent
multiple applications from obtaining copies of the same record when the record is about to be
changed. This remedy is called resource locking.

1. Read item 100 (for A).
2. Read item 100 (for B).
3. Set item count to 5 (for A).
4. Write item 100 for A.
5. Set item count to 7 (for B).
6. Write item 100 for B.

1. Read item 100
 (item count is 10).
2. Reduce count of items by 5.
3. Write item 100.

Order of processing at database server

Note: The change and write in steps 3 and 4 are lost.

User A User B

1. Read item 100
 (item count is 10).
2. Reduce count of items by 3.
3. Write item 100.

Figure 9-5

Lost Update Problem

346 Part 4 Multiuser Database Processing

Resource Locking

One way to prevent concurrent processing problems is to disallow sharing by locking data that
are retrieved for update. Figure 9-6 shows the order of processing using a lock command.

Because of the lock, User B�s transaction must wait until User A is finished with the Item 100
data. Using this strategy, User B can read Item 100�s record only after User A has completed
the modification. In this case, the final item count stored in the database is two, as it should be.
(We started with 10, User A took 5, and User B took 3, leaving 2.)

Lock Terminology
Locks can be placed either automatically by the DBMS or by a command issued to the DBMS
from the application program. Locks placed by the DBMS are called implicit locks; those
placed by command are called explicit locks. Today, almost all locking is implicit. The
program declares the behavior it wants, and the DBMS places locks accordingly. You will learn
how to do that later in this chapter.

In the preceding example, the locks were applied to rows of data. Not all locks are applied
at this level, however. Some DBMS products lock groups of rows within a table, some lock
entire tables, and some lock the entire database. The size of a lock is referred to as lock
granularity. Locks with large granularity are easy for the DBMS to administer, but frequently
cause conflicts. Locks with small granularity are difficult to administer (the DBMS has to track
and check many more details), but conflicts are less common.

Locks also vary by type. An exclusive lock locks the item from any other access. No
other transaction can read or change the data. A shared lock locks the item from change but
not from read; that is, other transactions can read the item as long as they do not attempt to
alter it.

Serializable Transactions
When two or more transactions are processed concurrently, the results in the database should
be logically consistent with the results that would have been achieved had the transactions
been processed in an arbitrary, serial fashion. A scheme for processing concurrent transactions
in this way is said to be serializable.

Serializability can be achieved by a number of different means. One way is to process the
transaction using two-phase locking. With this strategy, transactions are allowed to obtain
locks as necessary, but once the first lock is released, no other lock can be obtained. Transactions

 1. Lock item 100 for A.
 2. Read item 100 for A.
 3. Lock item 100 for B; cannot,

so place B in wait state.
 4. Set item count to 5 for A.
 5. Write item 100 for A.
 6. Release A’s lock on item 100.
 7. Place lock on item 100 for B.
 8. Read item 100 for B.
 9. Set item count to 2 for B.
10. Write item 100 for B.
11. Release B’s lock on item 100.

1. Lock item 100.
2. Read item 100.
3. Reduce count by 5.
4. Write item 100.

Order of processing at database server

User A User B

1. Lock item 100.
2. Read item 100.
3. Reduce count by 3.
4. Write item 100.

B’s transaction

A’s transaction

Figure 9-6

Concurrent Processing with
Explicit Locks

Chapter 9 Managing Multiuser Databases 347

1. Lock paper for user A.
2. Lock pencils for user B.
3. Process A’s requests; write paper record.
4. Process B’s requests; write pencil record.
5. Put A in wait state for pencils.
6. Put B in wait state for paper.

1. Lock paper.
2. Take paper.
3. Lock pencils.

Order of processing at database server

** Locked **

User A User B

1. Lock pencils.
2. Take pencils.
3. Lock paper.

Figure 9-7

Deadlock

thus have a growing phase, during which the locks are obtained, and a shrinking phase, during
which the locks are released.

A special case of two-phase locking is used with a number of DBMS products. With it,
locks are obtained throughout the transaction, but no lock is released until the COMMIT or
ROLLBACK command is issued. This strategy is more restrictive than two-phase locking
requires, but it is easier to implement.

Consider an order-entry transaction that processes data in the CUSTOMER, SALESPERSON,
and ORDER tables. To avoid concurrency problems, the order entry transaction issues locks on
CUSTOMER, SALESPERSON, and ORDER, as needed; makes all database changes; and then
releases all locks.

Deadlock
Although locking solves one problem, it introduces another. Consider what can happen when
two users want to order two items from inventory. Suppose that User A wants to order some
paper, and if she can get the paper, she wants to order some pencils. Then suppose that User B
wants to order some pencils, and if he can get the pencils, he wants to order some paper. The
order of processing is shown in Figure 9-7.

In this figure, Users A and B are locked in a condition known as deadlock, or sometimes
as the deadly embrace. Each user is waiting for a resource that the other has locked. This
problem can be solved either by preventing the deadlock from occurring or by allowing the
deadlock to occur and then breaking it.

Deadlock can be prevented in several ways. One way is to require users to issue all lock
requests at one time. In Figure 9-7, if User A had locked both the paper and the pencil records
at the beginning, deadlock would not occur. A second way to prevent deadlock is to require all
application programs to lock resources in the same order.

Even if all the applications do not lock resources in the same order, deadlock
will be prevented for those that do. Sometimes this policy is implemented

with an organizational programming standard such as �Whenever processing rows
from tables in a parent�child relationship, lock the parent row before the child rows.� This
policy will at least reduce the likelihood of deadlock and thus save the DBMS from having
to recover from some deadlocked transactions.

Almost every DBMS has algorithms for breaking deadlock, when it does occur. First,
the DBMS must detect that it has occurred. Then, the typical solution is to cancel one of the
transactions and remove its changes from the database. You will see variants of this with SQL
Server, Oracle Database, and MySQL in the next three chapters.

348 Part 4 Multiuser Database Processing

Set NewQuantity = PRODUCT.Quantity – 5;

{process transaction – take exception action if NewQuantity < 0, etc.

Assuming all is OK: }

LOCK PRODUCT;

SELECT
FROM
WHERE

/* *** EXAMPLE CODE - DO NOT RUN *** */

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = Pencil ;

UPDATE
SET
WHERE
 AND

UNLOCK PRODUCT;

{check to see if update was successful;
if not, repeat transaction}

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = Pencil
PRODUCT.Quantity = OldQuantity;

Figure 9-8

Optimistic Locking

Optimistic Versus Pessimistic Locking

Locks can be invoked in two basic styles. With optimistic locking, the assumption is made
that no conflict will occur. Data are read, the transaction is processed, updates are issued, and
then a check is made to see if conflict occurred. If not, the transaction is finished. If conflict
did occur, the transaction is repeated until it processes with no conflict. With pessimistic
locking, the assumption is made that conflict will occur. Locks are issued, the transaction is
processed, and then the locks are freed.

Figures 9-8 and 9-9 show examples of each style for a transaction that is reducing the
quantity of the pencil row in PRODUCT by five. Figure 9-8 shows optimistic locking. First, the
data are read and the current value of Quantity of pencils is saved in the variable OldQuantity.
The transaction is then processed, and assuming that all is OK, a lock is obtained on
PRODUCT. (In fact, the lock might be only for the pencil row or it might be at a larger level of
granularity, but the principle is the same.) After obtaining the lock, an SQL statement is issued
to update the pencil row with a WHERE condition that the current value of Quantity equals
OldQuantity. If no other transaction has changed the Quantity of the pencil row, then this

LOCK

SELECT
FROM
WHERE

Set NewQuantity = PRODUCT.Quantity – 5;

{process transaction – take exception action if NewQuantity < 0, etc.

Assuming all is OK: }

UPDATE
SET
WHERE

UNLOCK

{no need to check if update was successful}

/* *** EXAMPLE CODE - DO NOT RUN *** */
PRODUCT;

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = Pencil ;

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = Pencil ;

PRODUCT;

Figure 9-9

Pessimistic Locking

Chapter 9 Managing Multiuser Databases 349

UPDATE will be successful. If another transaction has changed the Quantity of the pencil row,
the UPDATE will fail. In either case, the lock is released. If the transaction failed, the process is
repeated until the transaction finishes with no conflict.

Figure 9-9 shows the logic for the same transaction using pessimistic locking. Here, a lock
is obtained on PRODUCT before any work is begun. Then, values are read, the transaction is
processed, the UPDATE occurs, and PRODUCT is unlocked.

The advantage of optimistic locking is that locks are held for much less time than with
pessimistic locking, because locks are obtained only after the transaction has finished. If the
transaction is complicated or if the client is slow (due to transmission delays, the client doing
other work, or the user getting a cup of coffee or shutting down without exiting the browser),
optimistic locking can dramatically improve throughput. This advantage will be especially true
if the lock granularity is large�say, the entire PRODUCT table.

The disadvantage of optimistic locking is that if there is a lot of activity on the pencil row, the
transaction may have to be repeated many times. Thus, transactions that involve a lot of activity
on a given row (purchasing a popular stock, for example) are poorly suited for optimistic locking.

In general, the Internet is a wild and woolly place, and users are likely to take unexpected
actions, such as abandoning transactions in the middle. So, unless Internet users have been
prequalified (by enrolling in an online brokerage stock purchase plan, for example), optimistic
locking is the better choice in that environment. On intranets, however, the decision is more
difficult. Optimistic locking is probably still preferred unless some characteristic of the
application causes substantial activity on particular rows or if application requirements make
reprocessing transactions particularly undesirable.

Declaring Lock Characteristics

As you can see, concurrency control is a complicated subject; determining the level, type, and
placement of the lock is difficult. Sometimes, too, the optimum locking strategy depends on
which transactions are active and what they are doing. For these and other reasons, database
application programs do not generally explicitly issue locks as shown in Figures 9-8 and 9-9.
Instead, they mark transaction boundaries and then declare the type of locking behavior they
want the DBMS to use. In this way, the DBMS can place and remove locks and even change the
level and type of locks dynamically.

Figure 9-10 shows the pencil transaction with transaction boundaries marked with SQL
BEGIN TRANSACTION statement, SQL COMMIT TRANSACTION statement, and SQL
ROLLBACK TRANSACTION statement. These are the SQL standard commands for controlling
transactions. The SQL BEGIN TRANSACTION statement explicitly marks the start of a new
transaction, while the SQL COMMIT TRANSACTION statement makes any database changes
made by the transaction permanent and marks the end of the transaction. If there is a need to
undo the changes made during the transaction due to an error in the process, the SQL ROLLBACK
TRANSACTION statement is used to undo all transaction changes, and return the database to the
state it was in before the transaction was attempted. Thus, the SQL ROLLBACK TRANSACTION
statement also marks the end of the transaction, but with a very differenct outcome.

As usual, each DBMS product implements these SQL statements in a slightly
different way. SQL Server does not require the SQL keyword TRANSACTION,

allows the abbreviation TRANS, and also allows the use of the SQL WORK keyword with
COMMIT and ROLLBACK. Oracle Database uses SET TRANSACTION with COMMIT and
ROLLBACK. MySQL does not use the SQL keyword TRANSACTION, while it allows (but
does not require) use of the SQL WORK keyword in its place.

Also note that the SQL BEGIN TRANSACTION statement is not the same as the as the
SQL BEGIN statement used in SQL/PSM control-of-flow statements (as discussed in
Chapters 7, 10, 10A, and 10B. Thus, you may have to use a different syntax for marking
transactions within a trigger or stored procedure. For example, MySQL marks the beginning
of transactions in a BEGIN . . . END block with the SQL START TRANSACTION statement.
As usual, be sure to consult the documentation for the DBMS product you are using.

350 Part 4 Multiuser Database Processing

BEGIN TRANSACTION;

SELECT
FROM
WHERE

Set NewQuantity = PRODUCT.Quantity – 5;

{process transaction – take exception action if NewQuantity < 0, etc.}

UPDATE
SET
WHERE

{continue processing transaction} . . .

IF {transaction has completed normally} THEN

 COMMIT TRANSACTION;

ELSE

 ROLLBACK TRANSACTION;

END IF;

Continue processing other actions not part of this transaction . . .

/* *** EXAMPLE CODE - DO NOT RUN *** */

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = Pencil ;

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = Pencil ;

Figure 9-10

Marking Transaction
Boundaries

These boundaries are the essential information that the DBMS needs to enforce
the different locking strategies. If the developer now declares via a system parameter that
he or she wants optimistic locking, the DBMS will implicitly set locks for that locking style.
If, however, the developer declares pessimistic locking, the DBMS will set the locks
differently.

Implicit and Explicit Commit Transaction

Some DBMS products allow and implement an implicit COMMIT TRANSACTION whenever a
SQL DML statement is run. For example, suppose we run a transaction using the SQL
UPDATE command:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH09-01 *** */

UPDATE CUSTOMER

SET AreaCode = ’425’

WHERE ZipCode = ’98050’;

SQL Server 2008 R2 and MySQL 5.5 will, by default, automatically commit the changes to
the database after the transaction is complete. You do not have to use a COMMIT statement
to make the database changes permanent. This is an implicit COMMIT setting.

On the other hand, Oracle Database 11g does not provide a mechanism for implicit
COMMITs, and an explicit COMMIT statement must be run to make the changes to the

Chapter 9 Managing Multiuser Databases 351

database permanent (Oracle Database uses COMMIT instead of COMMIT TRANSACTION).
Thus, we would have to run the SQL UPDATE as:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH09-02 *** */

UPDATE CUSTOMER

SET AreaCode = ’425’

WHERE ZipCode = ’98050’;

COMMIT;

Note that this statement applies only to the Oracle Database DBMS itself. Some Oracle
Database utilities do implement the ability to automatically issue COMMIT statements, and
thus it can appear to the user that there is an implicit COMMIT. We will discuss this in detail
when we work with Oracle Database 11g in Chapter 10A.

Consistent Transactions

Sometimes, you will see the acronym ACID applied to transactions. An ACID transaction is
one that is atomic, consistent, isolated, and durable. Atomic and durable are easy to define.
As you just learned, an atomic transaction is one in which either all of the database actions
occur or none of them do. A durable transaction is one in which all committed changes are
permanent. Once a durable change is committed, the DBMS takes responsibility for ensuring
that the change will survive system failures.

The terms consistent and isolated are not as definitive as the terms atomic and durable.
Consider a transaction with just one SQL UPDATE statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-UPDATE-CH09-03 *** */

BEGIN TRANSACTION;

UPDATE CUSTOMER

SET AreaCode = ’425’

WHERE ZipCode = ’98050’;

COMMIT TRANSACTION;

Suppose that there are 500,000 rows in the CUSTOMER table, and that 500 of them have
ZipCode equal to �98050�. It will take some time for the DBMS to find those 500 rows. During
that time, other transactions may attempt to update the AreaCode or ZipCode fields of
CUSTOMER. If the SQL statement is consistent, such update requests will be disallowed.
Hence, the update will apply to the set of rows as they existed at the time the SQL statement
started. Such consistency is called statement-level consistency.

Now, consider a transaction (SQL-Code-Example-Ch09-01) that contains two SQL
UPDATE statements:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-04 *** */

BEGIN TRANSACTION;

/* *** SQL-UPDATE-CH09-03 *** */

UPDATE CUSTOMER

SET AreaCode = ’425’

WHERE ZipCode = ’98050’;

� Other transaction work
(continued)

352 Part 4 Multiuser Database Processing

/* *** SQL-UPDATE-CH09-04 *** */

UPDATE CUSTOMER

SET Discount = 0.05

WHERE AreaCode = ’425’;

� Other transaction work

COMMIT TRANSACTION;

In this context, what does consistent mean? Statement-level consistency means that each
statement independently processes rows consistently, but that changes from other users to
these rows might be allowed during the interval between the two SQL statements.
Transaction-level consistency means that all rows impacted by either of the SQL statements
are protected from changes during the entire transaction.

Observe that transaction-level consistency is so strong that, for some implementations of
it, a transaction will not see its own changes. In this example, the SQL statement SQL-Update-
Ch09-04 may not see rows changed by the SQL statement SQL-Update-Ch09-03.

Thus, when you hear the term consistent, look further to determine which type of
consistency is meant. Be aware as well of the potential trap of transaction-level
consistency.

Transaction Isolation Level

The term isolated has several different meanings. To understand those meanings, we need first
to define several new terms.

A dirty read occurs when a transaction reads a row that has been changed but for which
the change has not yet been committed to the database. The danger of a dirty read is that the
uncommitted change can be rolled back. If so, the transaction that made the dirty read will be
processing incorrect data.

Nonrepeatable reads occur when a transaction rereads data it has previously read and
finds modifications or deletions caused by a committed transaction. Finally, phantom reads
occur when a transaction rereads data and finds new rows that were inserted by a committed
transaction since the prior read.

The 1992 SQL standard defines four isolation levels that specify which of these problems
are allowed to occur. Using these levels, the application programmer can declare the type of
isolation level he or she wants, and the DBMS will create and manage locks to achieve that
level of isolation.

As shown in Figure 9-11, the read-uncommitted isolation level allows dirty reads,
nonrepeatable reads, and phantom reads to occur. With read-committed isolation, dirty
reads are disallowed. The repeatable-read isolation level disallows both dirty reads and
nonrepeatable reads. The serializable isolation level will not allow any of these three
problems to occur.

Generally, the more restrictive the level, the less the throughput, though much depends on
the workload and how the application programs are written. Moreover, not all DBMS products
support all of these levels. You will learn how SQL Server, Oracle Database, and MySQL support
isolation levels in the next three chapters.

Dirty Read
Nonrepeatable
Read
Phantom Read

Problem
Type

Possible
Possible

Possible

Isolation Level

Read
Uncommitted

Not Possible
Possible

Possible

Read
Committed

Not Possible
Not Possible

Possible

Repeatable
Read

Not Possible
Not Possible

Not Possible

Serializable

Figure 9-11

Summary of Transaction
Isolation Levels

Chapter 9 Managing Multiuser Databases 353

Cursor Type

A cursor is a pointer into a set of rows. Cursors are usually defined using SQL SELECT
statements. For example, the following statement defines a cursor named TransCursor that
operates over the set of rows indicated by the following SELECT statement:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-02 *** */

DECLARE CURSOR TransCursor AS

SELECT *

FROM TRANS

WHERE PurchasePrice > ’10000’;

As was explained in Chapter 7, after an application program opens a cursor, it can place
the cursor somewhere in the result set. Most commonly, the cursor is placed on the first or last
row, but other possibilities exist.

A transaction can open several cursors�either sequentially or simultaneously. Additionally,
two or more cursors may be open on the same table; either directly on the table or through an
SQL view on that table. Because cursors require considerable memory, having many cursors open
at the same time for, say, a thousand concurrent transactions, will consume considerable
memory. One way to reduce cursor burden is to define reduced-capability cursors and use them
when a full-capability cursor is not needed.

Figure 9-12 lists four cursor types used in the Windows environment (cursor types for
other systems are similar). The simplest cursor is forward only. With it, the application can
only move forward through the records. Changes made by other cursors in this transaction
and by other transactions will be visible only if they occur to rows ahead of the cursor.

The next three types of cursors are called scrollable cursors, because the application can
scroll forward and backward through the records. A static cursor takes a snapshot of a
relation and processes that snapshot. Changes made using this cursor are visible; changes from
other sources are not visible.

A keyset cursor combines some of the features of static cursors with some of the features
of dynamic cursors. When the cursor is opened, a primary key value is saved for each row.
When the application positions the cursor on a row, the DBMS uses the key value to read the
current value of the row. Inserts of new rows by other cursors (in this transaction or in other
transactions) are not visible. If the application issues an update on a row that has been deleted
by a different cursor, the DBMS creates a new row with the old key value and places the
updated values in the new row (assuming that all required fields are present). Unless the
isolation level of the transaction is a dirty read, only committed updates and deletions are
visible to the cursor.

A dynamic cursor is a fully featured cursor. All inserts, updates, deletions, and changes in
row order are visible to a dynamic cursor. As with keyset cursors, unless the isolation level of
the transaction is a dirty read, only committed changes are visible.

The amount of overhead and processing required to support a cursor is different for each type
of cursor. In general, the cost goes up as we move down the cursor types shown in Figure 9-12.
To improve DBMS performance, the application developer should create cursors that are just
powerful enough to do the job. It is also very important to understand how a particular DBMS
implements cursors and whether cursors are located on the server or on the client. In some cases,
it might be better to place a dynamic cursor on the client than to have a static cursor on the server.
No general rule can be stated because performance depends on the implementation used by the
DBMS product and the application requirements.

A word of caution: If you do not specify the isolation level of a transaction or do not
specify the type of cursors you open, the DBMS will use a default level and default types. These
defaults may be perfect for your application, but they also may be terrible. Thus, even though
these issues can be ignored, their consequences cannot be avoided. You must learn the
capabilities of your DBMS product.

354 Part 4 Multiuser Database Processing

Database Security

The goal of database security is to ensure that only authorized users can perform authorized
activities at authorized times. This goal is difficult to achieve, and to make any progress at all
the database development team must determine the processing rights and responsibilities of
all users during the project�s requirements specification phase. These security requirements
can then be enforced using the security features of the DBMS and additions to those features
written into the application programs.

Processing Rights and Responsibilities

Consider, for example, the needs of View Ridge Gallery. The View Ridge database has three
types of users: sales personnel, management personnel, and system administrators. View
Ridge designed processing rights for each as follows: Sales personnel are allowed to enter
new customer and transaction data, to change customer data, and to query any of the
data. They are not allowed to enter new artist or work data. They are never allowed to
delete data.

Management personnel are allowed all of the permissions of sales personnel, plus they are
allowed to enter new artist and work data and to modify transaction data. Even though
management personnel have the authority to delete data, they are not given that permission in
this application. This restriction is made to prevent the possibility of accidental data loss.

CursorType

Forward only

Description Comments

Static

Keyset

Dynamic Changes of any type and from
any source are visible.

Application can only move
forward through the recordset.

Application sees the data as
they were at the time the
cursor was opened.

When the cursor is opened, a
primary key value is saved
for each row in the recordset.
When the application
accesses a row, the key is
used to fetch the current
values for the row.

Changes made by other cursors
in this transaction or in other
transactions will be visible only
if they occur on rows ahead of
the cursor.

Changes made by this cursor
are visible. Changes from
other sources are not visible.
Backward and forward
scrolling allowed.

All inserts, updates, deletions,
and changes in recordset order
are visible. If the isolation level
is dirty read, then uncommitted
changes are visible. Otherwise,
only committed changes are
visible.

Updates from any source are
visible. Inserts from sources
outside this cursor are not visible
(there is no key for them in the
keyset). Inserts from this cursor
appear at the bottom of the
recordset. Deletions from any
source are visible. Changes in
row order are not visible. If the
isolation level is dirty read, then
committed updates and deletions
are visible; otherwise only
committed updates and deletions
are visible.

Figure 9-12

Summary of Cursor Types

Chapter 9 Managing Multiuser Databases 355

The system administrator can grant processing rights to other users; and he or she can
change the structure of the database elements such as tables, indexes, stored procedures, and the
like. The system administrator is not given rights to process the data. Figure 9-13 summarizes
these processing rights.

You may be wondering what good it does to say that the system adminis-
trator cannot process the data when that person has the ability to grant

processing rights. He or she can just grant the right to change data to him- or herself.
Although this is true, the granting of those rights will leave an audit trail in the database
log. Clearly, this limitation is not foolproof, but it is better than just allowing the system
administrator (or DBA) full access to all rights in the database.

The permissions in this table are not given to particular people, but rather are given to
groups of people. Sometimes these groups are termed roles, because they describe people
acting in a particular capacity. The term user groups is also used. Assigning permission to
roles (or user groups) is typical, but not required. It would be possible to say, for example, that
the user identified as �Benjamin Franklin� has certain processing rights. Note, too, that when
roles are used, it is necessary to have a way to allocate users to roles. When �Mary Smith� signs
on to the computer, there must be some way to determine which role or roles she has. We will
discuss this further in the next section.

In this discussion, we have used the phrase processing rights and responsibilities.
As this phrase implies, responsibilities go with processing rights. If, for example, the manager
modifies transaction data, the manager has the responsibility to ensure that these modifica-
tions do not adversely impact the gallery�s operation, accounting, and so forth.

Processing responsibilities cannot be enforced by the DBMS or by the database applica-
tions. Instead, they are encoded in manual procedures and explained to users during systems
training. These are topics for a systems development text, and we will not consider them further
here�except to reiterate that responsibilities go with rights. Such responsibilities must be
documented and enforced.

According to Figure 9-1, the DBA has the task of managing processing rights and
responsibilities. As this implies, these rights and responsibilities will change over time. As the
database is used and as changes are made to the applications and to the structure of the
DBMS, the need for new or different rights and responsibilities will arise. The DBA is a focal
point for the discussion of such changes and for their implementation.

Once processing rights have been defined, they can be implemented at many levels: operating
system, network, Web server, DBMS, and application. In the next two sections, we will consider
DBMS and application implementation. The other levels are beyond the scope of this text.

DBMS Security

The terminology, features, and functions of DBMS security depend on the DBMS product in
use. Basically, all such products provide facilities that limit certain actions on certain objects
to certain users. A general model of DBMS security is shown in Figure 9-14.

Sales
personnel

Management
personnel

System
administrator

Insert, change,
query

Insert, change,
query

Grant rights,
modify structure

Insert, query

Insert, change,
query

Grant rights,
modify structure

Query

Insert, change,
query

Grant rights,
modify structure

Query

Insert, change,
query

Grant rights,
modify structure

CUSTOMER TRANSACTION WORK ARTIST

Figure 9-13

Processing Rights at View
Ridge Gallery

356 Part 4 Multiuser Database Processing

USER

OBJECT

ROLE

Accounting
Tellers
Shop Managers
Unknown Public

Eleanore Wu
James Johnson
Richard Ent

Eleanore Wu can execute MonthEnd Stored Procedure.
James Johnson can alter all tables.

Accounting can update CUSTOMER table.

PERMISSION

Figure 9-14

A Model of DBMS Security

A USER can be assigned to one or more ROLEs (or USER GROUPs), and a ROLE can have
one or more USERs. An OBJECT is an element of a database, such as a table, view, or stored
procedure. PERMISSION is an association entity among USER, ROLE, and OBJECT. Hence, the
relationships from USER to PERMISSION, ROLE to PERMISSION, and OBJECT to PERMISSION
are all 1:N, M-O. Permissions can be managed using SQL data control language (DCL)
statements. The SQL GRANT statement is used to assign permissions to users and groups, so
that the users or groups can perform various operations on the data in the database. Similarly,
the SQL REVOKE statement is used to take existing permissions away from users and groups.
While these statements can be used in SQL scripts and with SQL command line utilities, we will
find it much easier to use the GUI DBMS administration utilities provided for use with each of
the major DBMS products, and will illustrate how to use these utilities for SQL Server 2008 R2 in
Chapter 10, Oracle Database 11g in Chapter 10A, and for MySQL 5.5 in Chapter 10B.

When a user signs on to the database, the DBMS limits the user�s actions to the permissions
defined for that user and to the permissions for roles to which that user has been assigned.
Determining whether someone actually is who they claim to be is a difficult task, in general. All
commercial DBMS products use some version of user name and password verification, even
though such security is readily circumvented if users are careless with their identities.

Users can enter their name and password, or, in some applications, the name and
password is entered on the user�s behalf. For example, the Windows user name and password
can be passed directly to the DBMS. In other cases, an application program provides the name
and password. Internet applications usually define a group such as �Unknown Public� and
assign anonymous users to that group when they sign on. In this way, companies, such as Dell,
need not enter every potential customer into their security system by name and password.

SQL Server 2008 R2, Oracle Database 11g, and MySQL 5.5 security systems are variations of
the model in Figure 9-14. You will learn about them in Chapters 10, 10A, and 10B, respectively.

DBMS Security Guidelines

Guidelines for improving security in database systems are listed in Figure 9-15. First, the
DBMS must always be run behind a firewall. However, the DBA should plan security with the
assumption that the firewall has been breached. The DBMS, the database, and all applications
should be secure even if the firewall fails.

DBMS vendors, including IBM, Oracle, and Microsoft, are constantly adding product
features to improve security and reduce vulnerability. Consequently, organizations using
DBMS products should continually check the vendors� Web sites for service packs and fixes;
any service packs or fixes that involve security features, functions, and processing should be
installed as soon as possible.

The installation of new service packs and fixes is not quite as simple as described here. The
installation of a service pack or fix can break some applications, particularly some licensed
software that requires specific service packs and fixes to be installed (or not installed). It may be
necessary to delay installation of DBMS service packs until vendors of licensed software have

Chapter 9 Managing Multiuser Databases 357

� Run DBMS behind a firewall, but plan as though the firewall has been breached

� Apply the latest operating system and DBMS service packs and fixes

� Use the least functionality possible
 � Support the fewest network protocols possible
 � Delete unnecessary or unused system stored procedures
 � Disable default logins and guest users, if possible
 � Unless required, never allow users to log on to the DBMS interactively

� Protect the computer that runs the DBMS
 � No user allowed to work at the computer that runs the DBMS
 � DBMS computer physically secured behind locked doors
 � Visits to the room containing the DBMS computer should be
 recorded in a log

� Manage accounts and passwords
 � Use a low privilege user account for the DBMS service
 � Protect database accounts with strong passwords
 � Monitor failed login attempts
 � Frequently check group and role memberships
 � Audit accounts with null passwords
 � Assign accounts the lowest privileges possible
 � Limit DBA account privileges

� Planning
 � Develop a security plan for preventing and detecting security problems
 � Create procedures for security emergencies and practice them

Figure 9-15

Summary of DBMS Security
Guidelines

upgraded their products to work with the new versions. Sometimes just the possibility that a
licensed application might fail after a DBMS service pack or fix is applied is sufficient reason to
delay the fix. But, the DBMS is still vulnerable during this period. Pick your regret!

Additionally, database features and functions that are not required by the applications
should be removed or disabled from the DBMS. For example, if TCP/IP is used to connect to
the DBMS, other communications protocols should be removed. This action reduces the
pathways by which unauthorized activity can reach the DBMS. Further, all DBMS products are
installed with system-stored procedures that provide services such as starting a command file,
modifying the system registry, initiating e-mail, and the like. Any of these stored procedures
that are not needed should be removed. If all users are known to the DBMS, default logins and
guest user accounts should be removed as well. Finally, unless otherwise required, users should
never be allowed to log on to the DBMS in interactive mode. They should always access the
database via an application.

In addition, the computer(s) that runs the DBMS must be protected. No one other than
authorized DBA personnel should be allowed to work at the keyboard of the computer that
runs the DBMS. The computer running the DBMS should be physically secured behind locked
doors, and access to the facility housing the computer should be controlled. Visits to the
DBMS computer room should be recorded in a log.

Accounts and passwords should be assigned carefully and continually managed. The
DBMS itself should run on an account that has the lowest possible operating system privileges.
In that way, if an intruder were to gain control of the DBMS, the intruder would have limited
authority on that local computer or network. Additionally, all accounts within the DBMS
should be protected by strong passwords. Such passwords have at least 15 characters and
contain upper- and lowercase letters; numbers; special characters, such as +, @, #, ***; and
unprintable key combinations (certain Alt + key combinations).

The DBA should frequently check the accounts that have been assigned to groups and
roles to ensure that all accounts and roles are known, authorized, and have the correct permis-
sions. Further, the DBA should audit accounts with null passwords. The users of such accounts
should be required to protect those accounts with strong passwords. Also, as a general rule,
accounts should be granted the lowest privileges possible.

358 Part 4 Multiuser Database Processing

As stated, the privileges for the DBA should normally not include the right to process the
users� data. If the DBA grants him- or herself that privilege, the unauthorized grant operation
will be visible in the database log.

In the spring of 2003, the Slammer worm invaded thousands of sites running SQL Server.
Microsoft had previously released a patch to SQL Server that prevented this attack. Sites that
had installed the patch had no problems. The moral: Install security patches to your DBMS as
promptly as possible. Create a procedure for regularly checking for such patches.

Finally, the DBA should participate in security planning. Procedures both for preventing
and detecting security problems should be developed. Furthermore, procedures should be
developed for actions to be taken in case of a security breach. Such procedures should be
practiced. The importance of security in information systems has increased dramatically in
recent years. DBA personnel should regularly search for security information on the Web
in general and at the DBMS vendor�s Web site.

Application Security

Although DBMS products such as Oracle Database, SQL Server, and MySQL do provide
substantial database security capabilities, those capabilities are generic. If the application requires
specific security measures, such as �No user can view a row of a table or of a join of a table that has
an employee name other than his or her own,� the DBMS facilities will not be adequate. In these
cases, the security system must be augmented by features in database applications.

For example, as you will learn in Chapter 11, application security in Internet applications
is often provided on the Web server. Executing application security on this server means that
sensitive security data need not be transmitted over the network.

To understand this better, suppose that an application is written so that when users click
a particular button on a browser page, the following query is sent to the Web server and then
to the DBMS:

/* *** EXAMPLE CODE � DO NOT RUN *** */
/* *** SQL-Code-Example-CH09-03 *** */
SELECT *
FROM EMPLOYEE;

This statement will, of course, return all EMPLOYEE rows. If the application security
policy only permits employees to access their own data, then a Web server could add the
following WHERE clause to this query:

/* *** EXAMPLE CODE � DO NOT RUN *** */
/* *** SQL-Code-Example-CH09-04 *** */
SELECT *
FROM EMPLOYEE
WHERE EMPLOYEE.Name = ’<% = SESSION(("EmployeeName)")%>’;

An expression like this one will cause the Web server to fill the employee�s name into the
WHERE clause. For a user signed in under the name �Benjamin Franklin�, the statement that
results from this expression is:

/* *** EXAMPLE CODE � DO NOT RUN *** */
/* *** SQL-Code-Example-CH09-05 *** */
SELECT *
FROM EMPLOYEE
WHERE EMPLOYEE.Name = ’Benjamin Franklin’;

Because the name is inserted by a program on the Web server, the browser user does not know
that it is occurring, and cannot interfere with it even if he or she did.

Such security processing can be done as shown here on a Web server, but it also can be
done within the application programs themselves or written as stored procedures or triggers
to be executed by the DBMS at the appropriate times.

Chapter 9 Managing Multiuser Databases 359

This idea can be extended by storing additional data in a security database that is accessed
by the Web server or by stored procedures and triggers. That security database could contain,
for example, the identities of users paired with additional values of WHERE clauses. For
example, suppose that the users in the personnel department can access more than just their
own data. The predicates for appropriate WHERE clauses could be stored in the security data-
base, read by the application program, and appended to SQL SELECT statements as necessary.

Many other possibilities exist for extending DBMS security with application processing. In
general, however, you should use the DBMS security features first. Only if they are inadequate for
the requirements should you add to them with application code. The closer the security enforce-
ment is to the data, the less chance there is for infiltration. Also, using the DBMS security features
is faster, cheaper, and probably results in higher-quality results than developing your own.

The SQL Injection Attack

Whenever data from the user are used to modify an SQL statement, an SQL injection attack
is possible. For example, in the prior section, if the value of EmployeeName used in the
SELECT statement is not obtained via a secure means, such as from the operating system
rather from a Web form, there is the chance that the user can inject SQL into the statement.

For example, suppose that users are asked to enter their names into a Web form textbox.
Suppose that a user enters the value �Benjamin Franklin� OR TRUE for his or her name. The SQL
statement generated by the application will then be the following:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-06 *** */

SELECT *

FROM EMPLOYEE

WHERE EMPLOYEE.Name = ’Benjamin Franklin’ OR TRUE;

Of course, the value TRUE is true for every row, so every row of the EMPLOYEE table will be
returned! Thus, any time user input is used to modify an SQL statement, that input must be
carefully edited to ensure that only valid input has been received and that no additional SQL
syntax has been entered.

Despite being a well known hacker attack, the SQL injection attack can still be very
effective if not defended against. On March 29th, 2011, the Lizamoon attack struck and
affected over 1.5 million URLs (for more information see www.itproportal.com/2011/04/04/
lizamoon-attack-less-victims-than-feared/)!

Database Backup and Recovery

Computer systems fail. Hardware breaks. Programs have bugs. Human procedures contain
errors, and people make mistakes. All of these failures can and do occur in database applica-
tions. Because a database is shared by many people and because it often is a key element of an
organization�s operations, it is important to recover it as soon as possible.

Several problems must be addressed. First, from a business standpoint, business functions
must continue. During the failure, customer orders, financial transactions, and packing
lists must be completed somehow, even manually. Later, when the database application is
operational again, the data from those activities must be entered into the database. Second,
computer operations personnel must restore the system to a usable state as quickly as possible
and as close as possible to what it was when the system crashed. Third, users must know what
to do when the system becomes available again. Some work may need to be reentered, and
users must know how far back they need to go.

When failures occur, it is impossible simply to fix the problem and resume processing. Even
if no data are lost during a failure (which assumes that all types of memory are nonvolatile�an
unrealistic assumption), the timing and scheduling of computer processing are too complex to
be accurately re-created. Enormous amounts of overhead data and processing would be
required for the operating system to be able to restart processing precisely where it was
interrupted. It is simply not possible to roll back the clock and put all of the electrons in the

360 Part 4 Multiuser Database Processing

same configuration they were in at the time of the failure. Two other approaches are possible:
recovery via reprocessing and recovery via rollback/rollforward.

Recovery via Reprocessing

Because processing cannot be resumed at a precise point, the next best alternative is to go
back to a known point and reprocess the workload from there. The simplest form of this type
of recovery is to periodically make a copy of the database (called a database save) and to keep
a record of all transactions that have been processed since the save. Then, when there is a
failure, the operations staff can restore the database from the save and then reprocess all the
transactions. Unfortunately, this simple strategy is normally not feasible. First, reprocessing
transactions takes the same amount of time as processing them in the first place did. If the
computer is heavily scheduled, the system may never catch up.

Second, when transactions are processed concurrently, events are asynchronous. Slight
variations in human activity, such as a user reading an e-mail before responding to an applica-
tion prompt, can change the order of the execution of concurrent transactions. Therefore,
whereas Customer A got the last seat on a flight during the original processing, Customer B
may get the last seat during reprocessing. For these reasons, reprocessing is normally not a
viable form of recovery from failure in concurrent processing systems.

Recovery via Rollback/Rollforward

A second approach is to periodically make a copy of the database (the database save) and to
keep a log of the changes made by transactions against the database since the save. Then,
when there is a failure, one of two methods can be used. Using the first method, called
rollforward, the database is restored using the saved data, and all valid transactions since the
save are reapplied. (We are not reprocessing the transactions because the application
programs are not involved in the rollforward. Instead, the processed changes, as recorded in
the log, are reapplied.)

The second method is rollback. With this method, we undo changes made by erroneous
or partially processed transactions by undoing the changes they have made in the database.
Then, the valid transactions that were in process at the time of the failure are restarted.

Both of these methods require that a log of the transaction results be kept. This log
contains records of the data changes in chronological order. Transactions must be written to
the log before they are applied to the database. That way, if the system crashes between the
time a transaction is logged and the time it is applied, at worst there is a record of an unapplied
transaction. If, however, the transactions were to be applied before they were logged, it would
be possible (as well as undesirable) to change the database but have no record of the change.
If this happened, an unwary user might reenter an already completed transaction. In the event
of a failure, the log is used both to undo and to redo transactions, as shown in Figure 9-16.

To undo a transaction, the log must contain a copy of every database record (or page)
before it was changed. Such records are called before images. A transaction is undone by
applying before images of all of its changes to the database.

To redo a transaction, the log must contain a copy of every database record (or page) after
it was changed. These records are called after images. A transaction is redone by applying
after images of all of its changes to the database. Possible data items in a transaction log are
shown in Figure 9-17.

In this example log, each transaction has a unique name for identification purposes.
Furthermore, all of the images for a given transaction are linked together with pointers. One
pointer points to the previous change made by this transaction (the reverse pointer), and the
other points to the next change made by this transaction (the forward pointer). A zero in
the pointer field means that this is the end of the list. The DBMS recovery subsystem uses
these pointers to locate all of the records for a particular transaction. Figure 9-17 shows an
example of the linking of log records.

Other data items in the log are the time of the action; the type of operation (START marks
the beginning of a transaction and COMMIT terminates a transaction, releasing all locks that
were in place); the object acted on, such as record type and identifier; and, finally, the before
images and the after images.

Chapter 9 Managing Multiuser Databases 361

Database
with Changes

Before Images

Database
Without Changes

Undo

(a) Rollback

Database
Without Changes
(Save)

After Images

Database
with Changes

Redo

(b) Rollforward

Figure 9-16

Undo and Redo Transactions

Given a log with before images and after images, the undo and redo actions are straight-
forward. To undo the transaction in Figure 9-18, the recovery processor simply replaces each
changed record with its before image.

When all of the before images have been restored, the transaction is undone. To redo a
transaction, the recovery processor starts with the version of the database at the time the
transaction started and applies all of the after images. As stated, this action assumes that an
earlier version of the database is available from a database save.

Tr
an

sa
ct

io
n

ID

R
ev

er
se

 P
oi

nt
er

Ty
pe

 o
f O

pe
ra

tio
n

O
bj

ec
t

B
ef

or
e

Im
ag

e

OT1
OT1
OT2
OT1
OT1
CT1
OT1
OT2
CT1
CT1

0
1
0
2
4
0
5
3
6
9

2
4
8
5
7
9
0
0

10
0

11:42
11:43
11:46
11:47
11:47
11:48
11:49
11:50
11:51
11:51

START
MODIFY
START
MODIFY
INSERT
START
COMMIT
COMMIT
MODIFY
COMMIT

CUST 100

SP AA
ORDER 11

SP BB

(old value)

(old value)

(old value)

(new value)

(new value)
(value)

(new value)

1
2
3
4
5
6
7
8
9

10

R
el

at
iv

e
R

ec
or

d
N

um
be

r

Ti
m

e

Fo
rw

ar
d

P
oi

nt
er

A
ft

er
 Im

ag
e

Figure 9-17

Example Transaction Log

362 Part 4 Multiuser Database Processing

(a) Processing with Problem

Before images of
CUSTOMER and
SALESPERSON
records

Database with
ORDER
transaction
removed

Database with
new CUSTOMER,
SALESPERSON,
and ORDER
records

(b) Recovery Processing

Accept order data from browser.
Read CUSTOMER and SALESPERSON records.
Change CUSTOMER and SALESPERSON records.
Rewrite CUSTOMER record.
Rewrite SALESPERSON record.
Insert new ORDER record.

****CRASH****

(Log records written here)

Recovery Processor
(Applies before images of
CUSTOMER and SALESPERSON
and removes new ORDER record)

Figure 9-18

Recovery Example

Restoring a database to its most recent save and reapplying all transactions may require
considerable processing. To reduce the delay, DBMS products sometimes use checkpoints.
A checkpoint is a point of synchronization between the database and the transaction log.
To perform a checkpoint, the DBMS refuses new requests, finishes processing outstanding
requests, and writes its buffers to disk. The DBMS then waits until the operating system
notifies it that all outstanding write requests to the database and to the log have been success-
fully completed. At this point, the log and the database are synchronized. A checkpoint record
is then written to the log. Later, the database can be recovered from the checkpoint and only
after images for transactions that started after the checkpoint need be applied.

Checkpoints are inexpensive operations, and it is feasible to take three or four (or more)
per hour. In this way, no more than 15 or 20 minutes of processing need to be recovered. Most
DBMS products perform automatic checkpoints, making human intervention unnecessary.

You will see specific examples of backup and recovery techniques for SQL Server, Oracle
Database, and MySQL in the next three chapters. For now, you only need to understand the basic
ideas and to realize that it is the responsibility of the DBA to ensure that adequate backup and
recovery plans have been developed and that database saves and logs are generated as required.

Managing the DBMS

In addition to managing data activity and the database structure, the DBA must manage the
DBMS itself. The DBA should compile and analyze statistics concerning the system�s perfor-
mance and identify potential problem areas. Keep in mind that the database is serving many
user groups. The DBA needs to investigate all complaints about the system�s response time, accu-
racy, ease of use, and so forth. If changes are needed, the DBA must plan and implement them.

Chapter 9 Managing Multiuser Databases 363

The DBA must periodically monitor the users� activity on the database. DBMS products
include features that collect and report statistics. For example, some of these reports may
indicate which users have been active, which files�and perhaps which data items�have been
used, and which access methods have been employed. Error rates and types also can be
captured and reported. The DBA analyzes these data to determine whether a change to the
database design is needed to improve performance or to ease the users� tasks. If change is
necessary, the DBA will ensure that it is accomplished.

The DBA should analyze run-time statistics on database activity and performance. When
a performance problem is identified (by either a report or a user�s complaint), the DBA must
determine whether a modification of the database structure or system is appropriate.
Examples of possible structural modifications are establishing new keys, purging data,
deleting keys, and establishing new relationships among objects.

When the vendor of the DBMS being used announces new product features, the DBA must
consider them in light of the overall needs of the user community. If the DBA decides to incorpo-
rate the new DBMS features, the developers must be notified and trained in their use. Accordingly,
the DBA must manage and control changes in the DBMS as well as in the database structure.

Other changes in the system for which the DBA is responsible vary widely, depending on
the DBMS product as well as on other software and hardware in use. For example, changes in
other software (such as the operating system or the Web server) may mean that some DBMS
features, functions, or parameters must be changed. The DBA must therefore also tune the
DBMS product with other software in use.

The DBMS options (such as transaction isolation levels) are initially chosen when little is
known about how the system will perform in the particular user environment. Consequently,
operational experience and performance analysis over a period of time may reveal that changes
are necessary. Even if the performance seems acceptable, the DBA may want to alter the options
and observe the effect on performance. This process is referred to as tuning, or optimizing, the
system. Figure 9-19 summarizes the DBA�s responsibilities for managing the DBMS product.

Maintaining the Data Repository

Consider a large and active Internet database application, such as those used by e-commerce
companies�for instance, an application that is used by a company that sells clothing over the
Internet. Such a system may involve data from several different databases, dozens of different
Web pages, and hundreds, or even thousands, of users.

Suppose that the company using this application decides to expand its product line to
include the sale of sporting goods. Senior management of this company might ask the DBA
to develop an estimate of the time and other resources required to modify the database
application to support this new product line.

To respond to this request, the DBA needs accurate metadata about the database, about
the database applications and application components, about the users and their rights and
privileges, and about other system elements. The database does carry some of this metadata in
system tables, but this metadata is inadequate to answer the questions posed by senior
management. The DBA needs additional metadata about COM and ActiveX objects, script
procedures and functions, Active Server Pages (ASPs), style sheets, document type definitions,

� Generate database application performance
 reports

� Investigate user performance complaints

� Assess need for changes in database structure
 or application design

� Modify database structure

� Evaluate and implement new DBMS features

� Tune the DBMS

Figure 9-19

Summary of the DBA�s
Responsibilities for
Managing the DMBS

364 Part 4 Multiuser Database Processing

and the like. Furthermore, although DBMS security mechanisms document users, groups, and
privileges, they do so in a highly structured, and often inconvenient, form.

For all of these reasons, many organizations develop and maintain data repositories,
which are collections of metadata about databases, database applications, Web pages, users,
and other application components. The repository may be virtual in that it is composed of
metadata from many different sources: the DBMS, version-control software, code libraries,
Web page generation and editing tools, and so forth. Or, the data repository may be an
integrated product from a CASE tool vendor or from a company such as Microsoft or Oracle.

Either way, the time for the DBA to think about constructing such a facility is long before
senior management asks questions. In fact, the repository should be constructed as the
system is developed and should be considered an important part of the system deliverables. If
such a facility is not constructed, the DBA will always be playing catch-up�trying to maintain
the existing applications, adapting them to new needs, and somehow gathering together the
metadata to form a repository.

The best repositories are active repositories�they are part of the systems development
process in that metadata is created automatically as the system components are created. Less
desirable, but still effective, are passive repositories, which are filled only when someone
takes the time to generate the needed metadata and place it in the repository.

The Internet has created enormous opportunities for businesses to expand their
customer bases and increase their sales and profitability. The databases and database applica-
tions that support these companies are an essential element of that success. Unfortunately, the
growth of some organizations will be stymied by their inability to grow their applications or
adapt them to changing needs. Often, building a new system is easier than adapting an
existing one. Building a new system that integrates with an old one while it replaces that old
one can be very difficult.

Distributed Database Processing

A distributed database is a database that is stored and processed on more than one
computer. Depending on the type of database and the processing that is allowed, distributed
databases can present significant problems. Let us consider the types of distributed databases.

Types of Distributed Databases

A database can be distributed by partitioning, which means breaking the database into
pieces and storing the pieces on multiple computers; by replication, which means storing the
copies of the database on multiple computers; or by a combination of replication and
partitioning. Figure 9-20 illustrates these alternatives.

Figure 9-20(a) shows a nondistributed database with four pieces labeled W, X, Y, and Z. In
Figure 9-20(b), the database has been partitioned but not replicated. Portions W and X are
stored and processed on Computer 1, and portions Y and Z are stored and processed on
Computer 2. Figure 9-20(c) shows a database that has been replicated but not partitioned. The
entire database is stored and processed on Computers 1 and 2. Finally, Figure 9-20(d) shows a
database that is partitioned and replicated. Portion Y of the database is stored and processed
on Computers 1 and 2.

The portions to be partitioned or replicated can be defined in many different ways.
A database that has five tables (e.g., CUSTOMER, SALESPERSON, INVOICE, LINE_ITEM, and
PART) could be partitioned by assigning CUSTOMER to portion W, SALESPERSON to portion X,
INVOICE and LINE_ITEM to portion Y, and PART to portion Z. Alternatively, different rows of
each of these five tables could be assigned to different computers, or different columns of each
of these tables could be assigned to different computers.

Databases are distributed for two major reasons: performance and control. Having a
database on multiple computers can improve throughput, either because multiple computers
are sharing the workload or because communications delays can be reduced by placing the
computers closer to their users. Distributing the database can improve control by segregating
different portions of the database to different computers, each of which can have its own set of
authorized users and permissions.

Chapter 9 Managing Multiuser Databases 365

Single Processing Computer

DBMS/OS

WAP1

AP2
X
Y
Z

(a) Nonpartitioned, Nonreplicated
Alternative

Communication
Line

DB

DBMS/OS

Computer 1

AP1 W
X

DB1

DBMS/OS

Computer 2

AP2 Y
Z

DB2

(b) Partitioned, Nonreplicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1

AP2
X
Y
Z

DBMS/OS

Computer 2

WAP1

AP2
X
Y
Z

DB (Copy 1)

DB (Copy 2)

(c) Nonpartitioned, Replicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1
X
Y

DBMS/OS

Computer 2

AP2 Y
Z

DB1

DB2
DB

(d) Partitioned, Replicated Alternative

Figure 9-20

Types of Distributed
Databases

Challenges of Distributed Databases

Significant challenges must be overcome when distributing a database, and those challenges
depend on the type of distributed database and the activity that is allowed. In the case of a
fully replicated database, if only one computer is allowed to make updates on one of the copies,
then the challenges are not too great. All update activity occurs on that single computer, and
copies of that database are periodically sent to the replication sites. The challenge is to ensure
that only a logically consistent copy of the database is distributed (no partial or uncommitted
transactions, for example) and to ensure that the sites understand that they are processing
data that might not be current because changes could have been made to the updated
database after the local copy was made.

If multiple computers can make updates to a replicated database, then difficult problems
arise. Specifically, if two computers are allowed to process the same row at the same time, they
can cause three types of error: They can make inconsistent changes, one computer can delete
a row that another computer is updating, or the two computers can make changes that violate
uniqueness constraints.

To prevent these problems, some type of record locking is required. Because multiple
computers are involved, standard record locking does not work. Instead, a far more compli-
cated locking scheme, called distributed two-phase locking, must be used. The specifics of
the scheme are beyond the scope of this discussion; for now, just know that implementing this
algorithm is difficult and expensive. If multiple computers can process multiple replications of
a distributed database, then significant problems must be solved.

If the database is partitioned but not replicated [Figure 9-20(b)], then problems will occur
if any transaction updates data that span two or more distributed partitions. For example,
suppose the CUSTOMER and SALESPERSON tables are placed on a partition on one computer
and that INVOICE, LINE_ITEM, and PART tables are placed on a second computer. Further

366 Part 4 Multiuser Database Processing

suppose that when recording a sale all five tables are updated in an atomic transaction. In this
case, a transaction must be started on both computers, and it can be allowed to commit on one
computer only if it can be allowed to commit on both computers. In this case, distributed
two-phase locking also must be used.

If the data are partitioned in such a way that no transaction requires data from both
partitions, then regular locking will work. However, in this case the databases are actually two
separate databases, and some would argue that they should not be considered a distributed
database.

If the data are partitioned in such a way that no transaction updates data from both
partitions but that one or more transactions read data from one partition and update data on
a second partition, then problems might or might not result with regular locking. If dirty reads
are possible, then some form of distributed locking is required; otherwise, regular locking
should work.

If a database is partitioned and at least one of those partitions is replicated, then locking
requirements are a combination of those just described. If the replicated portion is updated, if
transactions span the partitions, or if dirty reads are possible, then distributed two-phase
locking is required; otherwise, regular locking might suffice.

Distributed processing is complicated and can create substantial problems. Except in
the case of replicated, read-only databases, only experienced teams with a substantial
budget and significant time to invest should attempt distributed databases. Such databases
also require data communications expertise. Distributed databases are not for the faint
of heart.

Object-Relational Databases

Object-oriented programming (OOP) is a technique for designing and writing computer
programs. Today, most new program development is done using OOP techniques. Java, C++,
C#, and Visual Basic.NET are object-oriented computer programs.

Objects are data structures that have both methods, which are computer programs
that perform some task, and properties, which are data items particular to an object. All
objects of a given class have the same methods, but each has its own set of data items. When
using an OOP, the properties of the object are created and stored in main memory. Storing
the values of properties of an object is called object persistence. Many different techniques
have been used for object persistence. One of them is to use some variation of database
technology.

Although relational databases can be used for object persistence, using this method
requires substantial work on the part of the programmer. The problem is that, in general,
object data structures are more complicated than the row of a table. Typically, several, or even
many, rows of several different tables are required to store object data. This means the OOP
programmer must design a mini-database just to store objects. Usually, many objects are
involved in an information system, so many different mini-databases need to be designed and
processed. This method is so undesirable that it is seldom used.

In the early 1990s, several vendors developed special-purpose DBMS products for storing
object data. These products, which were called object-oriented DBMSs (OODBMSs), never
achieved commercial success. The problem was that by the time they were introduced, billions
of bytes of data were already stored in relational DBMS format, and no organization wanted to
convert their data to OODBMS format to be able to use an OODBMS. Consequently, such
products failed in the marketplace.

However, the need for object persistence did not disappear. Some vendors, most notably
Oracle, added features and functions to their relational database DBMS products to create
object-relational databases. These features and functions are basically add-ons to a
relational DBMS that facilitate object persistence. With these features, object data can be
stored more readily than with a purely relational database. However, an object-relational
database can still process relational data at the same time. To learn more about object-
relational databases, search for OODBMS and ODBMS on the Web.

Chapter 9 Managing Multiuser Databases 367

Multiuser databases pose difficult problems for the organiza-
tions that create and use them, and most organizations have
created an office of database administration to ensure that
such problems are solved. In this text, the term database
administrator refers to the person or office that is concerned
with a single database. The term data administrator is used
to describe a management function that is concerned with
the organization�s data policy and security. Major functions
of the database administrator are listed in Figure 9-1.

The database administrator (DBA) participates in the
initial development of database structures and in providing
configuration control when requests for changes arise.
Keeping accurate documentation of the structure and
changes to it is an important DBA function.

The goal of concurrency control is to ensure that one
user�s work does not inappropriately influence another user�s
work. No single concurrency control technique is ideal for all
circumstances. Trade-offs need to be made between the level
of protection and throughput. A transaction, or logical unit of
work (LUW), is a series of actions taken against the database
that occurs as an atomic unit; either all of them occur or none
of them do. The activity of concurrent transactions is inter-
leaved on the database server. In some cases, updates can be
lost if concurrent transactions are not controlled. Another
concurrency problem concerns inconsistent reads.

To avoid concurrency problems, database elements are
locked. Implicit locks are placed by the DBMS; explicit locks
are issued by the application program. The size of the locked
resource is called lock granularity. An exclusive lock prohibits
other users from reading the locked resource; a shared lock
allows other users to read the locked resource, but they cannot
update it. Two transactions that run concurrently and gener-
ate results that are consistent with the results that would have
occurred if they had run separately are referred to as serializ-
able transactions. Two-phase locking, in which locks are
acquired in a growing phase and released in a shrinking phase,
is one scheme for serializability. A special case of two-phase
locking is to acquire locks throughout the transaction, but not
to free any lock until the transaction is finished.

Deadlock, or the deadly embrace, occurs when two trans-
actions are each waiting on a resource that the other transaction
holds. Deadlock can be prevented by requiring transactions to
acquire all locks at the same time. Once deadlock occurs, the
only way to cure it is to abort one of the transactions (and back
out of partially completed work). Optimistic locking assumes
that no transaction conflict will occur and deals with the conse-
quences if it does. Pessimistic locking assumes that conflict will
occur and so prevents it ahead of time with locks. In general,
optimistic locking is preferred for the Internet and for many
intranet applications.

Most application programs do not explicitly declare
locks. Instead, they mark transaction boundaries with
BEGIN, COMMIT, and ROLLBACK transaction statements

and declare the concurrent behavior they want. The DBMS
then places locks for the application that will result in the
desired behavior.

An ACID transaction is one that is atomic, consistent,
isolated, and durable. Durable means that database changes
are permanent. Consistency can mean either statement-level
or transaction-level consistency. With transaction-level
consistency, a transaction may not see its own changes. The
1992 SQL standard defines four transaction isolation levels:
read uncommitted, read committed, repeatable read, and
serializable. The characteristics of each are summarized in
Figure 9-11.

A cursor is a pointer into a set of records. Four cursor
types are prevalent: forward only, static, keyset, and dynamic.
Developers should select isolation levels and cursor types
that are appropriate for their application workload and for
the DBMS product in use.

The goal of database security is to ensure that only
authorized users can perform authorized activities at
authorized times. To develop effective database security, the
processing rights and responsibilities of all users must be
determined.

DBMS products provide security facilities. Most involve
the declaration of users, groups, objects to be protected, and
permissions or privileges on those objects. Almost all DBMS
products use some form of user name and password security.
Security guidelines are listed in Figure 9-15. DBMS security
can be augmented by application security.

In the event of system failure, the database must be
restored to a usable state as soon as possible. Transactions in
process at the time of the failure must be reapplied or
restarted. Although in some cases recovery can be done by
reprocessing, the use of logs and rollback and rollforward is
almost always preferred. Checkpoints can be taken to reduce
the amount of work that needs to be done after a failure.

In addition to these tasks, the DBA manages the DBMS
product itself, measuring database application performance
and assessing the need for changes in database structure or
DBMS performance tuning. The DBA also ensures that new
DBMS features are evaluated and used as appropriate. Finally,
the DBA is responsible for maintaining the data repository.

A distributed database is a database that is stored and
processed on more than one computer. A replicated data-
base is one in which multiple copies of some or all of the
database are stored on different computers. A partitioned
database is one in which different pieces of the database are
stored on different computers. A distributed database can be
replicated and distributed.

Distributed databases pose processing challenges. If a
database is updated on a single computer, then the challenge
is simply to ensure that the copies of the database are
logically consistent when they are distributed. However, if
updates are to be made on more than one computer, the

368 Part 4 Multiuser Database Processing

challenges become significant. If the database is partitioned
and not replicated, then challenges occur if transactions
span data on more than one computer. If the database is
replicated and if updates occur to the replicated portions,
then a special locking algorithm called distributed two-
phase locking is required. Implementing this algorithm can
be difficult and expensive.

Objects consist of methods and properties or data
values. All objects of a given class have the same methods,

but they have different property values. Object persistence is
the process of storing object property values. Relational
databases are difficult to use for object persistence. Some
specialized products called object-oriented DBMSs were
developed in the 1990s but never received commercial
acceptance. Oracle and others have extended the capabilities
of their relational DBMS products to provide support for
object persistence. Such databases are referred to as object-
relational databases.

ACID transaction
active repository
after image
atomic
before image
checkpoint
concurrent transaction
concurrent update problem
consistent
cursor
data administration
data repository
database administration
database administrator
database save
DBA
deadlock
deadly embrace
dirty read
distributed database
distributed two-phase locking
durable
dynamic cursor
exclusive lock
explicit lock
growing phase
implicit lock
inconsistent read problem
isolated
isolation levels
keyset cursor
lock
lock granularity
log
logical unit of work (LUW)
lost update problem
methods
nonrepeatable reads
objects

object persistence
object-oriented DBMSs (OODBMSs)
object-oriented programming (OOP)
object-relational databases
optimistic locking
partitioning
passive repository
pessimistic locking
phantom reads
processing rights and responsibilities
properties
recovery via reprocessing
recovery via rollback/rollforward
replication
resource locking
role
rollback
rollforward
scrollable cursor
serializable
shared lock
shrinking phase
SQL BEGIN TRANSACTION statement
SQL COMMIT TRANSACTION statement
SQL data control language (DCL)
SQL GRANT statement
SQL injection attack
SQL REVOKE statement
SQL ROLLBACK TRANSACTION statement
SQL START TRANSACTION statement
SQL WORK keyword
statement-level consistency
static cursor
strong password
transaction
transaction-level consistency
two-phase locking
user group

Chapter 9 Managing Multiuser Databases 369

9.1 Briefly describe five difficult problems for organizations that create and use multiuser
databases.

9.2 Explain the difference between a database administrator and a data administrator.

9.3 List seven important DBA tasks.

9.4 Summarize the DBA�s responsibilities for managing database structure.

9.5 What is configuration control? Why is it necessary?

9.6 Explain the meaning of the word inappropriately in the phrase �one user�s work does
not inappropriately influence another user�s work.�

9.7 Explain the trade-off that exists in concurrency control.

9.8 Define an atomic transaction and explain why atomicity is important.

9.9 Explain the difference between concurrent transactions and simultaneous transactions.
How many CPUs are required for simultaneous transactions?

9.10 Give an example, other than the one in this text, of the lost update problem.

9.11 Explain the difference between an explicit and an implicit lock.

9.12 What is lock granularity?

9.13 Explain the difference between an exclusive lock and a shared lock.

9.14 Explain two-phase locking.

9.15 How does releasing all locks at the end of the transaction relate to two-phase locking?

9.16 In general, how should the boundaries of a transaction be defined?

9.17 What is deadlock? How can it be avoided? How can it be resolved once it occurs?

9.18 Explain the difference between optimistic and pessimistic locking.

9.19 Explain the benefits of marking transaction boundaries, declaring lock characteristics,
and letting the DBMS place locks.

9.20 Explain the use of the SQL BEGIN TRANSACTION, COMMIT TRANSACTION, and
ROLLBACK TRANSACTION statements. Why does MySQL also use the SQL START
TRANSACTION statement?

9.21 Explain the meaning of the expression ACID transaction.

9.22 Describe statement-level consistency.

9.23 Describe transaction-level consistency. What disadvantage can exist with it?

9.24 What is the purpose of transaction isolation levels?

9.25 Explain the read-uncommitted isolation level. Give an example of its use.

9.26 Explain the read-committed isolation level. Give an example of its use.

9.27 Explain the repeatable-read isolation level. Give an example of its use.

9.28 Explain the serializable isolation level. Give an example of its use.

9.29 Explain the term cursor.

9.30 Explain why a transaction may have many cursors. Also, how is it possible that a
transaction may have more than one cursor on a given table?

9.31 What is the advantage of using different types of cursors?

9.32 Explain forward-only cursors. Give an example of their use.

9.33 Explain static cursors. Give an example of their use.

370 Part 4 Multiuser Database Processing

9.34 Explain keyset cursors. Give an example of their use.

9.35 Explain dynamic cursors. Give an example of their use.

9.36 What happens if you do not declare the transaction isolation level and the cursor type
to the DBMS? Is this good or bad?

9.37 Explain the necessity of defining processing rights and responsibilities. How are such
responsibilities enforced, and what is the role of SQL DCL in enforcing them?

9.38 Explain the relationships among USER, ROLE, PERMISSION, and OBJECT for a generic
database security system.

9.39 Should the DBA assume a firewall when planning security?

9.40 What should be done with unused DBMS features and functions?

9.41 Explain how to protect the computer that runs the DBMS.

9.42 With regard to security, what actions should the DBA take on user accounts and
passwords?

9.43 List two elements of a database security plan.

9.44 Describe the advantages and disadvantages of DBMS-provided and application-provided
security.

9.45 What is an SQL injection attack and how can it be prevented?

9.46 Explain how a database could be recovered via reprocessing. Why is this generally not
feasible?

9.47 Define rollback and rollforward.

9.48 Why is it important to write to the log before changing the database values?

9.49 Describe the rollback process. Under what conditions should it be used?

9.50 Describe the rollforward process. Under what conditions should it be used?

9.51 What is the advantage of taking frequent checkpoints of a database?

9.52 Summarize the DBA�s responsibilities for managing the DBMS.

9.53 What is a data repository? A passive data repository? An active data repository?

9.54 Explain why a data repository is important. What is likely to happen if one is not available?

9.55 Define distributed database.

9.56 Explain one way to partition a database that has three tables: T1, T2, and T3.

9.57 Explain one way to replicate a database that has three tables: T1, T2, and T3.

9.58 Explain what must be done when fully replicating a database but allowing only one
computer to process updates.

9.59 If more than one computer can update a replicated database, what three problems can
occur?

9.60 What solution is used to prevent the problems in Review Question 9.59?

9.61 Explain what problems can occur in a distributed database that is partitioned but not
replicated.

9.62 What organizations should consider using a distributed database?

9.63 Explain the meaning of the term object persistence.

9.64 In general terms, explain why relational databases are difficult to use for object
persistence.

9.65 What does OODBMS stand for, and what is its purpose?

9.66 According to this chapter, why were OODBMSs not successful?

9.67 What is an object-relational database?

Chapter 9 Managing Multiuser Databases 371

9.68 Visit www.oracle.com and search for �Oracle Security Guidelines.� Read articles at three
of the links that you find and summarize them. How does the information you find
compare with that in Figure 9-15?

9.69 Visit www.msdn.microsoft.com and search for �SQL Server Security Guidelines.� Read
articles at three of the links that you find and summarize them. How does the information
you find compare with that in Figure 9-15?

9.70 Visit www.mysql.com and search for �MySQL Security Guidelines.� Read articles at
three of the links that you find and summarize them. How does the information you
find compare with that in Figure 9-15?

9.71 Use Google (www.google.com) or another search engine and search the Web for �Database
Security Guidelines.� Read articles at three of the links that you find and summarize them.
How does the information you find compare with that in Figure 9-15?

9.72 Search the Web for �distributed two-phase locking.� Find a tutorial on that topic and
explain, in general terms, how this locking algorithm works.

9.73 Answer the following questions for the View Ridge Gallery database discussed in
Chapter 7 with the tables shown in Figure 7-15.

A. Suppose that you are developing a stored procedure to record an artist who has
never been in the gallery before, a work for that artist, and a row in the TRANS table
to record the date acquired and the acquisition price. How will you declare the
boundaries of the transaction? What transaction isolation level will you use?

B. Suppose that you are writing a stored procedure to change values in the
CUSTOMER table. What transaction isolation level will you use?

C. Suppose that you are writing a stored procedure to record a customer�s purchase.
Assume that the customer�s data are new. How will you declare the boundaries of
the transaction? What isolation level will you use?

D. Suppose that you are writing a stored procedure to check the validity of the intersec-
tion table. Specifically, for each customer, your procedure should read the customer�s
transaction and determine the artist of that work. Given the artist, your procedure
should then check to ensure that an interest has been declared for that artist in the
intersection table. If there is no such intersection row, your procedure should create
one. How will you set the boundaries of your transaction? What isolation level will
you use? What cursor types (if any) will you use?

Assume that Marcia has hired you as a database consultant to develop an operational
database having the following four tables (the same tables described at the end of Chapter 7):

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,
ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

A. Assume that Marcia�s has the following personnel: two owners, a shift manager, a part-time
seamstress, and two salesclerks. Prepare a two- to three-page memo that addresses the
following points:
1. The need for database administration.
2. Your recommendation as to who should serve as database administrator. Assume that

Marcia�s is not sufficiently large to need or afford a full-time database administrator.
3. Using Figure 9-1 as a guide, describe the nature of database administration activi-

ties at Marcia�s. As an aggressive consultant, keep in mind that you can recommend
yourself for performing some of the DBA functions.

372 Part 4 Multiuser Database Processing

B. For the employees described in part A, define users, groups, and permissions on data in
these four tables. Use the security scheme shown in Figure 9-13 as an example. Create a
table like that in Figure 9-12. Don�t forget to include yourself.

C. Suppose that you are writing a stored procedure to create new records in SERVICE for
new services that Marcia�s will perform. Suppose that you know that while your
procedure is running another stored procedure that records new or modifies existing
customer orders and order line items can also be running. Additionally, suppose that a
third stored procedure that records new customer data also can be running.
1. Give an example of a dirty read, a nonrepeatable read, and a phantom read among

this group of stored procedures.
2. What concurrency control measures are appropriate for the stored procedure that

you are creating?
3. What concurrency control measures are appropriate for the two other stored

procedures?

Assume that Morgan has hired you as a database consultant to develop an operational
database having the same tables described at the end of Chapter 7 (note that STORE
uses the surrogate key StoreID):

STORE (StoreID, StoreName, City, Country, Phone, Fax, Email, Contact)
PURCHASE_ITEM (PurchaseItemID, StoreID, PurchaseDate, ItemDescription, Category,
PriceUSD)
SHIPMENT (ShipmentID, ShipperID, ShipperInvoiceNumber, Origin, Destination,
DepartureDate, Arrival Date)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, PurchaseItemID, InsuredValue)
SHIPPER (ShipperID, ShipperName, Phone, Fax, Email, Contact)

A. Assume that Morgan personnel are the owner (Morgan), an office administrator, one
full-time salesperson, and two part-time salespeople. Morgan and the office administrator
want to process data in all tables. Additionally, the full-time salesperson can enter
purchase and shipment data. The part-time employees can only read shipment data; they
are not allowed to see InsuredValue, however. Prepare a three- to five-page memo for the
owner that addresses the following issues:
1. The need for database administration at Morgan.
2. Your recommendation as to who should serve as database administrator. Assume

that Morgan is not sufficiently large that it needs or can afford a full-time database
administrator.

3. Using Figure 9-1 as a guide, describe the nature of database administration activities
at Morgan. As an aggressive consultant, keep in mind that you can recommend
yourself for performing some of the DBA functions.

B. For the employees described in part A, define users, groups, and permissions on data in
these five tables. Use the security scheme shown in Figure 9-13 as an example. Create a
table like that in Figure 9-12. Don�t forget to include yourself.

C. Suppose that you are writing a stored procedure to record new purchases. Suppose that
you know that while your procedure is running, another stored procedure that records
shipment data can be running, and a third stored procedure that updates shipper data
can also be running.
1. Give an example of a dirty read, a nonrepeatable read, and a phantom read among

this group of stored procedures.
2. What concurrency control measures are appropriate for the stored procedure that

you are creating?
3. What concurrency control measures are appropriate for the two other stored

procedures?

This chapter describes the basic features and functions of Microsoft SQL
Server 2008 R2. The discussion uses the View Ridge Gallery database from
Chapter 7, and it parallels the discussion of the database administration
tasks in Chapter 9. The presentation is similar in scope and orientation to
that of Oracle Database 11g in Chapter 10A and Oracle MySQL 5.5 in
Chapter 10B.

SQL Server 2008 R2 is a large and complicated product. In this one
chapter, we will only be able to scratch the surface. Your goal should be to
learn sufficient basics so that you can continue learning on your own or in
other classes.

� To install SQL Server 2008 R2

� To use SQL Server 2008 R2�s graphical utilities

� To create a database in SQL Server 2008 R2

� To submit both SQL DDL and DML via the Microsoft
SQL Server Management Studio

� To understand the purpose and role of stored
procedures and to create simple stored procedures

Chapter Objectives

Managing
Databases with SQL
Server 2008 R210

� To understand the purpose and role of triggers and to
create simple stored procedures

� To understand how SQL Server implements
concurrency control

� To understand the fundamental features of SQL Server
backup and recovery facilities

373

374 Part 4 Multiuser Database Processing

The topics and techniques discussed here also apply to SQL Server
2008 R2 and to the earlier SQL Server 2005, although the exact functions of
the SQL Server 2005 Management Studio vary a bit from the SQL Server
2008 and SQL Server 2008 R2 versions. The material you learn in this
chapter will be applicable to these older versions.

Installing SQL Server 2008 R2

Microsoft SQL Server is an enterprise-class DBMS that has been around for many years. In
2005, SQL Server 2005 was released, followed by SQL Server 2008 R2 in 2008 and SQL Server
2008 R2 in 2010. As this book goes to press, Microsoft is poised to release the next version of
SQL Server�SQL Server 2011. SQL Server 2008 R2 is available in several versions, two of
which�SQL Server 2008 R2 Datacenter and SQL Server 2008 R2 Parallel Data Warehouse�are
new vesions introduced as part of SQL Server 2008 R2. The full set can be reviewed at the
Microsoft SQL Server 2008 R2 Web site (www.microsoft.com/sqlserver/en/us/product-info/
compare.aspx). For our purposes, there are four editions you need to be aware of:

� Enterprise Edition. This is a powerful and feature-laden, commercial version. It
handles up to eight CPUs, 2 TBytes of memory, and a maximum database size of 524
PBytes. It includes full data warehouse capabilities.

� Standard Edition. This is the basic commercial version. It does not have the
complete feature set of the Enterprise Edition. It handles up to 4 CPUs, 64 GBytes of
memory, and a maximum database size of 524 PBytes. It has very limited data
warehouse capabilities.

� Developer Edition. This is a single-user version of the Enterprise Edition, and it
has the complete feature set of the Enterprise Edition. It is intended, as the name
implies, for use by a single user who is doing database and application
development work.

� Express Edition. This free, feature-limited version is available for download. It
supports one CPU, 1 GByte of memory, and a maximum database size of 10 GBytes.
Despite its limitations, it is a great learning tool when the Express Advanced version,
which includes the SQL Server 2008 R2 Management Studio and a basic reporting
services package, is used (and did we mention that it�s free?).

As mentioned earlier, Microsoft is poised to release the next version of SQL
Server�SQL Server 2011. Although we cannot show screenshots of the

prerelease version of SQL Server 2011 we have been using, we have tested all the SQL
Server commands and SQL statements in this book in SQL Server 2011, and they all run
correctly in the prerelease version of SQL Server 2011. So while we will undoubtedly
see some changes, the core functionality should be maintained, and the SQL Server
2011 Management Studio should retain most of functionality of the SQL Server 2008
R2 Management Studio discussed in this book.

The SQL Server Express Edition was introduced with SQL Server 2005, and SQL Server
2008 R2 includes the SQL Server 2008 R2 Express version. The SQL Server Express editions
seem to be designed to compete with Oracle�s MySQL Community Server (see Chapter 10B).
MySQL, although not having as many features as SQL Server, is an open- source database that
has had the advantage of being available for free via download over the Internet. It has
become widely used and very popular as a DBMS supporting Web sites running the Apache
Web server.

Chapter 10 Managing Databases with SQL Server 2008 R2 375

SQL Server 2008 R2 Express Advanced is the version of SQL Server 2008 R2 Express
that contains an advanced features package. The advanced features package includes
Microsoft�s GUI SQL Server management tool and support for SQL Server Reporting
Services. Both of these features are well worth having, so download and install the version
with the advanced features package.

For SQL Server 2008 R2 Express, you can start at the SQL Server 2008 R2 homepage at
www.microsoft.com/sqlserver/en/us/default.aspx, and then click the Express Edition button
to go to the SQL Server 2008 R2 Express Installation Options page (www.microsoft.com/
express/Database/InstallOptions.aspx). From this Web page, download and install either the
32-bit or 64-bit version of the Database with Advanced Services option (depending on
whether your Windows OS is a 32-bit or 64-bit version, although the 32-bit version will run
on a 64-bit OS).

The SQL Server 2008 R2 Express Edition with Advanced Services installation should
install any prerequisite programs, including the needed version of the Microsoft .NET
framework. If there are non-included prerequisite programs that you must install, you will be
prompted to download and install them.

Note that Microsoft SQL Server 2008 R2 Management Studio is included in the
download of Microsoft SQL Server 2008 R2 Express Advanced. If you choose to download the
basic version of SQL Server 2008 R2 Express, you must download and install this program
separately. Microsoft SQL Server 2008 R2 Management Studio is the graphical management
utility for the SQL Server 2008 R2 Express edition. Although SQL Server 2008 R2 was originally
a command-line-oriented program, SQL Server 2008 R2 Management Studio makes it much
easier to work with SQL Server.

SQL Server 2008 R2 Express is one of several Express Editions available
from Microsoft. For more information on the Microsoft Express series of

products, a good place to start is www.microsoft.com/express.
Although SQL Server 2008 R2 Express Advanced can handle most of the topics in

this book, it cannot handle advanced business intelligence (BI) systems topics, which are
discussed in Chapter 13. For that you will need the Enterprise Edition. A 180-day trial
version can be downloaded from Microsoft (www.microsoft.com/sqlserver/en/us/get-sql-
server/try-it.aspx).

You may also want to download and install the following software from the SQL Server 2008
R2 Feature Pack, depending on whether SQL Server 2008 R2 is installed on your workstation or
on a separate server. Start at the Microsoft SQL Server 2008 Download Trial Software Web
page at www.microsoft.com/sqlserver/2008/en/us/trial-software.aspx, and then in the Download
the SQL Server 2008 R2 Feature Pack section, click the Download it now button to ensure
that you are taken to the most current set of software. Be sure to scroll completely through the
Web page to see the complete set of available software packages:

� Microsoft Core XML Services (MSXML) 6.0
� Microsoft SQL Server 2008 Command Line Utilities
� Microsoft SQL Server 2008 Native Client
� Microsoft SQL Server 2008 Data Mining Add-ins for Microsoft Office 2007 (also

works with Office 2010)

Be aware that SQL Server 2008 R2 is an enterprise-class DBMS and, as such, is much more
complex than Microsoft Access. Further, it does not include application development tools,
such as form and report generators.

Regardless of which version of SQL Server 2008 R2 you are going to use, you should install
it now. You should then check for the latest service packs and patches to make sure your
installation is as secure as possible.

376 Part 4 Multiuser Database Processing

The Microsoft SQL Server 2008 R2 Management Studio

After you install SQL Server 2008 R2, you can start working with SQL Server by opening the
Microsoft SQL Server 2008 R2 Management Studio. In this book, we are running SQL Server
2008 R2 Enterprise Edition in Microsoft Server 2008 R2. To open the Microsoft SQL Server
Management Studio in Windows Server 2008 R2 or in the Windows 7 operating system, select
Start | All Programs | Microsoft SQL Server 2008 R2 | SQL Server Management Studio
Express.1 The Microsoft SQL Server Management Studio Connect to Server dialog box
appears, as shown in Figure 10-1, and clicking the Connect button connects you to the DBMS
using your Windows OS authentication.

After you have done this, find the folder icon labeled Databases in the Object Explorer, as
shown in Figure 10-2. Click the plus sign to open it, and then open the System Database folder
the same way. As shown in Figure 10-2, objects representing the databases managed by the
SQL Server 2008 R2 DBMS are displayed in these folders. For example, you can see the Cape
Codd database that we used in our discussion of SQL queries in Chapter 2. We normally keep
the System Databases folder closed because we usually do not work with these databases.

Creating an SQL Server 2008 R2 Database

Now that the SQL Server 2008 R2 is installed and the Microsoft SQL Server Management
Studio is open, we can create a new database. We will create a database named VRG for the
View Ridge Gallery database we designed in Chapter 6, and for which we wrote the SQL
statements in Chapter 7.

Creating an SQL Server 2008 R2 Database

1. Right-click the Databases folder in the Object Explorer to display a shortcut menu, as
shown in Figure 10-3.

2. Click the New Database command to display the New Database dialog box, as
shown in Figure 10-4.

3. Type the database name VRG in the Database Name text box, and then click the OK
button. The database is created and the VRG database object is displayed in the

1 If you are using the Windows XP or the Windows Vista operating system, select Start | All Programs |
Microsoft SQL Server 2008 | SQL Server Management Studio.

Using Windows
Authentication
will supply the
current user name
and password

Click the Connect
button

Figure 10-1

The Connect to Server
Dialog Box

Chapter 10 Managing Databases with SQL Server 2008 R2 377

The Object Explorer
shows SQL Server
2008 R2 objects and
the folders that are
used to contain and
organize those objects

The Databases folder
contains database
objects for the
databases that we
create

The Cape-Codd Database object
The System
Databases folder
contains database
objects for the
databases
automatically created
by SQL Server 2008

The ReportServer and
ReportServerTempDB database
objects hold databases used by
SQL Server 2008 R2 Reporting
Services

Figure 10-2

The Microsoft SQL Server
Management Studio Window

Right-click Databases
to display the shortcut
menu

The Databases
shortcut menu

Click New Database
to create a new
database

Figure 10-3

The New Database
Command

Object Explorer, as shown in Figure 10-5. Click the plus (+) button to display the VRG
folders, also shown in Figure 10-5.

4. Right-click the VRG database object to display a shortcut menu, and then click the
Properties command. The Database Properties � VRG dialog box is displayed, as
shown in Figure 10-5.

5. In the Database Properties � VRG dialog box, click the Files page object, as
shown in Figure 10-5. The database files associated with the VRG database are
displayed.

6. Click the OK button in the Database Properties � VRG dialog box to close the
dialog box.

If you look at the database files listed for the VRG database in the New Database dialog box in
Figure 10-4, and displayed again on the Files page of the Database Properties � VRG dialog box,

378 Part 4 Multiuser Database Processing

The New Database
dialog box

Type the new database
name here

Click the OK button
to create the new
database

Figure 10-4

Naming the New Database

The Database
Properties � VRG
dialog box with the
Files page selected

The VRG database
object in the Object
Explorer expanded
to show the folder
structure that will be
used to contain the
database objects

The OK button

Figure 10-5

The VRG Database in the
Object Explorer

as shown in Figure 10-5, you will see that by default SQL Server creates one data file (logical
name VRG) and one log file (logical name VRG_log) for each database. You can create multiple
files for both data and logs and assign particular tables and logs to particular files and file
groups. However, all of this is beyond the scope of our current discussion. To learn more about
it on your own, use the SQL Server 2008 R2 help system.

SQL Server 2008 R2 Utilities

Now that we have created the VRG database itself, we need to create the table and
relationship structure of the database, and then populate the tables with data. What SQL
Server 2008 R2 utilities or tools shall we use to do this? It turns out that we have several
choices.

Chapter 10 Managing Databases with SQL Server 2008 R2 379

The SQL Server
PowerShell command
line tool running the
sqlps utility that
adds SQL CMD
capabilities

The command
prompt�the command
is entered after the
greater than (>) symbol

Figure 10-6

The SQL Server PowerShell
Command Line Utility in the
Microsoft SQL Server
Management Studio

SQL CMD and Microsoft PowerShell

In the early development of computer technology, users interacted with computers using
command-line utilities. A command-line utility is strictly text based. You are presented with
a symbolic prompt to show you where to enter your commands. You type in a command (only
one at a time) and press the [Enter] key to execute it. The results are displayed as plaintext
(with some rudimentary character-based line- and box-drawing capabilities) in response. All
major computer operating systems have their version of a command-line utility. For personal
computer users using a Microsoft operating system, the classic example is the MS-DOS
command line, which still exists in Windows as the CMD program.

For SQL Server, the classic command-line tool is the SQL CMD utility, which is still
available as part of the Microsoft SQL Server 2008 R2 Command Line Utilities package in the
Microsoft SQL Server 2008 R2 Feature Pack discussed earlier in this chapter. However, the
functionality of the SQL CMD utility has been now been made available in the newer
Microsoft Windows PowerShell utility. Microsoft PowerShell is a very powerful command-
line and scripting utility, which runs command equivalents called cmdlets. By loading the
PowerShell sqlps utility, the capabilities of the SQL CMD utility are made available in
PowerShell. PowerShell can be loaded within the SQL Server Management Studio as SQL
Server PowerShell, as shown in Figure 10-6, or directly from the Microsoft Windows Server
2008 R2 task bar as Windows PowerShell, as shown in Figure 10-7. In both figures, the sqlps
utility is running. Thus, PowerShell carries on and improves upon the command-line tradition.
For more information on Microsoft Windows PowerShell, start at http://technet.microsoft.com/
en-us/scriptcenter/dd742419.aspx, and then search the Microsoft Web site for specific
information on SQL Server PowerShell.

Microsoft SQL CLR

If you are an applications developer using Microsoft Visual Studio as your Integrated
Development Environment (IDE) for developing applications that use SQL Server, you will
probably be using the SQL Common Language Runtime (CLR) technology that is built into
SQL Server. SQL CLR enables SQL Server to provide Microsoft .NET CLR support, which allows
application components written in programming languages such as Visual Basic.NET
(VB.NET) to be stored and run in SQL Server. Now database triggers and stored procedures
(discussed in Chapter 7 and later in this chapter) can be written in VB.NET or C#.NET instead
of standard SQL. SQL CLR is beyond the scope of this book, but you may use it in a class on
applications development.

380 Part 4 Multiuser Database Processing

The Windows
PowerShell command
line tool running the
sqlps utility that
adds SQL CMD
capabilities

The command
prompt�the command
is entered after the
greater than (>) symbol

The PowerShell icon
on the Microsoft
Windows Server 2008
R2 task bar

Figure 10-7

The Windows PowerShell
Command Line Utility in
Microsoft Windows Server
2008 R2 SQL Server 2008 R2 GUI Displays

Although command-line utilities can be powerful, they can also be tedious and ugly. That�s why the
graphical user interface (GUI) and GUI applications such as Windows were created in the first
place. And popular personal databases such as Microsoft Access have certainly put GUI features to
good use. Therefore, we have to ask �Is there a GUI display for SQL Server 2008 R2?� The answer, of
course, is �yes, there is.� In fact, we are already using it. The Microsoft SQL Server Management
Studio is the GUI display for SQL Server 2008 R2.

Can we use the Microsoft SQL Server Management Studio the same way we use Microsoft
Access to build tables using the GUI? Again, the answer is �yes.� Figure 10-8 shows the start of
a new table currently named Table_1. The column data shown are for the first column
(ArtistID) in the VRG database ARTIST table described in Chapter 7. The design interface
shown is very similar to Microsoft Access�basic column specifications are entered in a row in

The new Table_1 table
is being built using a
GUI similar to
Microsoft Access

Enter column names,
data types, and
whether NULL values
are allowed in this row

Enter column
properties such as
IDENTITY parameters
in this window

Figure 10-8

Building a New Table in SQL
Server Management Studio

Chapter 10 Managing Databases with SQL Server 2008 R2 381

the top pane and specific column properties are set in the bottom pane. And, like Microsoft
Access, the GUI will actually create an SQL statement and run that statement in the DBMS.

SQL Server 2008 R2 SQL Statements and SQL Scripts

Because we have already argued that you need to know how to write and use SQL statements
instead of relying on GUI tools, we come back to simply using SQL as the basis of our work. But
we do not want to use a command-line utility, and we are not going to use the GUI tool in GUI
mode, so what�s left?

The answer is that the Microsoft SQL Server Management Studio provides us with an
excellent SQL editing environment. This lets us take advantage of GUI capabilities while still
working with text-based SQL statements. We do this by opening an SQL Query window, but
using it more generally as an �SQL statement editor� window.

Opening an SQL Server 2008 R2 SQL Statement Editor Window

1. Click the VRG database object in the Object Browser to select it.
2. Click the New Query button. A new tabbed SQL Query window is displayed, and the

SQL Editor toolbar appears, as shown in Figure 10-9.
3. Click the Intellisense Enabled button to disable Intellisense. Intellisense is an

object-search feature that, although useful for experienced developers, can be more
confusing than helpful if you do not know how to use it. In this book, we will not use
Intellisense, but if you want to learn more about it, you can read about it in the SQL
Server 2008 R2 Books Online.

If the tabbed document window looks familiar, it is because it is the same window we used for
SQL Server 2008 R2 SQL queries in Chapter 2. We are simply using it for a slightly different
purpose. This SQL editing environment will be our tool of choice.

One advantage of using this SQL editor is the ability to save and reuse SQL scripts. For
SQL Server, SQL scripts are plaintext files labeled with the *.sql file extension. We can save,
open, and run (and rerun) SQL scripts. As shown in Figure 10-10, when the SQL Server
Management Studio is installed, the installation process creates a set of folders in the user�s
Documents folder. By default, scripts are stored in the Projects folder. However, in order to
organize our work we can create subfolders for various database projects. This is illustrated by
the DBP-e12-Cape-Codd-Database folder that was created to store the scripts (including scripts
containing SQL queries) that we used with the Cape Codd Outdoor Sports database in Chapter 2.

The New Query button

The SQL Editor
toolbar

Available Databases
dropdown list�select
the database here

The Execute button

The Parse button

The Intellisense
Enabled button

The SQL statement
tabbed window

Figure 10-9

The SQL Server Management
Studio SQL Editor

The Libraries folder

The My Documents
folder

The SQL Server
Management Studio
folder

The Projects folder

The DBP-e12-Cape-
Codd-Database
folder�this is not a
default folder, but was
created to store scripts
for the Cape Codd
database used in
Chapter 2

The Documents
Library folder

The Public
Documents folder

Figure 10-10

The SQL Server Management
Studio Folder Structure

The Open File
button

The Save button

The SQL text�the
yellow line on the right
margin shows that this
text has not been
saved

The Close button

Figure 10-11

Entering SQL Statements in
the SQL Editor

382 Part 4 Multiuser Database Processing

An SQL script is composed of one or more SQL statements, which can include SQL script
comments. SQL script comments are lines of text that do not run when the script is
executed, but are used to document the purpose and contents of the script. Each comment
line begins with the characters /* and ends with the characters */.

Creating and Saving an SQL Script

1. In the open tabbed SQL Query window, type the SQL comments shown in Figure 10-11.
2. Click the Save button. The Save File As dialog box is displayed, as shown in Figure 10-12.

The Save File As
dialog box

The New Folder
button

The New Folder
dialog box�type the
new folder name here

The OK button

The File Name
text box�type the
new file name
here

The Save button

Figure 10-12

Saving the SQL Script in a
New Folder

Chapter 10 Managing Databases with SQL Server 2008 R2 383

3. Click the New Folder button in the Save File As dialog box. The New Folder dialog
box is displayed, as shown in Figure 10-12.

4. Type the folder name DBP-e12-View-Ridge-Gallery-Database into the Name text
box of the New Folder dialog box.

5. Click the OK Button on the New Folder dialog box.
6. Type the file name DBP-e12-VRG-Create-Tables in the File Name text box of the

Save File As dialog box.
7. Click the OK Button on the Save File As dialog box. The script is saved, the colored

line on the right-hand margin of the text is changed to green, and the tab is renamed
with the new file name.

8. Click the document Close button shown in Figure 10-11 to close the script
window.

Creating and Populating the View Ridge Database Tables

As we have seen, tables and other SQL Server structures can be created and modified in two
ways. The first is to write SQL code using either the CREATE or ALTER SQL statements we
discussed in Chapter 7. The second is to use the SQL Server 2008 R2 GUI display tools
discussed earlier in this chapter. Although either method will work, CREATE statements are
preferred for the reasons described in Chapter 7. Some professionals choose to create
structures via SQL but then modify them with the GUI tools.

As discussed in Chapter 7, each DBMS product has its own variant or extension of SQL, with
procedural language extensions based on SQL/Persistent Stored Modules (SQL/PSM)
standard, which are additions that allow SQL to function similarly to a procedural programming
language (e.g., IF . . . THEN . . . ELSE structures). Microsoft�s SQL Server version is called
Transact-SQL (T-SQL). We will point out specific Transact-SQL syntax as we encounter it in
our discussion. For more on Transact-SQL, see the SQL Server 2008 R2 Books Online article
�Transact-SQL Reference� at http://msdn.microsoft.com/en-us/library/bb510741.aspx.

Creating the View Ridge Database Table Structure

The SQL Server 2008 R2 version of the SQL CREATE TABLE statements for the View Ridge
database in Chapter 7 are shown in Figure 10-13.

384 Part 4 Multiuser Database Processing

Figure 10-13

The SQL Statements to Create
the VRG Table Structure

Chapter 10 Managing Databases with SQL Server 2008 R2 385

2 For a complete list of SQL Server 2008 R2 reserved keywords, OBDC reserved keywords (ODBC is
discussed in Chapter 11), and potential future SQL Server keywords, see the SQL Server 2008 R2 Books
Online article on �Reserved Keywords (Transact-SQL)� at http://msdn.microsoft.com/en-us/library/
ms189822.aspx.

Figure 10-13

Continued

Note that we are using the table name TRANS rather than TRANSACTION in
Figure 10-13. This was done because TRANSACTION is a reserved word in SQL Server
2008 R2.2 Even if you make TRANSACTION a delimited identifier by placing the name in
square brackets, as in [TRANSACTION], SQL Server still becomes confused when
executing the logic of stored procedures and triggers. Life became much simpler for
applications using this database when the table TRANSACTION was renamed to TRANS
(which is not a Transact-SQL keyword, although TRAN is). WORK is not currently a
Transact-SQL reserved word, but it is an ODBC reserved word (OBDC will be discussed in
Chapter 11), and reserved as a future keyword. Still, SQL Server is currently less sensitive to
it, and therefore we can use it in delimited identifier form, enclosed in square brackets,
as [WORK].

SQL Server supports surrogate keys, and the surrogate key columns are created using the
Transact-SQL IDENTITY property with the primary key of the ARTIST, [WORK],
CUSTOMER, and TRANS tables. The IDENTITY property has the syntax IDENTITY (seed,
increment), where seed is the starting value for the surrogate key and increment is the value
added to the previous surrogate key value each time a new value is created.

386 Part 4 Multiuser Database Processing

Available Databases
drop-down list�select
the VRG database
here

The Save button

The Execute button

The Parse button

The Intellisense
Enabled button

The SQL text to create
the VRG table
structures

Figure 10-14

The SQL Script to Create the
VRG Table Structure

The dbo in Figure 10-15 stands for database owner. That will be you if
you installed SQL Server 2008 R2 and created the VRG database.

Creating the VRG Table Structure Using SQL Statements

1. In the SQL Server Management Studio, click the Open File button shown in Figure 10-11
to open the Open File dialog box.

2. Click the file name DBP-e12-VRG-Create-Tables.sql to select the file.
3. Click the Open button in the Open File dialog box. The script is opened for use in a

tabbed document window in the SQL editor.
4. Click the Intellisense Enabled button to disable Intellisense.
5. Type in the SQL statements shown in Figure 10-13. Be sure to save the script often,

and save the script a final time after you have finished entering all the SQL
statements.

6. Scroll to the first CREATE TABLE statement at the top of the script. The
completed SQL script to create the VRG table structure appears as shown in
Figure 10-14.

7. Make sure the database name VRG is shown in the Available Databases drop-down
list, as shown in Figure 10-14. If it is not, click the Available Databases drop-down list
arrow and select VRG.

8. Click the Parse button shown in Figure 10-14. A message window appears below the
tabbed document window. If this window contains the message �The command(s)
completed successfully.� there are probably no errors in the script. However, if any
error messages are displayed, then you have errors in your SQL statements. Correct
any errors. Repeat this step until you see the message �The command(s) completed
successfully.�

9. Click the Save button to save your debugged SQL script.
10. Click the Execute button shown in Figure 10-14. The tables are created, and the

message �Command(s) completed successfully.� appears in the tabbed Messages
window, as shown in Figure 10-15.

11. Expand the VRG Tables folder to see the VRG tables, as shown in Figure 10-15.
12. Click the document window Close button to close the SQL script.

Chapter 10 Managing Databases with SQL Server 2008 R2 387

Reviewing Database Structures in the SQL Server GUI Display

Now we have created the VRG table and relationship structure. After building the table
structure using SQL statements, we can inspect the results using the SQL Server GUI tools.
Let�s take a look at the ARTIST table, particularly at the properties of the ArtistID primary key.

Viewing the ARTIST Table Structure in the GUI Display

1. In the SQL Server Management Studio Object Browser, right-click the dbo.ARTIST
table object to open the table shortcut menu, as shown in Figure 10-16.

2. In the table shortcut menu, click the Design command. The ARTIST table design is
displayed in a tabbed document window, as shown in Figure 10-17, with the Identity
Specification properties expanded. Compare this figure to Figure 10-7.

3. Click the document window Close button to close the ARTIST table�s columns and
column properties tabbed window.

Click here to expand
the VRG Tables folder

The VRG tables�dbo
stands for database
owner

The results message

Figure 10-15

The VRG Database Tables

Right-click the
dbo.ARTIST table
object to display the
table shortcut menu

The Tables shortcut
menu

The Design command

Figure 10-16

The Table Shortcut Menu

388 Part 4 Multiuser Database Processing

We can also inspect the constraints on the ARTIST table. We�ll take a look at the
ValidBirthYear constraint we coded into our SQL CREATE TABLE statements.

Viewing the ARTIST Table Constraints in the GUI Display

1. In the SQL Server Management Studio Object Browser, expand the dbo.ARTIST table
object.

2. Expand the Constraints folder. The ARTIST table constraint objects are displayed in
the Object Browser.

3. Right-click the ValidBirthYear constraint object to display the shortcut menu.
4. Click the Modify command in the shortcut menu. The Check Constraints dialog box

appears, as shown in Figure 10-18.

The Check
Constraints
dialog box

The ValidBirthYear
Check Constraint
properties

Click here to expand
the dbo.ARTIST table
object

Click here to expand
the Constraints
folder object

The ValidBirthYear
Check Constraint

The Close button

Figure 10-18

The ARTIST Table Check
Constraints

The ARTIST table
column name, data
types, and NULL
status

The Primary Key
symbol

The ARTIST table
ArtistID column
properties

The Identity
Specification
properties

Figure 10-17

The ARTIST Table Columns
and Column Properties

Chapter 10 Managing Databases with SQL Server 2008 R2 389

5. Note that the check constraint itself is located in the Expression text box of the
(General) properties group, and it can be edited there, if needed. At this point,
however, there is no need to change the constraint.

6. Click the Close button to close the Check Constraints dialog box.
7. Click the document window Close button to close the ARTIST table�s columns and

column properties tabbed window.
8. Contract (minimize) the dbo.ARTIST table object display.

Clearly, it is easier to key the constraint into SQL statements than it would be to type it as
shown in this window!

Throughout this chapter, you may see dialog boxes similar to the one shown in Figure 10-18
that have properties that reference something about replication. All such references refer to
distributed SQL Server databases in which data are placed in two or more databases and
updates to them are coordinated in some fashion. We will not consider that topic here, so ignore
any references to replication. You can learn more by searching for the replication topic in the
SQL Server 2008 R2 documentation.

To ensure that the VRG database relationships were created correctly, let�s create a
database diagram for the VRG database. We can then use that diagram as the basis for
checking the relationships among the various tables.

Creating an SQL Server Database Diagram

1. In the SQL Server Management Studio Object Browser, right-click the VRG Database
Diagrams folder object to display the shortcut menu.

2. Click the Install Diagram Support command on the shortcut menu.
3. A Microsoft SQL Server Management Studio dialog box appears asking if you want to

create some objects that support database diagrams. Of course you do! Isn�t that the
command you just gave? Click the Yes button!

4. Right-click the VRG Database Diagrams folder object to display the shortcut menu.
5. Click the New Database Diagram command on the shortcut menu. The Add Table

dialog box appears, as shown in Figure 10-19.
6. Click the Add button to add the highlighted ARTIST table to the database

diagram.

The Database
Diagrams folder object

The Add Table
dialog box

The Add button

The Close button

Figure 10-19

The Add Table Dialog Box

390 Part 4 Multiuser Database Processing

7. In the Add Table dialog box, the next table in the list is now highlighted. Click the
Add button to add the highlighted table to the database diagram. Repeat this process
until all of the VRG tables have been added to the diagram.

8. Click the Close button to close the Add Table dialog box.
9. Rearrange the VRG tables in the database diagram until it appears as shown in

Figure 10-20.
10. Click the Save button, and name the diagram VRG-Database-Diagram.
11. Expand the VRG Database Diagrams folder object to display the VRG-Database-

Diagram object, which is shown in Figure 10-21.

Now we can use the VRG database diagram to view the properties of a relationship. We will
take a look at the relationship between ARTIST and WORK, checking the referential
integrity constraint and the cascading update and deletion behavior between ARTIST
and WORK.

The shortcut menu

The Relationships
command

The VRG-Database-
Diagram object

Figure 10-21

The Database Diagram Table
Shortcut Menu

The Save button

The Database
Diagram in a tabbed
document window

Figure 10-20

The VRG Database Diagram

Chapter 10 Managing Databases with SQL Server 2008 R2 391

The Foreign Key
Relationships
dialog box

The enabled referential
integrity constraint
between WORK
and ARTIST

The expanded Table
and Columns
Specification
properties

The Close button

Figure 10-22

The Foreign Key
Relationships Dialog Box

Viewing Relationship Properties

1. Right-click the ARTIST table in the VRG Database Diagram to display the shortcut
menu, as shown in Figure 10-21. Note how many actions are available from this
shortcut menu.

2. Click the Relationships command to display the Foreign Key Relationships dialog
box, as shown in Figure 10-22.

3. Expand the Tables and Columns Specifications property section, as shown in
Figure 10-22.

4. In Figure 10-22, note that the Tables and Columns Specifications property section
details the primary and foreign keys in the relationship between the two tables.

5. In Figure 10-22, note that the Check Existing Data On Creation Or Re-Enabling
property is enabled. This is the referential integrity constraint between the ArtistID
column in WORK and the ArtistID column in ARTIST.

6. In the Foreign Key Relationships dialog box, expand the INSERT and UPDATE
Specification, and then scroll down until it is visible. The property settings indicate
that neither updates to the primary key of ARTIST nor deletions of rows in ARTIST
will cause any cascading actions in the WORK table.

7. Click the Close button to close the Foreign Key Relationships dialog box.
8. Click the Close button to close the VRG Database Diagram.
9. Contract (minimize) the System Databases folder.

Indexes

As discussed in Appendix D, an index is a special data structure that is created to improve
database performance. SQL Server automatically creates an index on all primary and foreign
keys. A developer can also direct SQL Server to create an index on other columns that are
frequently used in WHERE clauses or on columns that are used for sorting data when
sequentially processing a table for queries and reports.

SQL Server supports two kinds of indexes for tables: clustered and nonclustered. With a
clustered index, the data are stored in the bottom level of the index and in the same order as
that index. With a nonclustered index, the bottom level of an index does not contain data; it
contains pointers to the data. Because rows can be sorted only in one physical order at a time,
only one clustered index is allowed per table. Retrieval is faster with clustered indexes than

392 Part 4 Multiuser Database Processing

nonclustered indexes. Updating is normally faster as well with clustered indexes, but not if
there are many updates in the same spot in the middle of the relation. For more information on
clustered and nonclustered indexes, see the SQL Server 2008 R2 Books Online article �Tables
and Index Data Structures Architecture,� which is available at http://msdn.microsoft.com/
en-us/library/ms180978.aspx.

SQL Server 2008 R2 also supports indexes on XML data (see the discussion of XML in
Chapter 12) and geometric or geographic spatial data types. For each column of XML data,
four types of indexes can be created: a primary XML index, a PATH secondary XML index, a
VALUE secondary XML index, and a PROPERTY secondary XML index. For each column of
spatial data, we can create a spatial index. For more information on XML indexes, see the SQL
Server 2008 R2 Books Online article �CREATE XML INDEX (Transact-SQL)� (http://msdn.
microsoft.com/en-us/library/bb934097.aspx). For more information on spatial indexes, see the
SQL Server 2008 R2 Books Online article �Spatial Indexing Overview� (http://msdn.microsoft.
com/en-us/library/bb964712.aspx).

To illustrate how to create indexes, we will create a new index on the ZipPostalCode
column in the CUSTOMER table.

Creating a New Index

1. In the SQL Server Management Studio Object Browser, expand the dbo.CUSTOMER
table object.

2. Expand the dbo.CUSTOMER table Index folder object to display the existing
indexes.

3. Right-click the Index folder object to display the shortcut menu.
4. Click the New Index command on the shortcut menu. The New Index dialog box

appears, as shown in Figure 10-23.
5. Type the name ZipPostalCodeIndex in the Index Name text box of the New Index

dialog box.
6. Click the Add button on the New Index dialog box to display the Select Columns

from �dbo.CUSTOMER� dialog box.

The New Index dialog
box

The General page

The Index name
text box

The Index type
drop-down list

The Unique checkbox

The Add button

The expanded
Indexes folder

The clustered
index icon

The nonclustered
index icon

The OK button

Figure 10-23

The New Index Dialog Box

Chapter 10 Managing Databases with SQL Server 2008 R2 393

The New Index dialog
box

The General page

The Index name

The included columns

The OK button

Figure 10-24

The Completed New Index
Dialog Box

7. Click the check box for the ZipPostalCode column in the Select Columns from
�dbo.CUSTOMER� dialog box.

8. Click the OK button on the Select Columns from �dbo.CUSTOMER� dialog box. The
New Index dialog box now appears, as shown in Figure 10-24.

9. Click the OK button in the New Index dialog box to create the ZipPostalCodeIndex.
The ZipPostalCodeIndex nonclustered index object appears in the Indexes folder of
the dbo.CUSTOMER table in the Object Browser.

10. Collapse the dbo.CUSTOMER table structure in the Object Browser.

Populating the VRG Tables with Data

You can enter data into SQL Server either by entering data into a table grid in the Microsoft
SQL Server Management Studio GUI display or by using SQL INSERT statements. The
Microsoft SQL Server Management Studio GUI display is more useful for occasional data edits
than for populating all the tables of a new database. You can open a table grid for data entry by
right-clicking the table name to display a shortcut menu, and then clicking the Edit Top
200 Rows command.

However, we will use the same method for populating the VRG database tables that we
used to create the table structure: an SQL script. But before we do that, we need to address the
surrogate key values issue raised in Chapter 7. The data shown in Figure 7-16 is sample data,
and the primary key values of CustomerID, ArtistID, WorkID, and TransactionID shown in
that figure are nonsequential. Yet, the Transact-SQL IDENTITY(seed, increment) property
that we use to populate SQL Server surrogate primary keys creates sequential numbering.

This means that if we write and execute SQL INSERT statements to put the artist data
shown in Figure 7-16 (b) into the ARTIST table, the values of ArtistID that will be added to the
table will be (1, 2, 3, 4, 5, 6, 7, 8, 9) instead of the values of (1, 2, 3, 4, 5, 11, 17, 18, 19) listed in the
figure. How can we enter the needed nonsequential values?

The answer is the Transact-SQL IDENTITY_INSERT property. When IDENTITY_INSERT
is set to OFF (the default setting), only the SQL Server DBMS can enter data into the controlled ID
column in the table. When IDENTITY_INSERT is set to ON, values can be input into the controlled
column in the table. However, IDENTITY_INSERT can only be set to ON for only one table at a
time. Further, IDENTITY_INSERT requires the use of a column list containing the name of the
surrogate key in each INSERT command.

394 Part 4 Multiuser Database Processing

Thus, instead of using an SQL INSERT statement that automatically enters the surrogate
value, such as:

/* *** EXAMPLE CODE - DO NOT RUN *** */

INSERT INTO ARTIST VALUES(’Miro’, ’Joan’, ’Spanish’, 1893, 1983);

we have to use a set of SQL statements similar to the following:

/* *** EXAMPLE CODE - DO NOT RUN *** */

SET IDENTITY_INSERT dbo.ARTIST ON

INSERT INTO ARTIST

(ArtistID, LastName, FirstName, Nationality,

DateOfBirth, DateDeceased)

VALUES (1, ’Miro’, ’Joan’, ’Spanish’, 1893, 1983);

SET IDENTITY_INSERT dbo.ARTIST OFF

Note how we set INDENTITY_INSERT to ON, insert the date, and then set
IDENTITY_INSERT to OFF. Of course this is a lot of work if we are inserting one row of data at
a time, but when used in an SQL script that inserts a lot of data into a table it makes sense. So,
we will use an SQL script.

The set of SQL INSERT statements needed to populate the VRG database with the View
Ridge Gallery data shown in Figure 7-16 is shown in Figure 10-25. Create and save a new SQL
script named DBP-e12-VRG-Table-Data.sql based on Figure 10-25, testing it with the Parse
command (use the Parse button) until you have corrected any errors. Save the corrected
script, and then run the script (use the Execute button) to populate the tables. Close the script
window after the script has been successfully run.

Figure 10-25

The SQL Statements to
Populate the VRG Tables

Chapter 10 Managing Databases with SQL Server 2008 R2 395

Figure 10-25

Continued

(continued)

396 Part 4 Multiuser Database Processing

Figure 10-25

Continued

Creating Views

SQL views were discussed in Chapter 7. One view we created there was CustomerInterestsView. In
SQL Server 2008 R2, views can be created in the Microsoft SQL Server Management Studio
by using either an SQL statement (as we have done to create and populate the VRG tables) or
by using the GUI Display (by right-clicking the Views folder to display a shortcut menu and then
clicking the New View command.) CustomerInterestsView can be created with the SQL statement:

/* SQL View SQL-CREATE-VIEW-CH07-05 - CustomerInterestsView */

CREATE VIEW CustomerInterestsView AS

SELECT C.LastName AS CustomerLastName,

C.FirstName AS CustomerFirstName,

A.LastName AS ArtistName

FROM CUSTOMER AS C JOIN CUSTOMER_ARTIST_INT AS CAI

ON C.CustomerID = CAI.CustomerID

JOIN ARTIST AS A

ON CAI.ArtistID = A.ArtistID;

Chapter 10 Managing Databases with SQL Server 2008 R2 397

Figure 10-25

Continued
(continued)

Note that the comment labeling this SQL CREATE VIEW statement refers to the view as
SQL-CREATE-VIEW-CH07-05:

/* SQL View SQL-CREATE-VIEW-CH07-05 - CustomerInterestsView */

This numbering corresponds to the numbering we used in Chapter 7, and is used here
for continuity and easy reference between this chapter and Chapter 7. Figure 10-26 on
page 402 shows this SQL CREATE VIEW statement in an SQL script named DBP-e12-VRG-
Create-Views.sql in the Microsoft SQL Server Management Studio. We will step through
creating and testing this view.

Creating a New View

1. In the Microsoft SQL Server Management Studio Object Explorer, click the New Query
button to open a new tabbed SQL document window.

2. Click the Intellisense Enabled button to disable the Intellisense feature.
3. Type the SQL statements, but not the comments, shown in Figure 10-25.
4. Click the Parse button. If there are any SQL coding errors detected, fix them.
5. Click the Execute button.
6. Expand the Views folder in the VRG database object. Note that the dbo.CustomerInter-

estsView object has been added to the VRG database, as shown in Figure 10-26.
7. To save this CREATE VIEW statement as part of an SQL script, add the comments

shown in Figure 10-26 and then save the script as DBP-e12-VRG-Create-
Views.sql.

8. Click the document window Close button to close the window.

We can now look at the view in a GUI display.

398 Part 4 Multiuser Database Processing

Figure 10-25

Continued

Chapter 10 Managing Databases with SQL Server 2008 R2 399

Figure 10-25

Continued

(continued)

400 Part 4 Multiuser Database Processing

Figure 10-25

Continued

Chapter 10 Managing Databases with SQL Server 2008 R2 401

Figure 10-25

Continued

402 Part 4 Multiuser Database Processing

The Execute button

The Intellisense
Enabled button

The Parse button

The Views folder
object

The
dbo.CustomerInterestsView
view object

Figure 10-26

Creating an SQL View

Viewing an Existing View in the SQL Server GUI Display

1. Right-click the dbo.CustomerInterestsView object in the Object Browser to display
a shortcut menu.

2. Click the Design command on the shortcut menu. The dbo.CustomerInterestsView
is displayed in a new tabbed document window in the GUI display format.

3. Rearrange the components of the view in the GUI display so that it appears as shown
in Figure 10-27.

4. Click the Save button to save the reconfigured view GUI display.
5. Click the document window Close button to close the GUI display window.
6. Collapse the Views folder in the Object Browser.

The
dbo.CustomerInterestsView
view object

The
dbo.CustomerInterestsView
view in the GUI display as a
tabbed document page

Figure 10-27

Viewing an SQL View in the
GUI Display

Chapter 10 Managing Databases with SQL Server 2008 R2 403

As explained in Chapter 7, SQL views are used like tables in other SQL statements. For
example, to see all the data in the view, we use the SQL SELECT statement:

/* SQL View SQL-Query-View-CH07-05 - CustomerInterestsView */

SELECT *

FROM CustomerInterestsView

ORDER BY CustomerLastName, CustomerFirstName;

Running a Single SQL Command in an SQL Script

1. Add the SQL code for SQL-Query-View-07-05 into your DBP-e12-VRG-Create-Views.sql
SQL script file.

2. Click the Save button to save the edited script file.
3. As shown in Figure 10-28, highlight just the SQL-Query-View-07-05 SQL query

statement.
4. Click the Execute button.
5. Note that only the SQL-Query-Views-10-01 SQL query statement is executed, not the

entire script, and the results are displayed in the tabbed Results window as shown in
Figure 10-28.

6. Close the DBP-e12-VRG-Create-Views.sql SQL script file.

This is a handy technique to know�it allows you to run store multiple SQL commands in a
single SQL script, and then run only the command or commands that you want to run. The
result is shown in Figure 10-29.

At this point, you should create and add all the SQL views and SQL view queries
discussed in Chapter 7 to the DBP-e12-VRG-Create-Views.sql SQL script file. With these
views created in the VRG database, they will be available for use in later sections of
this chapter.

The Save button

The Execute button

Highlight just the
SELECT command
code as shown, and
then click the Execute
button

The results of the
highlighted SQL
command are
displayed in a tabbed
Results window

Figure 10-28

Running a Selected SQL
Command in an SQL Script

404 Part 4 Multiuser Database Processing

SQL Server Application Logic

An SQL Server database can be processed from an application in a number of different ways. The
first is one that we are already familiar with�SQL scripts. For security, however, such files should
only be used during application development and testing and never on an operational database.

Another way is to create application code using a Microsoft .NET language such as
C#.NET, C++.NET, VB.NET, or some other programming language and then invoke SQL Server
DBMS commands from those programs. The modern way to do this is to use a library of object
classes, create objects that accomplish database work, and then process those objects by
setting object properties and invoking object methods. We will look at another alternative�
embedding SQL statement in Web page code using the PHP scripting language in Chapter 11.

Finally, based on the SQL standard, application logic can be embedded in SQL/Persistent
Stored Modules (SQL/PSM) modules�functions, triggers, and stored procedures. As you
learned in Chapter 7, triggers can be used to set default values, to enforce data constraints, to
update views, and to enforce referential integrity constraints. In this chapter, we will describe
four triggers, one for each of the four trigger uses. These triggers will be invoked by SQL Server
when the specified actions occur.

Stored procedures, as described in Chapter 7, can then be invoked from application
programs or from Web pages using languages such as VBScript or PHP. Stored procedures can
also be executed from the SQL Server Management Studio, but this should be done only when

Figure 10-29

Result of Using the View
CustomerInterestsView

Chapter 10 Managing Databases with SQL Server 2008 R2 405

the procedures are being developed and tested. As described in Chapter 9, for security reasons,
no one other than authorized members of the DBA staff should be allowed to interactively
process an operational database.

In this chapter, we will describe and illustrate two stored procedures. Here, we will test
those procedures by invoking them from the SQL Server Management Studio, and some of our
output will be designed specifically for this environment. Again, this should be done only
during development and testing. You will learn how to invoke these stored procedures from
application code in Chapter 11.

Transact-SQL

Transact-SQL (T-SQL) is Microsoft�s name for the SQL Server variant of SQL, and includes
SQL/PSM capabilities for use in stored procedures and triggers. We will use certain SQL/PSM
elements of Transact-SQL in such code, and therefore we need to discuss them at this point.
Information on these and other Transact-SQL language components can be found at the
Microsoft SQL Server 2008 R2 Transact-SQL Reference at http://msdn.microsoft.com/en-us/
library/bb510741.aspx.

Transact-SQL Varibles
Transact-SQL identifies variables and parameters with an @ symbol. Thus, WorkID is a
column name, but @WorkID is a Transact-SQL variable or parameter. A parameter is a value
that is passed to a stored procedure when it is called. A variable is a value used within a stored
procedure or trigger itself. Comments in Transact-SQL are either enclosed in /* and */ signs or
follow two dashes (- -) if they are restricted to one line.

Transact-SQL statements in procedures and triggers can be written with or
without the ending semicolon (;) required in nonprocedural SQL statements.

For consistency, we will continue to use semicolons for SQL statements, but we will not
use them for some of the other procedural elements discussed in the following sections.

Transact-SQL Control-of-Flow Statements
The Transact-SQL control-of-flow language contains procedural language components that let
you control exactly which parts of your code are used and the conditions required for their use.
These components include IF . . . ELSE, BEGIN . . . END, WHILE, RETURN, and other keywords
that can be used to direct the operations of a block of code. The IF . . . ELSE keywords are used
to test for a condition, and then direct which blocks of code are used based on the result of that
test. Note that the END keyword is not used as part of this construct in Transact-SQL, although it
is commonly used here in many other programming languages. The BEGIN . . . END keywords
define a block of Transact-SQL statements so that more than one statement can be executed.
Without this grouping, only one SQL statement can be used in either the IF or ELSE section of an
IF . . . ELSE conditional branching. The WHILE keyword is used to create loops in Transact-SQL,
where a section of code is repeated as long as (�while�) some condition is true. The RETURN
keyword is used to exit a block of code and terminate whatever code structure (stored procedure
or trigger) is running. In this case, control is �returned� to the DBMS.

As an example, let�s consider a new customer at the View Ridge Gallery who needs to have
customer data entered into the CUSTOMER table and artist interest data entered into the
CUSTOMER_ARTIST_INT table. The new customer is Michael Bench, with phone number
206-876-8822, e-mail address Michael.Bench@somewhere.com, and an interest in French artists.

Before we enter Michael�s data, we need to check to see whether he is already in the
database. To do this, we can use the following Transact-SQL code in a trigger or stored produre:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH10-01 *** */

DECLARE @RowCount AS Int

-- Check to see if Customer already exist in database

406 Part 4 Multiuser Database Processing

SELECT @RowCount = COUNT(*)

FROM CUSTOMER

WHERE LastName = ’Bench’

AND FirstName = ’Michael’

AND AreaCode = ’206’

AND PhoneNumber = ’876-8822’

AND Email = ’Michael.Bench@somewhere.com’;

-- IF @RowCount > 0 THEN Customer already exists.

IF (@RowCount > 0)

BEGIN

PRINT ’The Customer is already in the database.’

RETURN

END

-- IF (@RowCount = 0) THEN Customer does not exist in database.

ELSE

BEGIN

-- Insert new Customer data.

INSERT INTO dbo.CUSTOMER

(LastName, FirstName, AreaCode, PhoneNumber,

Email)

VALUES(’Bench’, ’Michael’, ’206’, ’876-8822’,

’Michael.Bench@somewhere.com’);

PRINT ’The new Customer is now in the database.’

END

This block of SQL code illustrates the use of all of the control-of-flow keywords we have
discussed except WHILE. The WHILE keyword is used in code loops, and one use of a code
loop is in an SQL cursor.

Transact-SQL Cursor Statements

As we discussed in Chapter 7, a cursor is used so that SQL results stored in a table can be
processed one row at a time. The Transact-SQL cursor is Microsoft�s implementation of a
cursor. Related cursor keywords include DECLARE, OPEN, FETCH, CLOSE, and DEALLOCATE.
The DECLARE CURSOR keywords are used to create a cursor, whereas the OPEN CURSOR
keywords start the use of the cursor. The FETCH keyword is used to retrieve row data. The
CLOSE CURSOR keywords are used to exit the use of a cursor, and the DEALLOCATE
CURSOR keywords remove the cursor from the DBMS. When using a cursor, the WHILE
keyword is used to control how long the cursor is active.

Let�s consider Michael Bench�s interest in French artists. The ARTIST table has two
French artists�Henri Matisse and Marc Chagall. Therefore, we need to add new rows to
CUSTOMER_ARTIST_INT, both of which will contain Michael�s CustomerID number (now
that he has one) and each of which contain the ArtistID for one of these artists. To do this, we
can use the following Transact-SQL code in a trigger or stored procedure:

/* *** EXAMPLE CODE � DO NOT RUN *** */

/* *** SQL-Code-Example-CH10-02 *** */

DECLARE @ArtistID AS Int

DECLARE @CustomerID AS Int

Chapter 10 Managing Databases with SQL Server 2008 R2 407

-- GET the CustomerID surrogate key value.

SELECT @CustomerID = CustomerID

FROM CUSTOMER

WHERE LastName = ’Bench’

AND FirstName = ’Michael’

AND AreaCode = ’206’

AND PhoneNumber = ’876-8822’

AND Email = ’Michael.Bench@somewhere.com’;

-- Create intersection record for each appropriate Artist.

-- Create cursor ArtistCursor

DECLARE ArtistCursor CURSOR FOR

SELECT ArtistID

FROM ARTIST

WHERE Nationality = ’French’;

--Process each appropriate Artist

OPEN ArtistCursor

FETCH NEXT FROM ArtistCursor INTO@ArtistID

WHILE @@FETCH_STATUS = 0

BEGIN

INSERT INTO CUSTOMER_ARTIST_INT

(ArtistID, CustomerID)

VALUES(@ArtistID, @CustomerID)

PRINT ’New CUSTOMER_ARTIST_INT row added.’

PRINT ’ArtistID = ’+CONVERT(Char(6), @ArtistID)

PRINT ’CustomerID = ’+CONVERT(Char(6), @CustomerID);

FETCH NEXT FROM ArtistCursor INTO @ArtistID

END

CLOSE ArtistCursor

-- Remove cursor ArtistCursor

DEALLOCATE ArtistCursor

In this code, the ArtistCursor loops through the set of ArtistID values for French artists as
long as (�while�) the value of @@FETCH_STATUS is equal to 0. The Transact-SQL
@@FETCH_STATUS function returns a value based on whether the FETCH NEXT state-
ment actually returned a value from the next row. If there is no next row, then
@@FETCH_STATUS returns 0.

Transact-SQL Output Statements
The two previous code segments also illustrate the use of the Transact-SQL PRINT
command. This command will send a message to the SQL Server Management Console
Messages window. We will use this output as a proxy for the real output that would be
returned to an application, as it would be in most situations. Note that the actual output to
be printed is marked by a single quote at the beginning and the end. Also note the use of
the CONVERT function. The Transact-SQL CONVERT function is used to change one
data type to another. In this case, we can only print character strings, so numbers such as
ArtistID must be converted to character strings using the CONVERT function. Character
strings can be combined by using the plus sign (+), and this is also shown in the code
segments above.

408 Part 4 Multiuser Database Processing

Stored Procedures

When using SQL Server 2000, stored procedures must be written in Transact-SQL. Starting with
the release of SQL Server 2005, stored procedures and triggers can be written in any of the .NET
or CLR languages, such as Visual Basic.NET, Visual C#.NET, and Visual C++.NET. Transact-SQL
continues to be supported and will have improved features and functions for error handling, as
well as other language upgrades, and the Transact-SQL shown here will operate in SQL Server
2005, SQL 2008, and SQL 2008 R2. In the long run, however, Visual Basic.NET, Visual C#.NET, or
Visual C++.NET will become better choices for stored procedures and triggers.

As with other database structures, you can write a stored procedure in an SQL script text
file and process the commands using the SQL Server Management Studio. However, there is
one little gotcha. The first time you create a stored procedure in an SQL script, you use the SQL
CREATE PROCEDURE statement. Subsequently, if you change the procedure, use the
SQL ALTER PROCEDURE statement. Otherwise, you will get an error message saying that
the procedure already exists when you execute the modified procedure code.

You can also create a stored procedure within the SQL Server Management Studio by
Enterprise Manager by expanding a database�s Programmability folder object, right-clicking
Stored Procedures, and selecting New Stored Procedure. If you do this, however, SQL Server
simply opens an editable draft template in a tabbed document window.

The Stored Procedure InsertCustomerAndInterests
In our preceding discussion of Transact-SQL, we used as our example the need to enter data
for a new customer and the artists of interest to that customer. The code segments we wrote
were very specifically tied to the data we used, and thus of limited use. Is there a way to write a
general block of code that could be used for more than one customer? Yes, and that block of
code is a stored procedure.

Figure 10-30 shows the SQL code for the InsertCustomerAndInterests stored procedure.
This stored procedure generalizes our previous code and can be used to insert data for any new
customer into CUSTOMER, and then store data for that customer in CUSTOMER_ARTIST_INT,
linking the customer to all artists having a particular nationality.

Five parameters are input to the procedure: @NewLastName, @NewFirstName,
@NewAreaCode, @NewPhoneNumber, and @Nationality. The first four parameters are the new
customer data, and the fourth one is the nationality of the artists for which the new customer
has an interest. The stored procedure also uses three variables: @RowCount, @ArtistID, and
@CustomerID. These variables are used to store values of the number of the row, the value of the
ArtistID primary key, and the value of the CustomerID primary key, respectively.

The first task performed by this stored procedure is to determine whether the customer
already exists. If the value of @RowCount in the first SELECT statement is greater than zero,
then a row for that customer already exists. In this case, nothing is done, and the stored
procedure prints an error message and exits (using the RETURN command). As stated earlier,
the error message is visible in the Microsoft SQL Server Management Studio, but it generally
would not be visible to application programs that invoked this procedure. Instead, a parameter
or other facility needs to be used to return the error message back to the user via the
application program. Discussion of that topic is beyond the scope of the present discussion,
but we will send message back to the Microsoft SQL Server Management Studio to mimic such
actions and provide a means to make sure our stored procedures are working correctly.

If the customer does not already exist, the procedure inserts the new data into the table
dbo.CUSTOMER and then a new value of CustomerID is read into the variable @CustomerID.
Internally, SQL Server adds a prefix to the table name that shows the name of the user who created
it. Here, the prefix dbo is used to ensure that the CUSTOMER table created by the database owner
(dbo) is processed. Without the dbo prefix, if the user invoking the stored procedure had created a
table named CUSTOMER, then the user�s table and not the dbo�s table would be used.

The purpose of the second SELECT in Figure 10-30 is to obtain the value of the surrogate key
CustomerID that was created by the INSERT statement. Another option is to use the Transact-
SQL @@Identity function, which provides the value of the most recently created surrogate key
value. Using this function, you could replace the second SELECT statement with the expression:

SET @CustomerID = @@Identity

Chapter 10 Managing Databases with SQL Server 2008 R2 409

Figure 10-30

The SQL Statements for the
InsertCustomerAndInterests
Stored Procedure

(continued)

410 Part 4 Multiuser Database Processing

Figure 10-30

Continued

To create the appropriate intersection table rows, an SQL cursor named ArtistCursor is
created on an SQL statement that obtains all ARTIST rows where Nationality equals the
parameter @Nationality. The cursor is opened and positioned on the first row by calling
FETCH NEXT, and then the cursor is processed in a WHILE loop. In this loop, statements
between BEGIN and END are iterated until SQL Server signals the end of the data by setting
the value of the SQL Server function @@FETCH_STATUS to zero. Upon each iteration of the
WHILE loop, a new row is inserted into the intersection table CUSTOMER_ ARTIST_INT. The
FETCH NEXT statement at the end of the block moves the cursor to the next row.

To create the InsertCustomerAndInterests stored procedure in the VRG database, create
a new SQL script named DBP-e12-VRG-Create-Stored-Procedures.sql containing the SQL code
in Figure 10-30. Include a beginning comments section similar to the one shown in Figure 10-13.
Use the Parse button to check your SQL code, and after it parses correctly save the completed
code before running it. Finally, check to make sure that the VRG database is selected in the
Available Databases list, and then use the Execute button to create the stored procedure.

To invoke the InsertCustomerAndInterests stored procedure for Michael Bench, we use
the following SQL statement:

/* *** SQL-EXEC-CH10-01 *** */

EXEC InsertCustomerAndInterests

@NewLastName = ’Bench’, @NewFirstName = ’Michael’,

@NewAreaCode = ’206’, @NewPhoneNumber = ’876-8822’,

@NewEmail = ’Michael.Bench@somewhere.com’,

@Nationality = ’French’;

Before we test any new functionality of a database, such as a stored
procedure or a trigger, it is always a good idea to refresh the content of

the database in Microsoft SQL Server Management Studio. This can be done by using
the Refresh command in the object shortcut menu. For example, after creating the

Chapter 10 Managing Databases with SQL Server 2008 R2 411

The Execute button

The SQL statement
to run the stored
procedure

The Parse button

The output from
running the stored
procedure

The Stored
Procedures folder
object

The
dbo.InsertCustomerAndInterests
stored procedure object

Figure 10-31

Running the
InsertCustomerAndInterests
Stored Procedure

Figure 10-31 shows the execution of the stored procedure in the SQL Server Management
Studio. Notice how our sections of PRINT commands have produced the necessary output so
that we can see what actions were taken. If we now wanted to check the tables themselves, we
could do so, but that is not necessary at this point. In the output in Figure 10-31, we see that
customer Michael Bench has been added to the CUSTOMER table and that new rows (a total
of two, although we would have to scroll through the output to see that there are no more than
two) have been inserted into the CUSTOMER_ARTIST_INT table.

You can include the preceding EXEC InsertCustomerAndInterests
statement in your DBP-e12-VRG-Create-Stored-Procedures.sql script and

run it from there using the highlighting technique we illustrated in the section on SQL
views. There we noted that when there are multiple SQL statements in an open SQL
script file, you can still run them one at a time by highlighting just the SQL statement or
statements that you want to use. The Microsoft SQL Server Management Studio will
then only apply actions such as parsing (using the Parse button) and executing (using
the Execute button) to the highlighted SQL statement or statements.

This is a good trick to know, because it allows you to store multiple SQL state-
ments (e.g., a set of queries) in one SQL script for convenience but still control which
statements are actually executed. Even better, if you highlight more than one SQL
statement, then the highlighted set of commands can be controlled the same way.

The Stored Procedure InsertCustomerWithTransaction
Now we will write a stored procedure that inserts data for a new customer, records a purchase,
and creates an entry in the CUSTOMER_ARTIST_INT table. We will name this stored proce-
dure InsertCustomerWithTransaction, and the necessary SQL code is shown in Figure 10-32.

InsertCustomerAndInterests stored procedure, right-click the VRG Stored Procedures
folder in the Programmability folder and then click the Refresh command. Then expand
the Stored Procedures folder and make sure the stored procedure object (shown as
dbo.InsertCustomerWithInterests) is visible before running any test data.

412 Part 4 Multiuser Database Processing

Figure 10-32

The SQL Statements for the
InsertCustomerWithTransaction
Stored Procedure

Chapter 10 Managing Databases with SQL Server 2008 R2 413

Figure 10-32

Continued

This procedure receives seven parameters having data about the new customer and about the
customer�s purchase. We will use this procedure to discuss transaction processing in SQL
Server 2008 R2.

The first action is to see whether the customer already exists. If so, the procedure exits with
an error message. If the customer does not exist, this procedure then starts a transaction with
the Transact-SQL BEGIN TRANSACTION command. Recall from Chapter 9 that transactions
ensure that all of the database activity is committed atomically; either all of the updates occur or
none of them do. The transaction begins, and the new customer row is inserted. The new value of
CustomerID is obtained, as shown in the InsertCustomerWithInterests stored procedure. Next,
the procedure checks to determine whether ArtistID, WorkID, and TransactionID are valid. If any
are invalid, the transaction is rolled back using the Transact-SQL ROLLBACK TRANSACTION
command.

(continued)

414 Part 4 Multiuser Database Processing

Figure 10-32

Continued If all the surrogate key values are valid, two actions in the transaction are completed.
First, an UPDATE statement updates DateSold, SalesPrice, and CustomerID in the appropri-
ate TRANS row. DateSold is set to system date via the Transact-SQL GETDATE() function,
SalesPrice is set to the value of @TransSalesPrice, and CustomerID is set to the value of
@CustomerID. Second, a row is added to CUSTOMER_ARTIST_INT to record the customer�s
interest in this artist.

If everything proceeds normally to this point, the transaction is committed using the
Transact-SQL COMMIT TRANSACTION command. After, and only after, the transaction is
committed, we print the results messages.

To create the InsertCustomerWithTransaction stored procedure in the VRG database,
add the SQL code in Figure 10-32 to your DBP-e12-VRG-Create-Stored-Procedures.sql script.
Include a comment to separate the code sections in this script file. Use the highlighting
technique described in the preceding By the Way feature to parse and execute the SQL code.

Chapter 10 Managing Databases with SQL Server 2008 R2 415

To use the InsertCustomerWithTransaction stored procedure, we will record the
following purchase by our next new customer, Melinda Gliddens, who just bought a print of
John Singer Sargent�s Spanish Dancer for $350.00. The SQL statement is:

/* *** SQL-EXEC-CH10-02 *** */

EXEC InsertCustomerWithTransaction

@NewCustomerLastName = ’Gliddens’,

@NewCustomerFirstName = ’Melinda’,

@NewCustomerAreaCode = ’360’,

@NewCustomerPhoneNumber = ’765-8877’,

@NewCustomerEmail = ’Melinda.Gliddens@somewhere.com’,

@ArtistLastName = ’Sargent’, @WorkTitle = ’Spanish Dancer’,

@WorkCopy = ’588/750’, @TransSalesPrice = 350.00;

To execute this EXEC InsertCustomerWithTransaction statement, add the SQL statement to
your VRG-Create-Stored-Procedures.sql script. Include a comment to separate the new SQL
statement. Use the highlighting technique described in the preceding By the Way feature to
parse and execute the SQL statement. Figure 10-33 shows the invocation of this procedure
using sample data.

If we now look at the SQL code that has actually been stored for these
two stored procedures (by right-clicking the stored procedure object and

then choosing Modify), we will find that SQL Server has added the following lines before
the code we wrote:

USE [VRG]

GO

/****** Object: StoredProcedure [{StoredProcedureName}]

Script Date: {Date and Time created or altered} ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

The Transact-SQL USE [{DatabaseName}] command tells the stored proce-
dure to use the VRG database when it is called. This is the SQL command equivalent of
selecting the database name in the Available Databases drop-down list in the Microsoft
SQL Server Management Studio.

The Transact-SQL SET ANSI_NULLS ON command specifies how SQL server
handles comparisons of NULL values using equals (=) and not equals (<>) (for
more information, see http://msdn.microsoft.com/en-us/library/ms188048.aspx).

The Transact-SQL SET QUOTED_IDENTIFIER ON command specifies that
object identifiers (table names, column names, etc.) can be enclosed in double
quotes (�), which allows the use of SQL reserved words as objects names. For
example, we could run the SQL statement:

/* *** EXAMPLE CODE - DO NOT RUN *** */

SELECT "Select"

FROM "FROM"

WHERE "Where" = ’San Francisco’;

Note that literals (San Francisco in this example) are still enclosed in single quotes.
For more information, see http://msdn.microsoft.com/en-us/library/ms174393.aspx.

(continued)

416 Part 4 Multiuser Database Processing

Finally, the GO command is not a Transact-SQL statement, but rather a command
used by the Microsoft SQL Server Management Studio (and other SQL utilities) to mark
the end of a batch of commands so that the utility can process sections of the code (as
marked by the GO commands) separately instead of all at once. Declared variables
(@RowCount) only exist within a section of code delineated by the GO statement and are
cleared after that group of statements is run. For more information, see http://msdn.
microsoft.com/en-us/library/ms188037.aspx.

The Execute button

The SQL statement
to run the stored
procedure

The Parse button

The output from
running the stored
procedure

The Stored
Procedures folder
object

The
dbo.InsertCustomerWithTransaction
stored procedure object

Figure 10-33

Running the
InsertCustomerWith
Transaction Stored Procedure

Triggers

SQL Server 2008 R2 supports the INSTEAD OF and AFTER triggers, but not a BEFORE trigger.
A table may have one or more AFTER triggers for insert, update, and delete actions; AFTER
triggers may not be assigned to views. A view or table may have at most one INSTEAD OF trig-
ger for each triggering by an insert, an update, or a delete action.

In SQL Server, triggers can roll back the transactions that caused them to be fired. When
a trigger executes a ROLLBACK or ROLLBACK TRANSACTION command (two versions of
the same command), all work done by the transaction that caused the trigger to be fired will be
rolled back. If the trigger contains instructions after the ROLLBACK command, those
instructions will be executed. However, any instructions in the transaction after the statement
that caused the trigger to be fired will not be executed.

For insert and update triggers, the new values for every column of the table being processed
will be stored in a pseudotable named inserted. If, for example, a new row is being added to the
ARTIST table, the pseudotable inserted will have five columns: LastName, FirstName, Nationality,
DateOfBirth, and DateDeceased. Similarly, for update and delete commands, the old values for
every column of the table being updated or deleted will be stored in the pseudotable named
deleted. You will see how to use these pseudotables in the examples that follow.

The next four sections illustrate four triggers for each of the trigger functions described in
Chapter 7. The best way to create these triggers is by keying them into an SQL script (using
CREATE TRIGGER or ALTER TRIGGER as the first statement) in the Microsoft SQL Server
Management Studio SQL editor. You can create a trigger by right-clicking the Triggers folder
object for each table, but this only creates a skeleton trigger template for you to edit. It is better
to create and test your own SQL script. For the VRG database, use an SQL script named
DBP-e12-VRG-Create-Triggers.sql, with introductory comments and comment lines to separate

Chapter 10 Managing Databases with SQL Server 2008 R2 417

the triggers and the SQL statements used to test them. Use the previously discussed
highlighting technique to control which SQL statement is actually being run.

A Trigger for Setting Default Values
Triggers can be used to set default values that are more complex than those that can be set with
the Default constraint on a column definition. For example, the View Ridge Gallery has a pricing
policy that says that the default AskingPrice of an artwork depends on whether the piece has
been in the gallery before. If not, the default AskingPrice is twice the AcquisitionPrice. If the
artwork has been in the gallery before, the default price is the larger of twice the AcquisitionPrice
or the AcquisitionPrice plus the average net gain of the work in the past. The TRANS_
AfterInsertSetAskingPrice trigger shown in Figure 10-34 implements this pricing policy.

Note the use of the AFTER keyword in this trigger code. We can use the keywords FOR or
AFTER here, but both of these indicate an AFTER trigger, and SQL Server does not support
BEFORE triggers.

In the trigger, after the variables are declared, the new values of WorkID and Acquisition-
Price are obtained from the inserted pseudotable. Then, a SELECT FROM dbo.TRANS is exe-
cuted to count the number of rows with the given WorkID. This trigger uses the system function
@@rowCount, which contains the number of rows processed in the preceding Transact-SQL
statement. Its value must be checked immediately after the statement is executed or saved in a
variable to be checked later. Here, the trigger immediately uses the value of @@rowCount.

The variable @PriorRowCount is set to @@rowCount minus one because this is an AFTER
trigger, and the new row will already be in the database. The expression (@@rowCount-1) is the
correct number of qualifying TRANS rows that were in the database prior to the insert.

We test to see if the work is new. If so, @NewAskingPrice is then set to twice the
AcquisitionPrice. If the work has been in the gallery before, we must calculate which value of
@NewAskingPrice to use. Thus, if @PriorRowCount is greater than zero, there were TRANS rows
for this work in the database, and the ArtistWorkNet view (see pages 284�285) is used to obtain
the sum of the WorkNetProfit for the work. The AVG built-in function cannot be used because it
will compute the average using @@rowCount rather than @PriorRowCount. Next, the two possi-
ble values of @AskingNewPrice are compared, and @NewAskingPrice is set to the larger value.
Finally, an update is made to TRANS to set the computed value of @newPrice for AskingPrice.

To test the trigger, we will begin by obtaining a new work for the View Ridge Gallery.
Because Melinda Gliddens just bought the only copy of the print John Singer Sargent�s Spanish
Dancer, we will replace it:

-- INSERT new work into WORK

/* *** SQL-INSERT-CH10-01 *** */INSERT INTO WORK VALUES(

’Spanish Dancer’, ’635/750’, ’High Quality Limited Print’,

’American Realist style - From work in Spain’, 11);

-- Obtain the new WorkID form WORK

/* *** SQL-Query-CH10-01 *** */

SELECT WorkID

FROM dbo.WORK

WHERE ArtistID = 11

AND Title = ’Spanish Dancer’

AND Copy = ’635/750’;

In the two stored procedures we discussed in the previous section, the
@@rowCount function could have been used instead of counting rows

using COUNT(*) to set the value of the variable @RowCount. Just remember to check it
or store it immediately after the SQL statement is executed.

418 Part 4 Multiuser Database Processing

Figure 10-34

The SQL Statements
for the TRANS_After
InsertSetAskingPrice
Trigger

Chapter 10 Managing Databases with SQL Server 2008 R2 419

Figure 10-34

Continued

The result of SQL-Query-CH10-01 gives us the WorkID of the new art work, which in this case
is 597:

We use this value in the SQL INSERT statement to record the new transaction:

-- Use the new WorkID value (597 in this case)

/* *** SQL-INSERT-CH10-02 *** */

INSERT INTO TRANS (DateAcquired, AcquisitionPrice, WorkID)

VALUES (’06/8/2010’, 200.00, 597);

Figure 10-35 shows the results of the events triggered by the INSERT statement on
TRANS. Note that the asking price for the new work (400.00) has been set to twice the acquisi-
tion cost (200.00), which is the correct value for a work that has not previously been in the
gallery. This trigger provides useful functionality for the gallery. It saves the gallery personnel
considerable manual work in implementing their pricing policy and likely improves the accu-
racy of the results as well.

The Execute button

The SQL statements
to run the trigger

The Parse button

The dbo.TRANS
Triggers folder object

The TRANS_AfterInsertSetAskingPrice
trigger object

The output from the
trigger

Figure 10-35

Results of the
TRANS_AfterInsertSetAsking
Price Trigger

420 Part 4 Multiuser Database Processing

At the beginning of the trigger code, you will see the Transact-SQL SET
NOCOUNT ON command, which controls some of the output

generated by SQL Server 2008 R2. You may have noticed that when, for example, you
execute INSERT statements SQL Server generates the message �(1 row(s) affected)�
after each INSERT statement so that this message appears in the Microsoft SQL
Server Management Studio Messages window. This is useful if you are actually
watching these actions (it tells you that the intended action successfully completed),
but it is meaningless when a trigger is firing based on an application action. Further,
the time it takes to generate these messages can slow performance down in some
cases. Therefore, we set NOCOUNT to ON so that these messages are not generated
by trigger actions.

A Trigger for Enforcing a Data Constraint
The View Ridge Gallery needs to track problem-customer accounts; these are customers who
have either not paid promptly or who have presented other problems to the gallery. When a
customer who is on the problem list attempts to make a purchase at the gallery, the gallery
wants the transaction to be rolled back and a message displayed. Note that this feature
requires an intertable CHECK constraint between the TRANS table and the CUSTOMER table,
which, as we discussed in Chapter 7, requires a trigger to implement.

To enforce this policy and the corresponding constraint, we need to add a column to
the CUSTOMER table named isProblemAccount. This column will use the SQL Server Bit
data type, which can have the values NULL, 0, and 1. Zero indicates a good account,
whereas a 1 indicates a problem account. And it looks like our new customer
Melinda Gliddens had trouble with her previous payment, so we set her isProblemAccount
value to 1:

-- Add column isProblemAccount to CUSTOMER

/* *** SQL-ALTER-TABLE-CH10-01 *** */

ALTER TABLE dbo.CUSTOMER

ADD isProblemAccount Bit NULL DEFAULT ’0’;

-- Set initial column values for CUSTOMER.isProblemAccount

/* *** SQL-UPDATE-CH10-01 *** */

UPDATE dbo.CUSTOMER

SET isProblemAccount = 0;

-- Set column value for Melinda Gliddens

/* *** SQL-UPDATE-CH10-02 *** */

UPDATE dbo.CUSTOMER

SET isProblemAccount = 1

WHERE LastName = ’Gliddens’

AND FirstName = ’Melinda’;

-- Check CUSTOMER.isProblemAccount column values

/* *** SQL-Query-CH10-02 *** */

SELECT CustomerID, LastName, FirstName, isProblemAccount

FROM dbo.CUSTOMER;

Chapter 10 Managing Databases with SQL Server 2008 R2 421

The results of the SELECT statement are:

Now we will create a trigger on TRANS named TRANS_CheckIsProblemAccount. With this
trigger, when a customer makes a purchase the trigger determines whether the customer is
flagged by the value of the isProblemAccount data in the CUSTOMER table. If so, the transaction
is rolled back and a message is displayed. The trigger code in Figure 10-36 enforces this policy.

Note one interesting feature of the trigger code in Figure 10-36. As noted there, this trigger
will fire for every update on TRANS, including updates fired by another trigger, such as
TRANS_AfterInsertSetAskingPrice. But in that trigger, no customer is involved. Therefore, before
completing the rest of this trigger, we have to be sure that there is actually a customer partici-
pating in a transaction whose account status needs to be checked. This is done by the line:

IF (@CustomerID IS NULL) RETURN

Note that we only want to exit the TRANS_CheckIsProblemAccount trigger if there is no customer,
not rollback the transaction that fired the trigger. When writing multiple triggers, remember that
they may be run from other actions besides the one that you originally created them to handle.

OK, here comes Melissa to make another purchase�let�s see what happens.

/* *** SQL-UPDATE-CH10-03 *** */

UPDATE TRANS

SET DateSold = ’11/18/2010’,

SalesPrice = 475.00,

CustomerID = 1056

WHERE TransactionID = 229;

The resulting output is shown in Figure 10-37. Looks like Melinda is off to talk to the manager
about her account!

Using a table of valid or invalid values is more flexible and dynamic than
placing such values in a CHECK constraint. For example, consider the

CHECK constraint on Nationality values in the ARTIST table. If the gallery manager wants
to expand the nationality of allowed artists, the manager will have to change the CHECK
constraint using the ALTER TABLE statement. In reality, the gallery manager will have to
hire a consultant to change this constraint.

A better approach is to place the allowed values of Nationality in a table, say,
ALLOWED_NATIONALITY. Then, write a trigger like that shown in Figure 10-36 to enforce
the constraint that new values of Nationality exist in ALLOWED_NATIONALITY. When
the gallery owner wants to change the allowed artists, the manager would simply add
or remove values in the ALLOWED_NATIONALITY table.

422 Part 4 Multiuser Database Processing

Figure 10-36

The SQL Statements for the
TRANS_CheckIsProblem
Account Trigger

A Trigger for Updating a View
In Chapter 7, we discussed the problem of updating views. One such problem concerns
updating views created via joins; it is normally not possible for the DBMS to know how to
update tables that underlie the join. However, sometimes application-specific knowledge can
be used to determine how to interpret a request to update a joined view.

Consider the view CustomerInterestsView shown in Figures 10-26, 27, and 28. It contains
rows of CUSTOMER and ARTIST joined over their intersection table. CUSTOMER.LastName is
given the alias CustomerLastName, CUSTOMER.FirstLastName is given the alias
CustomerFirstName, and ARTIST.LastName is given the alias ArtistName. A request to change
the last name of a customer in CustomerInterests can be interpreted as a request to change the

Chapter 10 Managing Databases with SQL Server 2008 R2 423

Figure 10-36

Continued

The Execute button

The SQL statements
to run the trigger

The Parse button

The output from the
trigger

The dbo.TRANS
Triggers folder object

The TRANS_CheckIsProblemAccount
trigger object

Figure 10-37

Running the
TRANS_CheckIsProblem
Account Trigger

last name of the underlying CUSTOMER table. Such a request, however, can be processed only if
the value of CUSTOMER.LastName is unique. If not, the request cannot be processed.

The INSTEAD OF trigger shown in Figure 10-38 implements this logic. First, the new and
old values of the CustomerLastName column in CustomerInterestsView are obtained. Then, a
correlated subquery is used to determine whether the old value of CUSTOMER.LastName is
unique. If so, the name can be changed, but otherwise no update can be made.

This trigger needs to be tested against cases in which the last name is unique and cases in
which the last name is not unique. Figure 10-39 shows the case in which the customer name
was unique: View Ridge Gallery�s two newest customers, Michael Bench and Melissa Gliddens,
just got married after meeting at a View Ridge Gallery opening, and Melissa wants to change
her last name. To do this, we use the SQL statement:

/* *** SQL-UPDATE-CH10-04 *** */

UPDATE dbo.CustomerInterestsView

SET CustomerLastName = ’Bench’

WHERE CustomerLastName = ’Gliddens’;

Note that the UPDATE command was issued against the view. As indicated in the Messages
pane, Melissa is now Melissa Bench.

424 Part 4 Multiuser Database Processing

Figure 10-38

The SQL Statements for the
CIV_ChangeCustomerName
Trigger

Chapter 10 Managing Databases with SQL Server 2008 R2 425

Figure 10-38

Continued

A Trigger for Enforcing a Required Child Constraint
The VRG database design includes an M-M relationship between WORK and TRANS. Every
WORK must have a TRANS to store the price of the work and the date the work was acquired,
and every TRANS must relate to a WORK parent. Figure 10-40 shows the tasks that must be
accomplished to enforce this constraint; it is based on the boilerplate shown in Figure 6-28(b).

Because the CREATE TABLE statement for TRANS in Figure 10-13 defines
TRANS.WorkID as NOT NULL and defines the FOREIGN KEY constraint without cascading
deletions, the DBMS will ensure that every TRANS has a WORK parent. So, we need not be
concerned with enforcing the insert on TRANS or the deletion on WORK. As stated in Figure
10-40, the DBMS will do that for us. Also, we need not be concerned with updates to
WORK.WorkID, because it is a surrogate key.

Three constraints remain that must be enforced by triggers: (1) ensuring that a TRANS
row is created when a new WORK is created; (2) ensuring that TRANS.WorkID never changes;
and (3) ensuring that the last TRANS child for a WORK is never deleted.

We can enforce the second constraint by writing a trigger on the update of TRANS that
checks for a change in WorkID. If there is such a change, the trigger can roll back the change.

The Execute button

The SQL statements
to run the trigger

The Parse button

The output from the
trigger

The Views Triggers
folder object

The CIV_ChangeCustomerName
trigger object

Figure 10-39

Results of the
CIV_ChangeCustomerName
Trigger

426 Part 4 Multiuser Database Processing

With regards to the third constraint, View Ridge Gallery has a business policy that no
TRANS data ever be deleted. Thus, we need not only to disallow the deletion of the last child,
we need to disallow the deletion of any child. We can do this by writing a trigger on the
deletion of TRANS that rolls back any attempted deletion. (If the gallery allowed TRANS
deletions, we could enforce the deletion constraint using views, as shown in Chapter 7,
Figures 7-29 and 7-30.) The triggers for enforcing the second and third constraints are straight-
forward, and we leave them as Review Questions 10.28 and 10.29.

However, the first constraint is a problem. Now, we could write a trigger on the WORK
INSERT to create a default TRANS row, but this trigger will be called before the application
has a chance to create the TRANS row itself. The trigger would create a TRANS row and then
the application may create a second one. To guard against the duplicate, we could then write
a trigger on TRANS to remove the row the WORK trigger created in those cases when the
application creates its own trigger. However, this solution is awkward, at best.

A better design is to require the applications to create the WORK and TRANS combina-
tion via a view. For example, we can create a view named WorkAndTransView (we will add the
code into our DBP-e12-VRG-Create-Views.sql script and execute it from there):

/* *** SQL-CREATE-VIEW-CH10-01 � WorkAnd TransView *** */

CREATE VIEW WorkAndTransView AS

SELECT Title, Copy, Medium, [Description], ArtistID,

DateAcquired, AcquisitionPrice

FROM WORK AS W JOIN TRANS AS T

ON W.WorkID = T.WorkID;

We can display the view results by using the SQL SELECT command:

/* *** SQL-Query-View-CH10-01 *** */

SELECT *

FROM WorkAndTransView

ORDER BY DateAcquired;

The results of this query are shown in Figure 10-41.
The DBMS will not be able to process an INSERT on this view. We can, however, define an

INSTEAD OF trigger to process the insert. Our trigger, named WATV_ InsertTransaction-
WithWork, will create both a new row in WORK and the new required child in TRANS. The
code for this trigger is shown in Figure 10-42. Note that applications that use this solution

WORK
Is Required Parent
TRANS
Is Required Child

Action on WORK
(Parent)

Action on TRANS
(Child)

Insert Create a TRANS row New TRANS must have a
valid WorkID (enforced by
DBMS)

Modify key or
foreign key

Prohibit�WORK uses a
surrogate key

Prohibit�TRANS uses a
surrogate key, and TRANS
cannot change to a
different WORK

Delete Prohibit�Cannot delete a
WORK with and TRANS
children (enforced by
DBMS by lack of
CASCADE DELETE)

Cannot delete the last
child [actually, data
related to a transaction is
never deleted (business
rule)]

Figure 10-40

Actions to Enforce Minimum
Cardinality for the WORK-to-
TRANS Relationship

Chapter 10 Managing Databases with SQL Server 2008 R2 427

Figure 10-41

Result of Using the View
WorkAndTransView

must not be allowed to insert WORK rows directly. They must always insert them via the view
WorkAndTransView.

To test our trigger, we will add a new work to the VRG database. Melissa, now Mrs.
Michael Bench, has worked out her account problems with the View Ridge Gallery and com-
pleted her purchase of the print of Horiuchi�s Color Floating in Time.

-- Reset Melinda Bench�s Problem Account status.

/* *** SQL-UPDATE-CH10-05 *** */

UPDATE dbo.CUSTOMER

SET isProblemAccount = 0

WHERE LastName = ’Bench’

AND FirstName = ’Melinda’;

-- Record the complted purchase of "Color Floating in Time".

/* *** SQL-UPDATE-CH10-06 *** */

UPDATE TRANS

SET DateSold = ’11/18/2010’,

SalesPrice = 475.00,

CustomerID = 1053

WHERE TransactionID = 229;

428 Part 4 Multiuser Database Processing

Figure 10-42

The SQL Statements for the
WATV_InsertTransactionWith
Work Trigger

Chapter 10 Managing Databases with SQL Server 2008 R2 429

Note that the SQL-UPDATE-CH10-06 statement fired the TRAN_CheckIsProblemAccount
trigger, but now that Melinda is a good customer again, the transaction was accepted. Now we
will restock a copy of Color Floating in Time into the gallery.

/* *** SQL-INSERT-CH10-03 *** */
INSERT INTO WorkAndTransView

VALUES(
’Color Floating in Time’, ’493/750’,
’High Quality Limited Print’,
’Northwest School Abstract Expressionist style’, 18,
’02/05/2011’, 250.00);

The results of the transaction are shown in Figure 10-43. Note that the WATV_
InsertTransactionWithWork trigger actually sets off two other triggers. First it fires the INSERT
trigger TRANS_AfterInsertSetAskingPrice, which then fires the UPDATE trigger
TRANS_CheckProblemAccount. Because no customer is involved in this transaction, the
TRANS_CheckProblemAccount trigger returns control without finishing (see the previous dis-
cussion of the code for this trigger). However, the TRANS_AfterInsertSetAskingPrice trigger
does run and sets the new asking price for the new work. Therefore, the results of two triggers
show up in the output in Figure 10-43, and the new work does now have an asking price.

The Execute button

The SQL statements
to run the trigger

The Parse button

The output from the
TRANS_AfterInsertSetAskingPrice trigger

The output from the
WATV_InsertTransactionWithWork trigger

The WATV_InsertTransactionWithWork
trigger object

Figure 10-43

Results of the WATV_Insert
TransactionWithWork Trigger

If we look at the SQL code that has actually been stored for these
triggers, we will again find that SQL Server has added some lines

before the code we wrote:

USE [VRG]
GO
/****** Object: Trigger [{StoredProcedureName}]

Script Date: {Date and Time created or altered} ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

(continued)

430 Part 4 Multiuser Database Processing

This is essentially the same code used for stored procedures. However, we should also
note that there is an important use of the GO command when running scripts. Triggers
are run only once for a set of operations, such as typically found in a script, not for each
individual command.

For example, suppose that in our last trigger example we had decided to use an
SQL script to input the data for three copies of Color Floating in Time at once as follows
(note the change in the value of Copy):

/* *** EXAMPLE CODE- DO NOT RUN *** */

/* *** SQL-INSERT-CH10-04 *** */

INSERT INTO WorkAndTransView

VALUES(

’Color Floating in Time’, ’494/750’,

’High Quality Limited Print’,

’Northwest School Abstract Expressionist style’, 18,

’02/05/2011’, 250.00);

/* *** SQL-INSERT-CH10-05 *** */

INSERT INTO WorkAndTransView

VALUES(

’Color Floating in Time’, ’495/750’,

’High Quality Limited Print’,

’Northwest School Abstract Expressionist style’, 18,

’02/05/2011’, 250.00);

/* *** SQL-INSERT-CH10-06 *** */

INSERT INTO WorkAndTransView

VALUES(

’Color Floating in Time’, ’496/750’,

’High Quality Limited Print’,

’Northwest School Abstract Expressionist style’, 18,

’02/05/2011’, 250.00);

In this case, the WATV_InsertTransactionWithWork trigger only fires once! But this
is not what we want�we want it to fire once per INSERT. This is where the GO
command comes in handy, and we will use the following code:

/* *** SQL-INSERT-CH10-04 *** */

INSERT INTO WorkAndTransView

VALUES(

’Color Floating in Time’, ’494/750’,

’High Quality Limited Print’,

’Northwest School Abstract Expressionist style’, 18,

’02/05/2011’, 250.00);

GO

/* *** SQL-INSERT-CH10-05 *** */

INSERT INTO WorkAndTransView

VALUES(

’Color Floating in Time’, ’495/750’,

’High Quality Limited Print’,

Chapter 10 Managing Databases with SQL Server 2008 R2 431

’Northwest School Abstract Expressionist style’, 18,

’02/05/2011’, 250.00);

GO

/* *** SQL-INSERT-CH10-06 *** */

INSERT INTO WorkAndTransView

VALUES(

’Color Floating in Time’, ’496/750’,

’High Quality Limited Print’,

’Northwest School Abstract Expressionist style’, 18,

’02/05/2011’, 250.00);

GO

Now each statement is considered its own �batch of commands,� and the trigger
fires three times, as we intended. You should run the second set of INSERT statements
(with the GO commands) on the VRG database and note the output.

Concurrency Control

SQL Server 2008 R2 provides a comprehensive set of capabilities to control concurrent
processing. Many choices and options are available, and the resulting behavior is determined
by the interaction of three factors: the transaction isolation level, the cursor concurrency
setting, and locking hints provided in the SELECT clause. Locking behavior also depends on
whether the cursor is processed as part of a transaction, whether the SELECT statement is
part of a cursor, and whether INSERT, UPDATE, or DELETE commands occur inside of
transactions or independently.

Figure 10-44 summarizes the concurrency control options. In this section, we will just
describe the basics. For more information, see the article �Set Transaction Isolation Level� at
http://msdn.microsoft.com/en-us/library/ms173763(v=SQL.105).aspx.

With SQL Server, developers do not place explicit locks. Instead, developers declare the
concurrency control behavior they want, and SQL Server determines where to place the locks.
Locks are applied on rows, pages, keys, indexes, tables, and even on the entire database. SQL
Server determines what level of lock to use and may promote or demote a lock level while
processing. It also determines when to place the lock and when to release it, depending on the
declarations made by the developer.

Scope OptionsType

Connection�all transactions

CURSOR statements

SELECT statements

READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SNAPSHOT
SERIALIZABLE

READ_ONLY
SCROLL_LOCKS
OPTIMSTIC

READCOMMITTED
READUNCOMMITTED
REPEATABLEREAD
SERIALIZABLE
NOLOCK
HOLDLOCK
And many more...

Transaction isolation level

Cursor concurrency

Locking hints

Figure 10-44

Concurrency Options for
SQL Server 2008 R2

432 Part 4 Multiuser Database Processing

Transaction Isolation Level

The broadest level of concurrency settings is the transaction isolation level. As shown in
Figure 10-44, there are five transaction isolation level options, listed in ascending level of
restriction. Four of these options are the four you studied in Chapter 9, and they are the
SQL-92 standard levels. A new level, SNAPSHOT, is unique to SQL Server. With the
SNAPSHOT transaction isolation level, the data read by an SQL statement will be the same
as the data that existed and were committed at the start of the transaction. SNAPSHOT does
not request locks during reads (except during database recovery) and does not prevent other
transactions from writes. With SQL Server, READ COMMITED is the default isolation level,
although it is possible to make dirty reads by setting the isolation level to READ UNCOM-
MITTED. However, the exact behavior of READ UNCOMMITTED now depends on the
setting of the READ_COMMITTED_SNAPSHOT option. See the article �Set Transaction
Isolation Level� at http://msdn.microsoft.com/en-us/library/ms173763(v=SQL.105).aspx for a
complete discussion.

An SQL to set the isolation level can be issued anyplace Transact-SQL is allowed, prior to
any other database activity. An example Transact-SQL statement to set the isolation level of,
say, REPEATABLE READ is:

/* *** EXAMPE CODE � DO NOT RUN *** */

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Cursor Concurrency

The second way in which the developer can declare locking characteristics is with cursor con-
currency. Possibilities are read only, optimistic, and pessimistic, here called SCROLL_LOCK. As
described in Chapter 9, with optimistic locking, no lock is obtained until the user updates the
data. At that point, if the data have been changed since they were read, the update is refused. Of
course, the application program must specify what to do when such a refusal occurs. See the
SQL Server 2008 R2 documentation on �Declare Cursor� at http://msdn.microsoft.com/
en-us/library/ms180169(SQL.105).aspx for a complete discussion.

SCROLL_LOCK is a version of pessimistic locking. With it, an update lock is placed on a
row when the row is read. If the cursor is opened within a transaction, the lock is held until
the transaction commits or rolls back. If the cursor is outside of a transaction, the lock is
dropped when the next row is read. Recall from Chapter 9 that an update lock blocks another
update lock, but it does not block a shared lock. Thus, other connections can read the row
with shared locks.

As described in Chapter 9, the default cursor concurrency setting depends on the cursor
type. It is read only for static and forward only cursors, and it is optimistic for dynamic and
keyset cursors.

Cursor concurrency is set with the DECLARE CURSOR statement. An example to declare
a dynamic SCROLL_LOCK cursor on all rows of the TRANS table is as follows:

/* *** EXAMPE CODE � DO NOT RUN *** */

DECLARE MyCursor CURSOR DYNAMIC SCROLL_LOCKS

FOR

SELECT *

FROM dbo.TRANS;

Locking Hints

Locking behavior can be further modified by providing locking hints in the WITH parameter
of the FROM clause in SELECT statements. Figure 10-44 lists several of the locking hints
available with SQL Server. The first four hints override the transaction isolation level; the next
two influence the type of lock issued. For a full list of locking hints, see the documentation at
http://msdn.microsoft.com/en-us/library/ms187373.aspx.

Chapter 10 Managing Databases with SQL Server 2008 R2 433

Consider the following statements:

/* *** EXAMPE CODE � DO NOT RUN *** */

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

DECLARE MyCursor CURSOR DYNAMIC SCROLL_LOCKS

FOR

SELECT *

FROM dbo.TRANS WITH READUNCOMMITTED NOLOCK;

Without the locking hints, the cursor MyCursor would have REPEATABLE READ isola-
tion and would issue update locks on all rows read. The locks would be held until the transac-
tion committed. With the locking hints, the isolation level for this cursor becomes READ
UNCOMMITTED. Furthermore, the specification of NOLOCK changes this cursor from
DYNAMIC to READ_ONLY.

Consider another example:

/* *** EXAMPE CODE � DO NOT RUN *** */

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

DECLARE MyCursor CURSOR DYNAMIC SCROLL_LOCKS

FOR

SELECT *

FROM dbo.TRANS WITH HOLDLOCK;

Here, the locking hint will cause SQL Server to hold update locks on all rows read until the
transaction commits. The effect is to change the transaction isolation level for this cursor
from REPEATABLE READ to SERIALIZABLE.

In general, the beginner is advised not to provide locking hints. Rather, until you have
become an expert, set the isolation level and cursor concurrency to appropriate values for your
transactions and cursors and leave it at that. In fact, the SQL Server 2008 R2 documentation
specifically suggests relying on the SQL Server query optimizer and only using locking hints
when absolutely necessary.

SQL Server 2008 R2 Security

We discussed security in general terms in Chapter 9. Here, we will summarize how
those general ideas pertain to SQL Server security. Starting with SQL Server 2005 and
continuing with SQL Server 2008 R2, Microsoft introduced a more complex version of the
model of DBMS security shown in Figure 9-14. The SQL Server 2008 R2 model is shown in
Figure 10-45.

As usual, security consists of authentication and authorization. As shown in Figure 10-1,
we have to log into SQL Server itself first, and we log in using one of the server logins illustrated
in Figure 10-45. This login will be a member of one or more server roles, and each of these roles
has specific permission at the server level.

We are currently logged into SQL Server 2008 R2 (on a computer running the Windows
Server 2008 R2 operating system and named WS82-003) as the login WS83-003\Auer (see the
User name in Figure 10-1 [which is grayed out but is still the user name being used]), which
means that we logged in based on the local computer user account Auer, and, as shown in
Figure 10-46, that login is assigned to the sysadmin role. This means that the user Auer has all
the privileges of an SQL Server 2008 R2 systems administrator (which is everything!). SQL
Server 2008 R2 logins can either be based on Windows operating system security
(recommended by Microsoft), SQL�Server-specific logins (see the sa login in Figure 10-46�
sa is the SQL Server system administrator account and if you use it be sure to set a secure
password for it), or both (which is how our SQL Server 2008 R2 instance is set up).

434 Part 4 Multiuser Database Processing

Server Logins

Database Users

Server Roles

Server
Permissions

Database Roles

Database
Permissions

Server

Database

Schema (Default = dbo)

Schema Permissions

Schema Objects:
Tables

Table Columns
Procedures

Figure 10-45

SQL Server 2008 R2 Security
Model

The Server Security
folder object

The Server Roles
folder object

The Logins folder
object

The sysadmin
Server Role object

The Server Role
Properties dialog box
for the sysadmin role

Figure 10-46

Server Logins and Server
Roles

To see the server permissions that the login Auer has, we look at the Permissions page of
the Server Properties dialog box (right-click the SQL Server object at the top of the Object
Explorer, and then click the Properties command). Figure 10-47 shows the effective properties
for the login Auer.

This gives us an overview of the SQL Server authorization model. SQL Server principals
(either server principals, such as logins and server roles, or database principals, such users
and database roles) are granted permissions to SQL Server securable objects (databases,
schemas, tables, procedures, etc.). The new concept here is the schema. An SQL Server
schema is a named container for SQL Server. In other words, SQL objects such as tables and
stored procedures are now held in a container called a schema. A schema can be owned by any
SQL server principal. The main advantage is that schema ownership can be transferred, and
thus a database principal can be deleted without the loss of the objects owned by that princi-
pal. For more information, see �User�Schema Separation� at http://msdn.microsoft.com/en-us/
library/ms190387.aspx. The default schema, the one an object will automatically be assigned

Chapter 10 Managing Databases with SQL Server 2008 R2 435

The Security folder
object

The Permissions
page

The Server
Properties dialog box

The login
WORKSTATION/Auer

The effective
permissions for the
login

Figure 10-47

Effective Server Permissions
for the Login WS82-003\Auer

to, is the dbo schema. In earlier versions of SQL Server, dbo (database owner) was only a user,
now dbo is also a schema name.

As an example, let�s create a login for use by the View Ridge Gallery.

Creating a New Login

1. Expand the Security folder object in the Object Explorer so that the Logins folder
object is displayed.

2. Right-click the Logins folder object to display the shortcut menu.
3. In the shortcut menu, click the New Login command. The Login � New dialog box is

displayed.
4. The completed new login data is shown in Figure 10-48. Use that figure for reference

in the following steps.

The Security folder
object

The Login - New
dialog box

The Logins folder
object

The OK button

Figure 10-48

Creating the VRG-User Login

436 Part 4 Multiuser Database Processing

5. In the Login name text box, type in the login name VRG-User.
6. Click the SQL Server authentication radio button to enable the use of SQL Server

authentication mode.
7. In the Password text box, type the password VRG-User+password.
8. In the Confirm password text box, type the password VRG-User+password.
9. Uncheck the Enforce password policy check box to disable enforcing password

policy, disable enforcing password expiration, and disable forcing a password
change.

� NOTE: This step is to simplify the use of this login in our test environment only.
Do not do this in a production environment.

10. Select VRG as the Default database. The Login � New dialog box now appears, as
shown in Figure 10-48.

11. Click the OK button. The new login is created.

SQL Server Database Security Settings

Now we need to move to the database level of security. Here we create specific database users
and assign database roles (and associated permissions) to those users. SQL Server 2008 R2
database roles and permissions are shown in Figure 10-49. To illustrate the use of a database-
specific user, we will create a database user based on the VRG-User login we have created for
use by the View Ridge Gallery.

Fixed Database Role

Note: For the definitions of each of the SQL Server permissions shown in the table, consult the SQL Server documentation.

db_accessadmin

db_backupoperator

db_datareader

db_datawriter

db_ddladmin

db_denydatareader

db_denydatawriter

db_owner

db_securityadmin

Database-Specific Permissions DBMS Server Permissions

Permissions granted:

ALTER ANY USER, CREATE SCHEMA

Permissions granted with GRANT option:

CONNECT

Permissions granted:

BACKUP DATABASE, BACKUP LOG, CHECKPOINT

Permissions granted:

SELECT

Permissions granted:

DELETE, INSERT, UPDATE

Permissions granted:

See SQL Server 2008 R2 documentation

Permissions denied:

SELECT

Permissions denied:

DELETE, INSERT, UPDATE

Permissions granted with GRANT option:

CONTROL

Permissions granted:

ALTER ANY APPLICATION ROLE, ALTER ANY
ROLE, CREATE SCHEMA, VIEW DEFINITION

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Permissions granted:

VIEW ANY DATABASE

Figure 10-49

SQL Server Fixed Database
Roles

Chapter 10 Managing Databases with SQL Server 2008 R2 437

Creating a New Database User

1. Expand the VRG database object in the Object Explorer so that the database Security
folder object is displayed.

2. Expand the VRG Security folder object in the Object Explorer so that the Users
folder object is displayed.

3. Right-click the Users folder object to display a shortcut menu.
4. In the shortcut menu, click the New User command. The Database User � New dia-

log box is displayed.
5. The completed new login data is shown in Figure 10-50. Use that figure for reference

in the following steps.
6. In the User name text box, type in the user name VRG-Database-User.
7. In the Login name text box, type in the login name VRG-User.

� NOTE: You can also browse to the correct login name using the Browse button
shown in Figure 10-50.

8. In the Database role membership list, check db_owner.
9. The Database User � New dialog box now appears, as shown in Figure 10-47.

10. Click the OK button. The new login is created.

Now we have completed creating the needed logins and database users for the VRG
database. We will use these in other chapters when we develop applications based on
this database.

The VRG database
object

The Users folder
object

The database
Security folder object

The Database User�
New dialog box

The Logins folder
object

The OK button

Figure 10-50

Creating the VRG-Database-
User Database User

SQL Server 2008 R2 Backup and Recovery

When you create an SQL Server 2008 R2 database, both data and log files are created. As
explained in Chapter 9, these files should be backed up periodically. When backups are
available, it is possible to recover a failed database by restoring it from a prior database save
and applying changes in the log.

To recover a database with SQL Server, the database is restored from a prior database
backup and log after images are applied to the restored database. When the end of the log is
reached, changes from any transaction that failed to commit are then rolled back.

438 Part 4 Multiuser Database Processing

The VRG
database object

The Back Up
Database - VRG
dialog box

The OK button

Figure 10-51

Backing Up the VRG
Database

It is also possible to process the log to a particular point in time or to a transaction mark.
For example, the following statement causes a mark labeled NewCustomer to be placed into
the log every time this transaction is run:

/* *** EXAMPLE TEXT -DO NOT RUN *** */
BEGIN TRANSACTION NewCustomer WITH MARK;

If this is done, the log can be restored to a point either just before or just after the first
NewCustomer mark or the first NewCustomer mark after a particular point in time. The
restored log can then be used to restore the database. Such marks consume log space, however,
so they should not be used without good reason.

Backing Up a Database

SQL Server 2008 R2 supports several types of backup. We can, for example, choose to do a full
backup, a differential backup, or a transaction log backup. A full backup backs up the
complete database and the transaction logs. A differential backup backs up only the changes
since the last full backup, which is useful if a full backup takes a long time. This allows us to
make periodic full backups (e.g., once a week) and still capture daily changes to the database
using differential backups. A transaction log backup backs up only the current transaction
log. This is useful in keeping a series of transaction log files backed up more currently than
even our differential backups. For example, we may do a transaction log backup every 6 hours.

Here, we will make a complete backup of the VRG database. Other backup options may
require the use of backup device objects and management policies. A full discussion of these
topics is beyond the scope of this book. For more information, see the Microsoft SQL Server
2008 R2 Books Online at http://msdn.microsoft.com/en-us/library/ms130214.aspx.

Backing Up the VRG Database

1. Right-click the VRG database object in the Object Explorer to display a shortcut
menu.

2. In the shortcut menu, click the Tasks command, then click the Backup command.
The Back Up Database � VRG dialog box is displayed, as shown in Figure 10-51.

3. SQL Server 2008 R2 has already set up all the backup options correctly for a simple
full backup of the database.

4. Click the OK button. The database backup is created.

We could use the same backup task we just ran to make differential backups if we wanted�we
would simply choose Differential instead of Full as the backup type.

Chapter 10 Managing Databases with SQL Server 2008 R2 439

The VRG
database object

The Restore
Database - VRG
dialog box

The OK button

Figure 10-52

Restoring the VRG Database

In a more production-oriented backup system, the transaction log needs to be periodi-
cally backed up to ensure that its contents are preserved. Further, the transaction log must be
backed up before it can be used to recover a database. Backups can be made either to disk or to
tape�our backup was just made to disk. When possible, the backups should be made to
devices other than those that store the operational database and log. Backing up to removable
devices allows the backups to be stored in a location physically removed from the database
data center. This is important for recovery in the event of disasters caused by floods, hurri-
canes, earthquakes, and the like.

SQL Server Recovery Models

SQL Server supports three recovery models: simple, full, and bulk logged. With the simple
recovery model, no logging is done. The only way to recover a database is to restore the data-
base to the last backup. Changes made since that last backup are lost. The simple recovery
model can be used for a database that is never changed�one having the names and locations
of the occupants of a full graveyard, for example�or for one that is used for read-only analysis
of data that are copied from some other transactional database.

With full recovery, all database changes are logged. With bulk-logged database recovery,
all changes are logged except those that cause large log entries. With bulk-logged recovery,
changes to large text and graphic data items are not recorded to the log, actions such as CRE-
ATE INDEX are not logged, and some other bulk-oriented actions are not logged. An organiza-
tion uses bulk-logged recovery if conserving log space is important and if the data used in the
bulk operations are saved in some other way.

Restoring a Database

If the database and log files have been properly backed up, restoring the database is straightforward.

Restoring the VRG Database

1. Right-click the VRG database object in the Object Explorer to display a shortcut menu.
2. In the shortcut menu, click the Tasks command, then click the Restore command.

The Restore Database � VRG dialog box is displayed, as shown in Figure 10-52.
3. SQL Server 2008 R2 has already set up all the backup options correctly for a simple

full backup of the database.
4. If we were going to actually restore the VRG database, we would click the OK button

at this point, and the database backup would be restored. However there is no need to
do so at this point, so click the Cancel button.

440 Part 4 Multiuser Database Processing

Topics Not Discussed in This Chapter

Several important SQL Server topics are beyond the scope of this discussion. For one, SQL
Server provides utilities to measure database activity and performance. The DBA can use
these utilities when tuning the database. Another facility not described here is connecting
Microsoft Access to SQL Server. You can check the Microsoft Access documentation for more
information about this topic.

SQL Server 2008 R2 provides facilities to support distributed database processing (called
replication in SQL Server). Although very important in its own right, distributed database
processing is beyond the scope of this text. For more information, see the Microsoft SQL
Server 2008 R2 Books Online at http://msdn.microsoft.com/en-us/library/ms130214.aspx.

Finally, SQL Server has facilities for processing database views in the form of XML
documents. We will discuss those facilities in Chapter 12.

You can use backup and restore to transfer a database to another computer or user (e.g., to
your professor!). Just do a full backup of the database you want to share to a file, say, the file
MyBackup. Then, create a new database on another computer and name it whatever you want.
Then, restore the database using the file MyBackup.

Database Maintenance Plans

You can create a database maintenance plan to facilitate the making of database and log back-
ups, among other tasks, using SQL Server policy management. This topic, however, is beyond
the scope of this book. For more information, see the Microsoft SQL Server 2008 R2 Books
Online at http://msdn.microsoft.com/en-us/library/ms130214.aspx.

SQL Server 2008 R2 can be installed on computers running
Windows XP, Windows Vista, Windows Server 2003, or
Windows Server 2008 R2. Tables, views, indexes, and other
database structures can be created in two ways. One is to use
the graphical design tools, which are similar to those in
Microsoft Access. The other is to write SQL statements to
create the structures and then submit them to SQL Server
via the SQL Server Management Studio utility. SQL Server
supports all of the SQL DDL that you have learned in
this text, including the Transact-SQL IDENTITY ({StartValue},
{Increment}) property for defining surrogate keys. The only
change required for the View Ridge schema was to change
the name of the TRANSACTION table to TRANS.

Indexes are special data structures used to improve per-
formance. SQL Server automatically creates an index on all
primary and foreign keys. Additional views can be created
using CREATE INDEX or the Manage Index graphical tool.
SQL Server supports clustered and nonclustered indexes.

SQL Server supports a language called Transact-SQL,
which surrounds basic SQL statements with programming
constructs such as parameters, variables, and logic
structures, such as IF, WHILE, and so forth.

SQL Server databases can be processed from application
programs coded in standard programming languages, such
as Visual Basic.NET, Visual C#.NET, or Visual C++.NET, or
application logic can be placed in stored procedures and

triggers. Stored procedures can be invoked from standard
languages or from VBScript and JScript in Web pages. In this
chapter, stored procedures were invoked from the SQL
Server Query Manager. This technique should be used only
during development and testing.

For security reasons, no one should process an SQL Server
operational database in interactive mode. This chapter
demonstrated SQL Server triggers for computing default
values, for enforcing a data constraint, for updating a view, and
for enforcing a mandatory child referential integrity constraint.

Three factors determine the concurrency control behavior
of SQL Server: the transaction isolation level, the cursor
concurrency setting, and locking hints provided in the SELECT
clause. These factors are summarized in Figure 10-44. Behavior
also changes depending on whether actions occur in the
context of transactions or cursors or independently. Given
these behavior declarations, SQL Server places locks on behalf
of the developer. Locks may be placed at many levels of granu-
larity and may be promoted or demoted as work progresses.

SQL Server supports log backups and both complete and
differential database backups. Three recovery models are
available: simple, full, and bulk logged. With simple recovery,
no logging is done nor are log records applied. Full recovery
logs all database operations and applies them for restoration.
Bulk-logged recovery omits certain transactions that would
otherwise consume large amounts of space in the log.

Chapter 10 Managing Databases with SQL Server 2008 R2 441

/* and */ signs
BEGIN . . . END keywords
CLOSE CURSOR keywords
clustered index
cmdlets
command-line utility
Connect to Server dialog box
database owner
database principals
dbo schema
DEALLOCATE CURSOR keywords
DECLARE CURSOR keywords
delimited identifier
differential backup
FETCH keyword
full backup
GO command
graphical user interface (GUI)
IF . . . ELSE keywords
index
Integrated Development Environment (IDE)
Microsoft SQL Server
Microsoft SQL Server 2008 R2 Management Studio
Microsoft Windows PowerShell
nonclustered index
OPEN CURSOR keywords
parameter
PowerShell sqlps utility
procedural language extensions
replication
reserved word
RETURN keyword
SCROLL_LOCK
server principals
SNAPSHOT transaction isolation level
SQL/Persistent Stored Module(SQL/PSM)
SQL ALTER PROCEDURE statement
SQL CMD utility

SQL Common Language Runtime (CLR)
SQL CREATE PROCEDURE statement
SQL script
SQL script comment
SQL Server 2008 R2 Express
SQL Server 2008 R2 Express Advanced
SQL Server bit data type
SQL Server PowerShell
SQL Server principals
SQL Server schema
SQL Server securable objects
transaction isolation level
transaction log backup
Transact-SQL (T-SQL)
Transact-SQL @@FETCH_STATUS function
Transact-SQL @@Identity function
Transact-SQL BEGIN TRANSACTION command
Transact-SQL COMMIT TRANSACTION

command
Transact-SQL control-of-flow language
Transact-SQL CONVERT function
Transact-SQL cursor
Transact-SQL GETDATE() function
Transact-SQL IDENTITY (seed, increment)

property
Transact-SQL IDENTITY_INSERT property
Transact-SQL PRINT command
Transact-SQL ROLLBACK TRANSACTION

command
Transact-SQL SET ANSI_NULLS ON command
Transact-SQL SET NOCOUNT ON command
Transact-SQL SET QUOTED_IDENTIFIER ON

command
Transact-SQL USE [{DatabaseName}] command
two dashes (- -)
variable
WHILE keyword
Windows PowerShell

If you have not already installed SQL Server 2008 R2 (or do not otherwise have it
available to you), you need to install a version of it at this point.

Review Questions 10.1�10.11 are based on a database named MEDIA that is used
to record data about photographs that are stored in the database.

10.1 In the SQL Server Management Studio folder structure in your My Documents folder,
create a folder named DBP-e12-Media-Database in the Projects folder. Use this folder to
save and store *.sql scripts containing the SQL statements that you are asked to create
in the remaining Review Questions in this section.

442 Part 4 Multiuser Database Processing

10.2 Create a database named MEDIA in SQL Server 2008 R2. Use the default settings for file
sizes, names, and locations.

10.3 Write an SQL statement to create a table named PICTURE with columns Name,
Description, DateTaken, and FileName. Assume that Name is char (20), Description is
varchar (200), DateTaken is smalldate, and FileName is char (45). Also assume that
Name and DateTaken are required. Use Name as the primary key. Set the default value
of Description to �(None)�.

10.4 Use the Microsoft SQL Server Management Studio to submit the SQL statement in
Review Question 10.3 to create the PICTURE table in the MEDIA database.

10.5 Write a CREATE TABLE statement to create the table SLIDE_SHOW (ShowID, Name,
Description, Purpose). Assume that ShowID is a surrogate key. Set the data type of
Name and Description however you deem appropriate. Set the data type of Purpose to
char (15), and limit it to the set of values (�Home�, �Office�, �Family�, �Recreation�, �Sports�,
�Pets�). Execute your CREATE TABLE statement using Query Analyzer.

10.6 Use the Microsoft SQL Server Management Studio to create the table SHOW_
PICTURE_INT as an intersection table between PICTURE and SLIDE_SHOW. Create
appropriate relationships between PICTURE and SHOW_PICTURE_INT and between
SLIDE_SHOW and SHOW_PICTURE_INT. Set the referential integrity properties to
disallow any deletion of a SLIDE_SHOW row that has any SHOW_PICTURE_INT rows
related to it. Set the referential integrity properties to cascade deletions when a
PICTURE is deleted. Cascade updates to PICTURE.Name.

10.7 Write an SQL statement to create an SQL view named PopularShowsView that has
SLIDE_SHOW.Name and PICTURE.Name for all slide shows that have a Purpose of either
�Home� or �Pets�. Execute this statement using the Microsoft SQL Server Management
Studio. Run an SQL SELECT query in the Microsoft SQL Server Management Studio GUI
tools to demonstrate that the view PopularShowsView was constructed correctly.

10.8 Modify the view PopularShowsView to include PICTURE.Description and FileName.

10.9 Run an SQL SELECT query in the Microsoft SQL Server Management Studio GUI tools
to demonstrate that the modified PopularShowsView view was constructed correctly.

10.10 Can the SQL DELETE statement be used with the PopularShowsView view? Why or
why not?

10.11 Under what circumstances can the PopularShowsView view be used for inserts and
modifications?

Review Questions 10.12�10.27 are about terms and concepts discussed in this chapter.

10.12 In Figure 10-30, what is the purpose of the @RowCount variable?

10.13 In Figure 10-30, why is the SELECT statement that begins SELECT @CustomerID
necessary?

10.14 Explain how you would change the stored procedure in Figure 10-30 to connect the
customer to all artists who either (a) were born before 1900 or (b) had a null value for
DateOfBirth.

10.15 Explain the purpose of the transaction shown in Figure 10-32.

10.16 What happens if an incorrect value of Copy is input to the stored procedure in Figure 10-32?

10.17 In Figure 10-32, what happens if the ROLLBACK statement is executed?

10.18 In Figure 10-32, why is SUM used instead of AVG?

10.19 What are the three primary factors that influence SQL Server locking behavior?

10.20 Explain why the strategy for storing CHECK constraint values in a separate table is
better than implementing them in a table-based constraint. How can this strategy be
used to implement the constraint on ARTIST.Nationality?

Chapter 10 Managing Databases with SQL Server 2008 R2 443

In the Chapter 1 and Chapter 2 Project Questions, we introduced the Wedgewood
Pacific Corporation (WPC) and developed the WPC database. Two of the tables that
are used in the WPC database are:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Assume that the relationship between these tables is M-M, and use them as the basis
for your answers to Project Questions 10.28 through 10.35.

10.28 In the SQL Server Management Studio folder structure in your My Documents folder,
create a folder named DBP-e12-WPC-CH10-PQ-Database in the Projects folder. Use this
folder to save and store *.sql scripts containing the SQL statements that you are asked
to create in the remaining questions in this section.

10.29 Create a database named WPC-CH10-PQ in SQL Server 2008 R2. Use the default
settings for file sizes, names, and locations.

10.30 Code an SQL Script to create only the WPC DEPARTMENT and EMPLOYEE tables in
the WPC-CH10-PQ database. Run your script to create the tables.

10.31 Code an SQL Script to populate the WPC DEPARTMENT and EMPLOYEE tables in
the WPC-CH10-PQ database. Run your script to populate the tables.

10.32 Code an SQL Server trigger named Deny_EMPLOYEE_Change_Of_DEPARTMENT to
enforce the constraint that an employee can never change his or her department.
Create test data and demonstrate that your trigger works.

10.33 Code an SQL Server trigger named Allow_Deletion_Of_DEPARTMENT to allow the dele-
tion of a department if it only has one employee. Assign the last employee to the Human
Resources department. Create test data and demonstrate that your trigger works.

10.34 Design and code a system of triggers to enforce the M-M relationship. Use Figure 10-40
as an example, but assume that departments with only one employee can be deleted by
assigning the last employee in a department to Human Resources. Create test data and
demonstrate that your triggers work.

10.35 Create a SQL Server login named WPC-CH10-User, with a password of WPC-CH10-
User+password. Create a WPC-CH10-PQ database user named WPC-CH10-Database-
User, which is linked to the WPC-CH10-User login. Assign WPC-CH10-Database User
db_owner permissions to the WPC-CH10-PQ database.

10.21 Explain why the CustomerInterestsView view in Figure 10-26 is not updatable.
Describe the logic of the INSTEAD OF UPDATE trigger in Figure 10-38.

10.22 Explain what limitation must be enforced for the trigger in Figure 10-38 to be effective.

10.23 Explain the meaning of each of the transaction isolation levels under Options shown in
Figure 10-44.

10.24 Explain the meaning of each of the cursor concurrency settings listed in Figure 10-44.

10.25 What is the purpose of locking hints?

10.26 What is the difference between complete and differential backups? Under what conditions
are complete backups preferred? Under what conditions are differential backups preferred?

10.27 Explain how the simple, full, and bulk-logged recovery models differ. Under what
conditions would you choose each one?

444 Part 4 Multiuser Database Processing

Project Question 10.36 is based on the View Ridge Gallery database discussed in this
chapter.

10.36 If you have not already installed SQL Server 2008 R2 (or do not otherwise have it
available to you), you need to install a version of it at this point. Write SQL statements
to accomplish the following tasks and submit them to SQL Server 2008 R2 via the
Microsoft SQL Server Management Studio.

A. In the SQL Server Management Studio folder structure in your My Documents
folder, create a folder named DBP-e12-VRG-CH10-PQ-Database in the Projects
folder. Use this folder to save and store *.sql scripts containing the SQL state-
ments that you are asked to create in the remaining questions in this section.

B. Create an SQL Server 2008 R2 database named VRG-CH10-PQ.

C. In the VRG-CH10-PQ database, create the VRG database tables shown in
Figure 10-13, except do not create the NationalityValues constraint.

D. Populate your database with the sample data from Figure 10-25.

E. Create all the VRG views discussed in the Chapter 7 section on SQL views.

F. Write a stored procedure named PrintArtistData to read the ARTIST table and
display the artist data using the Transact-SQL PRINT command. Create test
data and demonstrate that your stored procedure works.

G. Write a stored procedure named PrintArtistAndWorkData that reads the
ARTIST and WORK tables, and that accepts the name of the artist to display as
an input parameter. Your procedure should then display the data for that artist,
followed by a display of all the works for that artist stored in WORK. Create test
data and demonstrate that your stored procedure works.

H. Write a stored procedure named UpdateCustomerPhoneData to update
customer phone data. Assume that your stored procedure receives LastName,
FirstName, PriorAreaCode, NewAreaCode, PriorPhoneNumber, and NewPho-
neNumber. Your procedure should first ensure that there is only one customer
with the values of (LastName, FirstName, PriorAreaCode, PriorPhoneNumber).
If not, produce an error message and quit. Otherwise, update the customer data
with the new phone number data, and print a results message. Create test data
and demonstrate that your stored procedure works.

I. Create a table named ALLOWED_NATIONALITY with one column, called
Nation. Place the values of all nationalities currently in the VRG database into
the table. Write a trigger named CheckNationality that will check to determine
whether a new or updated value of Nationality resides in this table. If not, write
an error message and roll back the insert or change. Create test data and
demonstrate that your trigger works.

J. Create an SQL view named WorkWithTransactionsView having all of the data
from the WORK and TRANS tables except for the surrogate keys. Write and
insert an INSTEAD OF trigger on this view that will create new rows in both
WORK and TRANS. Create test data and demonstrate that your trigger
works. Hint: Recall that you can issue an INSERT command on WORK and
TRANS without specifying a value for the surrogate key�SQL Server will
provide it.

K. Create a SQL Server login named VRG-CH10-User, with a password of VRG-
CH10-User+password. Create a VRG-CH10-PQ database user named WPC-
CH10-PQ-Database-User, which is linked to the VRG-CH10-User login. Assign
VRG-CH10-PQ-Database-User db_owner permissions to the VRG-CH10-PQ
database.

Chapter 10 Managing Databases with SQL Server 2008 R2 445

Use the Morgan Importing discussion at the end of Chapter 7 on page 309 as the basis
for your answers to the following questions:

A. In the SQL Server Management Studio folder structure in your My Documents folder,
create a folder named DBP-e12-MI-CH10-Database in the Projects folder. Use this folder
to save and store *.sql scripts containing the SQL statements that you are asked to cre-
ate in the remaining questions in this section.

B. Using SQL Server 2008 R2 and the Microsoft SQL Server Management Studio, create a
database named MI-CH10.

C. Answer questions A through M for Morgan Importing at the end of Chapter 7,
page 309�312 if you have not already done so. If you have already answered the Chapter 7
questions, reuse your answers and apply them to the MI-CH10 database. Use the SQL
Server data types in your answer, and store your answers in *.sql scripts, as appropriate.

D. Using SQL Server 2008 R2 and the Microsoft SQL Server Management Studio, execute all
of the SQL statements that you created in your answers to A through N for Morgan
Importing at the end of Chapter 7.

E. Assume that the relationship between SHIPMENT and SHIPMENT_ITEM is M-M.
Design triggers to enforce this relationship. Use Figure 10-40 and the discussion of that
figure as an example, but assume that Morgan does allow SHIPMENTs and their related
SHIPMENT_ITEM rows to be deleted. Use the deletion strategy shown in Figures 7-29
and 7-30 for this case.

F. Write and test the triggers you designed in part E.

G. Create a SQL Server login named MI-User, with a password of MI-User+password. Create a
MI-CH10 database user named MI-CH10-Database-User, which is linked to the MI-User
login. Assign MI-CH10-Database-User db_owner permissions to the MI-CH10 database.

Use the Marcia�s Dry Cleaning discussion at the end of Chapter 7 on page 306 as the
basis for your answers to the following questions:

A. In the SQL Server Management Studio folder structure in your My Documents folder,
create a folder named DBP-e12-MDC-CH10-Database in the Projects folder. Use this
folder to save and store *.sql scripts containing the SQL statements that you are asked to
create in the remaining questions in this section.

B. Using SQL Server 2008 R2 and the Microsoft SQL Server Management Studio, create a
database named MI-CH10.

C. Answer questions A through M for Marcia�s Dry Cleaning at the end of Chapter 7,
page 306�308, if you have not already done so. If you have already answered the Chapter 7
questions, reuse your answers and apply them to the MDC-CH10 database. Use the SQL
Server data types in your answer, and store your answers in *.sql scripts, as appropriate.

D. Execute all of the SQL statements that you created in your answers to A through M for
Marcia�s Dry Cleaning at the end of Chapter 7.

E. Assume that the relationship between INVOICE and INVOICE_ITEM is M-M. Design
triggers to enforce this relationship. Use Figure 10-40 and the discussion of that figure as
an example, but assume that Marcia does allow INVOICEs and their related
INVOICE_ITEM rows to be deleted. Use the deletion strategy shown in Figures 7-29 and
7-30 for this case.

F. Write and test the triggers you designed in part D.

G. Create a SQL Server login named MDC-User, with a password of MDC-User+password.
Create a MDC-CH10 database user named MDC-CH10-Database-User, which is linked
to the MDC-User login. Assign MDC-CH10-Database-User db_owner permissions to the
MDC-CH10 database.

A complete version of this chapter is available on this textbook�s Web site.
Go to www.pearsonhighered.com/kroenke and select the Companion Website for this book.

� To install Oracle Database 11g and create a
database.

� To use Oracle Database 11g�s Web-based Enterprise
Manager Database Control utility.

� To use Oracle Database 11g�s graphical utilities.

� To create and use Oracle Database 11g namespaces.

� To understand how Oracle Database 11g implements
server and database security.

� To submit both SQL DDL and DML via the SQL
Developer utility.

Chapter Objectives

Managing Databases
with Oracle
Database 11g10A

� To understand the use of SQL/Persistent Stored
Modules (SQL/PSM) in Oracle Database PL/SQL.

� To understand the purpose and role of stored procedures
and learn how to create simple stored procedures.

� To understand the purpose and role of triggers and
learn how to create simple triggers.

� To understand how Oracle Database 11g implements
concurrency control.

� To understand the fundamental features of Oracle
Database 11g backup and recovery facilities.

447

A complete version of this chapter is available on this textbook�s Web site.
Go to www.pearsonhighered.com/kroenke and select the Companion Website for this book.

� To install MySQL and create a database.

� To use MySQL�s graphical utilities.

� To submit both SQL DDL and DML via the MySQL
Workbench.

� To understand the use of SQL/Persistent Stored
Modules (SQL/PSM) in MySQL�s variant of SQL.

� To understand the purpose and role of stored procedures
and know how to create simple stored procedures.

Chapter Objectives

Managing
Databases with
MySQL 5.510B

� To understand the purpose and role of triggers and
know how to create simple triggers.

� To understand how MySQL implements concurrency
control.

� To understand how MySQL implements server and
database security.

� To understand the fundamental features of MySQL
backup and recovery facilities.

448

The three chapters in this section examine standards for database
application processing. We begin in Chapter 11 by discussing database
access standards, including ODBC, ADO.NET and ASP.NET in Microsoft�s
.NET Framework, and the Java-based JDBC and Java Server Pages (JSP)
technologies. Even though some of these standards are no longer on the
leading edge of database processing, many applications still use them,
and you will likely encounter them in your career. Chapter 11 then
describes the use of the popular PHP scripting language to create Web
pages that access the View Ridge Gallery database.

Chapter 12 discusses one of the most important developments in
information technology today�the confluence of database processing
and document processing. This chapter introduces you to XML and
XML Schema. Chapter 13 discusses business intelligence (BI) systems
and the data warehouse and data mart databases that support them.

D atabase Access Standards

5

449

This chapter discusses some traditional standard interfaces and current tools
for accessing database servers. ODBC, or the Open Database Connectivity
standard, was developed in the early 1990s to provide a product-independent
interface to relational and other tabular data. In the mid-1990s, Microsoft
announced OLE DB, which is an object-oriented interface that encapsulates
data-server functionality. Microsoft then developed Active Data Objects (ADO),
which is a set of objects for utilizing OLE DB that is designed for use by any
language, including VBScript and JScript. This technology was used in Active
Server Pages (ASP), which were the basis of Web database applications.
In 2002, Microsoft introduced the .NET Framework, which included ADO.NET

� To understand the nature and characteristics of the data
environment that surrounds Internet technology database
applications

� To learn the purpose, features, and facilities of ODBC

� To understand the characteristics of the Microsoft .NET
Framework

� To understand the nature and goals of OLE DB

� To learn the characteristics and object model of ADO.NET

Chapter Objectives

The Web Server
Environment11

� To understand the characteristics of JDBC and the four
types of JDBC drivers

� To understand the nature of JSP and know the differences
between JSP and ASP.NET

� To understand HTML and PHP

� To be able to construct Web database applications pages
using PHP

450

Chapter 11 The Web Server Environment 451

Web
Server

Relational Databases:
Oracle Database,
Microsoft SQL Server,
Oracle MySQL, Microsoft Access,
IBM DB2 . . .

Nonrelational
Databases

VSAM, ISAM, Other
File Processors

E-mail, Other
Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

Figure 11-1

The Variety of Data Types in
Web Database Applications

(the successor to ADO) and ASP.NET (the successor to ASP) components.
Today, the .NET Framework is the basis for all application development using
Microsoft technology.

As an alternative to the Microsoft technologies, Sun Microsystems (pur-
chased by Oracle Corporation in 2010) developed the Java platform, which
includes the Java programming language, Java Database Connectivity (JDBC)
and Java Server Pages (JSP).

Although the .NET and Java technologies are important development
platforms, additional technologies have been developed by other companies
and open-source projects. We will use two of these independently developed
tools in this chapter��the Eclipse integrated development environment (IDE)
and the PHP scripting language.

However, before considering these standards, we need to gain some
perspective on the data environment that surrounds the Web server in Internet
technology database applications.

The Web Database Processing Environment

The environment in which today�s database applications reside is rich and complicated.
As shown in Figure 11-1, a typical Web server needs to publish applications that involve data of
dozens of different data types. So far in this text, we have considered only relational databases,
but as you can see from this figure, there are many other data types as well.

Consider the problems that the developer of Web server applications has when integrating
these data. The developer may need to connect to an Oracle database; a DB2 mainframe
database; a nonrelational database, such as IMS, IBM�s older DBMS product; file-processing
data, such as VSAM and ISAM; e-mail directories; and so forth. Each one of these products has
a different programming interface that the developer must learn. Further, these products

452 Part 5 Database Access Standards

evolve, thus new features and functions will be added over time that will increase the
developer�s challenge.

Several standard interfaces have been developed for accessing database servers. Every
DBMS product has an application programming interface (API). An API is a collection of
objects, methods, and properties for executing DBMS functions from program code. Unfortu-
nately, each DBMS has its own API, and APIs vary from one DBMS product to another. To save
programmers from having to learn to use many different interfaces, the computer industry has
developed standards for database access.

The Open Database Connectivity (ODBC) standard was developed in the early 1990s
to provide a DBMS-independent means for processing relational database data. In the
mid-1990s, Microsoft announced OLE DB, which is an object-oriented interface that
encapsulates data-server functionality. OLE DB was designed not just for access to
relational databases, but also for accessing many other types of data as well. As a
Component Object Model (COM) interface, OLE DB is readily accessible to programmers
through the use of programming languages such as C, C#, and Java. However, OLE DB is not
as accessible to users of Visual Basic (VB) and scripting languages. Therefore, Microsoft
developed Active Data Objects (ADO), which is a set of objects for utilizing OLE DB that is
designed for use by any language, including Visual Basic (VB), VBScript, and JScript. ADO
has now been followed by ADO.NET (pronounced �A-D-O-dot-NET�), which is an improved
version of ADO developed as part of Microsoft�s .NET (pronounced �dot-NET�) initiative
and a component of the .NET Framework.

ADO technology is used in Active Server Pages (ASP) Web pages to create Web-based data-
base applications. ASP is a combination of Hypertext Markup Language (HTML) and VBScript or
JScript that can read and write database data and transmit it over public and private networks,
using Internet protocols. ASP runs on Microsoft�s Web server product, Internet Information
Services (IIS). When ADO.NET was introduced, Microsoft also introduced ASP.NET. ASP.NET is
the successor to ASP and is the preferred Web page technology in the .NET Framework.

Of course, there are other connectivity methods and standards besides those
propagated by Microsoft. The main alternatives to ADO.NET technology are based on or
associated with Sun Microsystems� (now Oracle Corporation�s) Java platform and include
the Java programming language, Java Database Connectivity (JDBC), Java Data
Objects (JDO), and JavaServer Pages (JSP).

JSP technology is a combination of HTML and Java that accomplishes the same function
as ASP.NET by compiling pages into Java servlets. JSP may connect to databases using JDBC.
JSP is often used on the Apache Tomcat, which implements JSP in an open-source Web server
(and is often used in conjunction with the open-source Apache Web server).

However, the defining characteristic of the Java-related technology is that you must use
Java as the programming language. You cannot even use JavaScript, Java�s somewhat-related
scripting language cousin. If you know (or want to learn) Java, this if fine.

Although the Microsoft .NET Framework and the Sun Microsystems� (now Oracle
Corporation�s) Java platform are the two major players in Web database application develop-
ment, other options are available. One such product is PHP, which is an open-source Web page
programming language, and another favorite combination of Web developers is the Apache
Web server with the MySQL DBMS and the PHP language. This combination is called AMP
(Apache-MySQL-PHP). When running on the Linux operating system, it is referred to as
LAMP; when running on the Windows operating system, it is referred to as WAMP. And
because PHP works with all DBMS products, we will use it in this book. Other possibilities
include the Perl and Python languages (both of which can be the �P� in AMP, LAMP, or
WAMP), and the Ruby language with its Web development framework called Ruby on Rails.

In a Web-based database processing environment, if the Web server and the DBMS can run
on the same computer, the system has two-tier architecture. (One tier is for the browsers, and
one is for the Web server/DBMS computer.) Alternatively, the Web server and DBMS can run on
different computers, in which case the system has three-tier architecture. High-performance
applications might use many Web server computers, and in some systems several computers
can run the DBMS, as well. In the latter case, if the DBMS computers are processing the same
databases, the system is referred to as a distributed database. Distributed databases were
discussed in Chapter 9.

Chapter 11 The Web Server Environment 453

The ODBC Standard

The ODBC standard was created to address the data access problem that concerns relational
databases and data sources that are table-like, such as spreadsheets. As shown in Figure 11-2,
ODBC is an interface between the Web server (or other database application) and the DBMS. It
consists of a set of standards by which SQL statements can be issued and results and error
messages can be returned. As shown in Figure 11-2, developers can call the DBMS using native
DBMS interfaces (which are APIs) if they want to (sometimes they do this to improve
performance), but the developer who does not have the time or desire to learn many different
DBMS native libraries can use the ODBC instead.

The ODBC standard is an interface by which application programs can access and process
databases and tabular data in a DBMS-independent manner. This means, for example, that an
application that uses the ODBC interface could process an Oracle Database database, an SQL
Server database, a spreadsheet, or any other ODBC-compliant database without making any
coding changes. The goal is to allow a developer to create a single application that can access
databases supported by different DBMS products without needing to be changed, or even
recompiled.

ODBC was developed by a committee of industry experts from the X/Open and SQL Access
Group committees. Several such standards were proposed, but ODBC emerged as the winner,
primarily because it had been implemented by Microsoft and is an important part of Windows.
Microsoft�s initial interest in support of such a standard was to allow products such as Microsoft
Excel to access database data from a variety of DBMS products without having to be recompiled.
Of course, Microsoft�s interests have changed since the introduction of OLE DB and ADO.NET.

ODBC Architecture

Figure 11-3 shows the components of the ODBC standard. The application program, driver
manager, and DBMS drivers all reside on the application server computer. The drivers send
requests to data sources, which reside on the database server. According to the standard, an
ODBC data source is the database and its associated DBMS, operating system, and network
platform. An ODBC data source can be a relational database; it can also be a file server, such as
BTrieve, or even a spreadsheet.

The application issues requests to create a connection with a data source; to issue SQL
statements and receive results; to process errors; and to start, commit, and roll back

Web
Server

Native
Interfaces DBMS

ODBC Nonrelational
Databases

VSAM, ISAM, Other
File Processors

E-mail, Other
Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

Relational Databases:
Oracle Database,
Microsoft SQL Server,
Oracle MySQL, Microsoft Access,
IBM DB2 . . .

Figure 11-2

Role of the ODBC Standard

454 Part 5 Database Access Standards

DBMS Driver1 DBMS1

DBMS Driver2

DBMS Driver3

DBMS2

DBMS3

Driver
ManagerApplication

Application Server Data Sources

Application can process a database using any of the three
DBMS products.

DB

DB

DB

Figure 11-3

ODBC Architecture

transactions. ODBC provides a standard means for each of these requests, and it defines a
standard set of error codes and messages.

The ODBC driver manager serves as an intermediary between the application and the
DBMS drivers. When the application requests a connection, the driver manager determines
the type of DBMS that processes a given ODBC data source and loads that driver into memory
(if it is not already loaded). The driver manager also processes certain initialization requests
and validates the format and order of ODBC requests that it receives from the application. For
Windows, the driver manager is provided by Microsoft.

An ODBC driver processes ODBC requests and submits specific SQL statements to a
given type of data source. Each data source type has a different driver. For example, there are
drivers for SQL Server, for Oracle Database, for MySQL, for Microsoft Access, and for all of the
other products whose vendors have chosen to participate in the ODBC standard. Drivers are
supplied by DBMS vendors and by independent software companies.

It is the responsibility of the driver to ensure that standard ODBC commands execute
correctly. In some cases, if the data source is itself not SQL compliant, the driver may need to
perform considerable processing to fill in for a lack of capability at the data source. In other
cases, when the data source supports full SQL, the driver need only pass the request through
for processing by the data source. The driver also converts data source error codes and
messages into the ODBC standard codes and messages.

ODBC identifies two types of drivers: single tier and multiple tier. An ODBC single-tier
driver processes both ODBC calls and SQL statements. An example of a single-tier driver is
shown in Figure 11-4 (a). In this example, the data are stored in Xbase files (the format used by
FoxPro, dBase, and others). Because Xbase file managers do not process SQL, it is the job of the
driver to translate the SQL request into Xbase file-manipulation commands and to transform
the results back into SQL form.

An ODBC multiple-tier driver processes ODBC calls, but passes the SQL requests
directly to the database server. Although it may reformat an SQL request to conform to the
dialect of a particular data source, it does not process the SQL. An example of the use of a
multiple-tier driver is shown in Figure 11-4 (b).

Conformance Levels

The creators of the ODBC standard faced a dilemma. If they chose to describe a standard for a
minimal level of capability, many vendors would be able to comply. But if they did so, the
standard would represent only a small portion of the complete power and expressiveness of
ODBC and SQL. However, if the standard addressed a very high level of capability, only a few
vendors would be able to comply with the standard, and it would become unimportant. To deal
with this dilemma, the committee wisely chose to define levels of conformance to the standard.
The committee defined two types of conformance: ODBC conformance and SQL conformance.

ODBC Conformance Level
ODBC conformance levels are concerned with the features and functions that are made
available through the driver’s API. As previously discussed, a driver API is a set of functions

Chapter 11 The Web Server Environment 455

Single-Tier
Driver

File
Input/
Output

Commands

DB
Driver
ManagerApplication

Web Server

Data
Server

Computer

Database Files

DBMS
Driver

SQL
Commands

DB
Driver
ManagerApplication

Web Server

Database
Server

Computer

DBMS

(a) ODBC Single-Tier Driver

(b) ODBC Multiple-Tier Driver

Figure 11-4

ODBC Driver Types

that the application can call to receive services. Figure 11-5 summarizes the three levels of
ODBC conformance that are addressed in the standard. In practice, almost all drivers provide
at least Level 1 API conformance, so the core API level is not too important.

An application can call a driver to determine which level of ODBC conformance it
provides. If the application requires a level of conformance that is not present, it can terminate
the session in an orderly fashion and generate appropriate messages to the user. Or, the
application can be written to use higher-level conformance features if they are available and to
work around the missing functions if a higher level is not available.

Level 1 API
� Core API
� Connect to data sources with driver-specific information
� Send and receive partial results
� Retrieve catalog information
� Retrieve information about driver options, capabilities, and functions

Core API
� Connect to data sources
� Prepare and execute SQL statements
� Retrieve data from a result set
� Commit or roll back transactions
� Retrieve error information

Level 2 API

� Core and Level 1 API
� Browse possible connections and data sources
� Retrieve native form of SQL
� Call a translation library
� Process a scrollable cursor

Figure 11-5

Summary of ODBC
Conformance Levels

456 Part 5 Database Access Standards

For example, drivers at the Level 2 API must provide a scrollable cursor. Using
conformance levels, an application could be written to use cursors if they are available; but if
they are not, to work around the missing feature the application would select needed data
using very restrictive WHERE clauses. Doing this would ensure that only a few rows were
returned at a time to the application, and it would process those rows using a cursor that it
maintained itself. Performance would likely be slower in the second case, but at least the
application would be able to successfully execute.

SQL Conformance Level
ODBC SQL conformance levels specify which SQL statements, expressions, and data types a
driver can process. Three SQL conformance levels are defined, as summarized in Figure 11-6.
The capability of the minimum SQL grammar is very limited, and most drivers support at least
the core SQL grammar.

As with ODBC conformance levels, an application can call the driver to determine what level
of SQL conformance it supports. With that information, the application can then determine
which SQL statements can be issued. If necessary, the application can then terminate the session
or use alternative, less-powerful means of obtaining the data.

Creating an ODBC Data Source Name

An ODBC data source is an ODBC data structure that identifies a database and the DBMS that
processes it. Data sources identify other types of data, such as spreadsheets and other
nondatabase tabular data stores, but we are not concerned with that use here.

The three types of data sources are file, system, and user. A file data source is a file
that can be shared among database users. The only requirement is that the users have the
same DBMS driver and privilege to access the database. The data source file can be
e-mailed or otherwise distributed to possible users. A system data source is one that is

Core SQL Grammar
� Minimum SQL Grammar
� ALTER TABLE, CREATE INDEX, DROP INDEX
� CREATE VIEW, DROP VIEW
� GRANT, REVOKE
� Full SELECT (includes subqueries)
� Aggregate functions such as SUM, COUNT, MAX, MIN, AVG
� DECIMAL, NUMERIC, SMALLINT, INTEGER, REAL, FLOAT,
 DOUBLE PRECISION data types

Extended SQL Grammar
� Core SQL Grammar
� Outer joins
� UPDATE and DELETE using cursor positions
� Scalar functions such as SUBSTRING, ABS
� Literals for date, time, and timestamp
� Batch SQL statements
� Stored procedures

Minimum SQL Grammar
� CREATE TABLE, DROP TABLE
� Simple SELECT (does not include subqueries)
� INSERT, UPDATE, DELETE
� Simple expressions (A > B + C)
� CHAR, VARCHAR, LONGVARCHAR data types

Figure 11-6

Summary of SQL
Conformance Levels

Chapter 11 The Web Server Environment 457

local to a single computer. The operating system and any user on that system (with proper
privileges) can use a system data source. A user data source is available only to the user
who created it.

In general, the best choice for Internet applications is to create a system data source on
the Web server. Browser users then access the Web server, which, in turn, uses the system data
source to set up a connection with the DBMS and the database.

We need a system data source for the View Ridge Gallery VRG database so that we can use
it in a Web database processing application. We created the VRG database in SQL Server 2008
R2, and the system data source will provide a connection to the SQL Server 2008 R2 DBMS. To
create a system data source in a Windows operating system, you use the ODBC Data Source
Administrator.1

Opening the ODBC Data Source Administrator in Windows Server 2008 R2

1. Click the Start button and then click the All Programs button.
2. Click the Administrative Tools folder to open it.
3. Click the Data Sources (ODBC) program.

We can now use the ODBC Data Source Administrator to create a system data source
named VRG for use with SQL Server 2008 R2:

Creating the VRG System Data Source

1. In the ODBC Data Source Administrator, click the System DSN tab, and then click the
Add button.

2. In the Create New Data Source dialog box, we need to connect to SQL Server 2008 R2,
so we select the SQL Server Native Client 10, as shown in Figure 11-7.

3. Click the Finish button. The Create New Data Source to SQL Server dialog box appears.
4. In the Create New Data Source to SQL Server dialog box, enter the information

shown for the VRG in Figure 11-8(a) (note that the database server is selected from
the Server drop-down list), and then click the Next button.

� Note: If the SQL server does not appear in the Server drop-down list, enter in
manually as {ComputerName}.

5. As shown in Figure 11-8(b), in the next page of the Create a New Data Source to SQL
Server dialog box, click the radio button that selects SQL Server authentication, and
then enter the Login ID of VRG-User and the Password of VRG-User+password
that we created in Chapter 9. After this data has been entered, click then Next button.

� NOTE: If the Login ID and Password are not correct, an error message appear.
Make sure you have correctly created the SQL Server login as discussed in
Chapter 9, and that you have entered the correct data here.

6. As shown in Figure 11-8(c), click the check box to change the default database, set the
default database to VRG, and then click the Next button.

7. As shown in Figure 11-8(d), another group of settings is displayed. There is no need to
change any of these settings, so click the Finish button to close the Create a New
Data Source to SQL Server dialog box.

8. The ODBC Microsoft SQL Server Setup dialog box is displayed, as shown in Figure 11-18(e).
This dialog box is used to summarize the settings to be created for the new ODBC data
source. Click the Test Data Source . . . button to test the settings.

1Important: If you are using a 64-bit Windows operating system, be aware that there are two different ODBC Data
Source Administrator programs provided�one for 32-bit applications and one for 64-bit applications. The ODBC
Data Source Administrator used if you follow the steps in the text is the 64-bit version. However, if you are running
a 32-bit program in the Web application set (e.g., a 32-bit DBMS such as the 32-bit version of SQL Server 2008 R2
Express Advanced), then you must use the 32-bit version of the ODBC Data Source Administrator. In Windows 7,
Microsoft Server 2008, and Microsoft Server 2008 R2, this is the odbcad32.exe program located at C:\Windows\
sysWOW64\odbcad32.exe. If everything seems to be set up correctly, yet the Web pages are not displaying properly,
then this is likely to be the problem.

458 Part 5 Database Access Standards

Select System DSN
and click the Add
button

Select the SQL Server
Native Client 10.0

The MySQL
ODBC 5.1 Driver

Click the Finish button

Figure 11-7

The Create New Data Source
Dialog Box

Type in the name
for this System
DSN: VRG

The drop-down list
arrow button�select
the SQL server
from the drop-down
list�if the list is empty,
type in the name of the
server itself, not the
SQL Server instance
name

Type in a description

(a) Naming the ODBC Data Source

Figure 11-8

The Create New Data Source
to SQL Server Dialog Box

Chapter 11 The Web Server Environment 459

Click this check box
for SQL Server
authentication

Type in the user Login
ID here

Type in the associated
user Password here

The Next button

(b) Selecting the User Login ID Authentication Method

Figure 11-8

Continued

Click this check box
to manually select
the default database

If necessary, select
the correct database
from the drop-down
list displayed clicking
this drop-down list
arrow

The Next button

(c) Selecting the Default Database

460 Part 5 Database Access Standards

The Finish button

Figure 11-8

Continued

The Test Data
Source button

(e) Testing the Data Source

(d) Additional Setting Options

Chapter 11 The Web Server Environment 461

The OK button

(f) The Successfully Tested Data Source
Figure 11-8

Continued 9. As shown in Figure 11-8(f). The SQL Server ODBC Data Source Test dialog box
appears, showing that the tests completed successfully. Click the OK button to exit
the dialog box and create the ODBC data source.

10. The completed VRG system data source is shown in Figure 11-9. Click the OK button
to close the ODBC Data Source Administrator.

The VRG system data
source

Figure 11-9

The Completed VRG System
Data Source

462 Part 5 Database Access Standards

� Language Integrated Query (LINQ)
� ADO.NET Entity Framework
� ADO.NET Data Services
� ADO.NET AJAX

3.5

� Windows Presentation Foundation (WPF)
� Windows Communication Foundation (WCF)
� Windows Workflow Foundation (WWF)

3.0

� Parallel LINQ (PLINQ)
� Task Parallel Library (TPL)

4.0

� ASP.NET
� ADO.NET
� Base Class Library
� Common Language Runtime

2.0

Figure 11-10

The Microsoft .NET
Framework Structure

We will use the VRG DSN later in this chapter to process the SQL Server database created in
Chapter 10. Similarly, if you are using either the Oracle or MySQL DBMS, you should create an
appropriate system data source for use with your Oracle or MySQL version of the View Ridge
Gallery database.

The Microsoft .NET Framework and ADO.NET

The .NET Framework is Microsoft�s comprehensive application development platform. Web
database applications tools are included in the .NET Framework. Originally released as the
.NET Framework 1.0 in January 2002, the current version is the .NET Framework 4.0 (SQL
Server 2008 R2 requires only .NET Framework 3.5 SP1).

As shown in Figure 11-10, the .NET Framework can best be visualized as a set of building
blocks stacked on top of each other. Each additional block adds additional functionality to the
components already existing in previous blocks, and, if earlier components need to be
updated, this is done by service packs to the older blocks. Thus, .NET Framework 2.0 SP2 and
.NET Framework SP2 were included as part of .NET Framework 3.5 SP1, and upgrades to all
portions of the .NET Framework are included in .NET Framework 4.0.

Although Figure 11-10 does not show every feature of the .NET Framework 3.5 SP1, the
basic structure is easy to see. The .NET Framework 2.0 is now the basic layer and contains the
most basic features. These include the Common Language Runtime (CLT) and the Base
Class Library, which support all of the programming languages (e.g., VB.NET and Visual
C#.NET) used with the .NET Framework. This layer also includes the ADO.NET and ASP.NET
components, which are needed for Web database applications.

The .NET Framework 3.0 added a set of components that are not of interest to us here. We are
more concerned with the features added in .NET Framework 3.5 and 3.5 SP1, noting that these
features were upgraded, but not replaced, by .NET Framework 4.0. Note that several extensions to
ADO.NET were included in .NET Framework 3.5 and 3.5 SP1, such as the ADO.NET Entity
Framework, which supports Microsoft�s emerging Entity Data Model (EDM) data modeling
technology, as well as the Language Integrated Query (LINQ) component, which allows SQL
queries to be programmed directly into application programs in a simple manner.

Chapter 11 The Web Server Environment 463

Besides updating existing features, the .NET Framework 4.0 added features needed for
parallel processing on clustered servers. These include Parallel LINQ (PLINQ) and Task
Parallel Library (TPL), but these parallel processing features are beyond the scope of this book.

Now that we understand the basic structure of the .NET Framework, we can look at some
of the pieces in detail.

The Microsoft Entity Data Model (EDM) is similar in concept to the Semantic
Object Model discussed in Appendix H of this book. A discussion of the EDM

can be found at http://msdn.microsoft.com/en-us/library/aa697428(VS.80).aspx.

OLE DB

ODBC has been a tremendous success and has greatly simplified some database development
tasks. However, it does have some disadvantages, and in particular one substantial disadvantage
that Microsoft addressed by creating OLE DB. Figure 11-11 shows the relationship among OLE
DB, ODBC, and other data types. OLE DB is one of the foundations of data access in the
Microsoft world. As such, it is important to understand the fundamental ideas of OLE DB, even
if you will only work with the ADO.NET interface that lies on top of it because, as you will see,
OLE DB remains as a data provider to ADO.NET. In this section, we present essential OLE DB
concepts, and use them to introduce some important object-oriented programming topics.

OLE DB provides an object-oriented interface to data of almost any type. DBMS vendors
can wrap portions of their native libraries in OLE DB objects to expose their product�s
functionality through this interface. OLE DB can also be used as an interface to ODBC data
sources. Finally, OLE DB was developed to support the processing of nonrelational data as well.

OLE DB is an implementation of the Microsoft Object Linking and Embedding (OLE)
object standard. OLE DB objects are Component Object Model (COM) objects and support all
required interfaces for such objects. Fundamentally, OLE DB breaks the features and functions
of a DBMS up into COM objects. Some objects support query operations; others perform
updates; others support the creation of database schema constructs, such as tables, indexes,
and views; and still others perform transaction management, such as optimistic locking.

This characteristic overcomes a major disadvantage of ODBC. With ODBC, a vendor must
create an ODBC driver for almost all DBMS features and functions in order to participate in

Web
Server

Native
Interfaces DBMS

ODBC

O
L
E

D
B

Nonrelational
Databases

VSAM, ISAM,
Other File
Processors

E-mail, Other
Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

Relational Databases:
Oracle Database,
Microsoft SQL Server,
Oracle MySQL, Microsoft Access,
IBM DB2 . . .

Figure 11-11

The Role of OLE DB

464 Part 5 Database Access Standards

ODBC at all. This is a large task that requires a substantial investment. With OLE DB, however, a
DBMS vendor can implement portions of a product. One could, for example, implement only the
query processor, participate in OLE DB, and hence be accessible to customers using ADO.NET.
Later, the vendor could add more objects and interfaces to increase OLE DB functionality.

This text does not assume that you are an object-oriented programmer, so we need to
develop a few concepts. In particular, you need to understand objects, abstractions, properties,
methods, and collections. An abstraction is a generalization of something. ODBC interfaces
are abstractions of native DBMS access methods. When we abstract something, we lose detail,
but we gain the ability to work with a broader range of types.

For example, a recordset is an abstraction of a relation. In this abstraction, a recordset is
defined to have certain characteristics that will be common to all recordsets. Every recordset,
for instance, has a set of columns, which in this abstraction is called Fields. Now, the goal of
abstraction is to capture everything important but to omit details that are not needed by users
of the abstraction. Thus, Oracle relations may have some characteristics that are not
represented in a recordset; the same might be true for relations in SQL Server, DB2, and in
other DBMS products. These unique characteristics will be lost in the abstraction, but if the
abstraction is a good one, no one will care.

Moving up a level, a rowset is the OLE DB abstraction of a recordset. Now, why does OLE
DB need to define another abstraction? Because OLE DB addresses data sources that are not
tables but that do have some of the characteristics of tables. Consider all of the e-mail
addresses in your personal e-mail file. Are those addresses the same as a relation? No, but they
do share some of the characteristics that relations have. Each address is a semantically related
group of data items. Like rows of a table, it is sensible to go to the first one, move to the next
one, and so forth. But, unlike relations, they are not all of the same type. Some addresses are for
individuals, others are for mailing lists. Thus, any action on a recordset that depends on
everything in the recordset being the same kind of thing cannot be used on a rowset.

Working from the top down, OLE DB defines a set of data properties and behaviors for
rowsets. Every rowset has those properties and behaviors. Furthermore, OLE DB defines a
recordset as a subtype of a rowset. Recordsets have all of the properties and behaviors that
rowsets have, plus they have some that are uniquely characteristic of recordsets.

Abstraction is both common and useful. You will hear of abstractions of transaction
management or abstractions of querying or abstractions of interfaces. This simply means that
certain characteristics of a set of things are formally defined as a type.

An object-oriented programming object is an abstraction that is defined by its properties
and methods. For example, a recordset object has an AllowEdits property and a RecordsetType
property and an EOF property. These properties represent characteristics of the recordset
abstraction. An object also has actions that it can perform that are called methods. A recordset
has methods such as Open, MoveFirst, MoveNext, and Close. Strictly speaking, the definition of
an object abstraction is called an object class, or just a class. An instance of an object class,
such as a particular recordset, is called an object. All objects of a class have the same methods
and the same properties, but the values of the properties vary from object to object.

The last term we need to address is collection. A collection is an object that contains a group
of other objects. A recordset has a collection of other objects called Fields. The collection has
properties and methods. One of the properties of all collections is Count, which is the number of
objects in the collection. Thus, recordset.Fields.Count is the number of fields in the collection. In
OLE DB, collections are named as the plural of the objects they collect. Thus, there is a Fields
collection of Field objects, an Errors collection of Error objects, a Parameters collection of
Parameters, and so forth. An important method of a collection is an iterator, which is a method
that can be used to pass through or otherwise identify the items in the collection.

Goals of OLE DB
The major goals for OLE DB are listed in Figure 11-12. First, as mentioned, OLE DB breaks
DBMS functionality and services into object pieces. This partitioning means great flexibility
for both data consumers (users of OLE DB functionality) and data providers (vendors of
products that deliver OLE DB functionality). Data consumers take only the objects and
functionality they need; a wireless device for reading a database can have a very slim footprint.
Unlike with ODBC, data providers need only implement a portion of DBMS functionality. This
partitioning also means that data providers can deliver capabilities in multiple interfaces.

Chapter 11 The Web Server Environment 465

This last point needs expansion. An object interface is a packaging of objects. An
interface is specified by a set of objects and the properties and methods that they expose. An
object need not expose all of its properties and methods in a given interface. Thus, a recordset
object would expose only read methods in a query interface, but would expose create, update,
and delete methods in a modification interface.

How the object supports the interface, or the implementation, is completely hidden
from the user. In fact, the developers of an object are free to change the implementation
whenever they want. Who will know? But they may not ever change the interface without
incurring the justifiable disdain of their users!

OLE DB defines standardized interfaces. Data providers, however, are free to add
interfaces on top of the basic standards. Such extensibility is essential for the next goal, which
is to provide an object interface to any data type. Relational databases can be processed
through OLE DB objects that use ODBC or that use the native DBMS drivers. OLE DB includes
support for the other types as indicated.

The net result of these design goals is that data need not be converted from one form to
another, nor need they be moved from one data source to another. The Web server shown in
Figure 11-11 can utilize OLE DB to process data in any of the formats, right where the data
reside. This means that transactions may span multiple data sources and may be distributed
on different computers. The OLE DB provision for this is the Microsoft Transaction
Manager (MTS); however, discussion of the MTS is beyond the scope of this text.

OLE DB Terminology
As shown in Figure 11-13, OLE DB has two types of data providers. Tabular data providers
present their data via rowsets. Examples are DBMS products, spreadsheets, and ISAM file

� Create object interfaces for DBMS functionality pieces

° Query
° Update
° Transaction management
° Etc.

� Increase flexibility
 ° Allow data consumers to use only the objects they need
 ° Allow data providers to expose pieces of DBMS functionality
 ° Providers can deliver functionality in multiple interfaces
 ° Interfaces are standardized and extensible
� Object interface over any type of data
 ° Relational database
 ° ODBC or native
 ° Nonrelational database
 ° VSAM and other files
 ° E-mail
 ° Other
� Do not force data to be converted or moved from where they are

Figure 11-12

The Goals of OLE DB

� Tabular data provider
° Exposes data via rowsets
° Examples: DBMS, spreadsheets, ISAMs, e-mail

� Service provider
° Transforms data through OLE DB interfaces
° Both a consumer and a provider of data
° Examples: query processors, XML document creator

Figure 11-13

Two Types of OLE DB Data
Providers

466 Part 5 Database Access Standards

processors, such as dBase and FoxPro. Additionally, other types of data, such as e-mail, can also
be presented in rowsets. Tabular data providers bring data of some type into the OLE DB world.

A service provider, in contrast, is a transformer of data. Service providers accept OLE
DB data from an OLE DB tabular data provider and transform it in some way. Service
providers are both consumers and providers of transformed data. An example of a service
provider is one that obtains data from a relational DBMS and then transforms them into
XML documents. Both data and service providers process rowset objects. A rowset is
equivalent to what we called a cursor in Chapter 9, and in fact the two terms are frequently
used synonymously.

For database applications, rowsets are created by processing SQL statements. The results
of a query, for example, are stored in a rowset. OLE DB rowsets have dozens of different
methods, which are exposed via the interfaces listed in Figure 11-14.

IRowSet provides object methods for forward-only sequential movement through a
rowset. When you declare a forward-only cursor in OLE DB, you are invoking the IRowSet
interface. The IAccessor interface is used to bind program variables to rowset fields.

The IColumnsInfo interface has methods for obtaining information about the columns in
a rowset. IRowSet, IAccessor, and IColumnsInfo are the basic rowset interfaces. Other
interfaces are defined for more advanced operations such as scrollable cursors, update
operations, direct access to particular rows, explicit locks, and so forth.

ADO and ADO.NET

Because OLE DB is an object-oriented interface, it is particularly suited to object-oriented
languages such as VB.NET and Visual C#.NET. Many database application developers,
however, program in scripting languages such as VBScript or JScript (Microsoft�s version of
JavaScript). To meet the needs of these programmers, Microsoft developed Active Data
Objects (ADO) as a cover over OLE DB objects, as shown in Figure 11-15. ADO has enabled
programmers to use almost any language to access OLE DB functionality.

ADO is a simple object model that overlies the more complex OLE DB object model. ADO
can be called from scripting languages, such as JScript and VBScript, and it can also be called
from more powerful languages, such as Visual Basic .NET, Visual C#.NET, Visual C++.NET, and
even Java. Because ADO is easier to understand and use than OLE DB, ADO was (and still is)
often used for database applications.

ADO.NET is a new, improved, and greatly expanded version of ADO that was developed as
part of Microsoft�s .NET initiative. It incorporates the functionality of ADO and OLE DB, but
adds much more. In particular, ADO.NET facilitates the transformation of XML documents
(discussed in Chapter 12) to and from relational database constructs. ADO.NET also provides
the ability to create and process in-memory databases called datasets. Figure 11-16 shows the
role of ADO.NET.

� IRowSet

° Methods for sequential iteration through a rowset
� IAccessor

° Methods for setting and determining bindings between rowset
 and client program variables
� IColumnsInfo

° Methods for determining information about the columns in the rowset
� Other interfaces

° Scrollable cursors
° Create, update, delete rows
° Directly access particular rows (bookmarks)
° Explicitly set locks
° And so on

Figure 11-14

Rowset Interfaces

Chapter 11 The Web Server Environment 467

The ADO.NET Object Model

Now we need to look at ADO.NET in more detail. As shown in Figure 11-17, an ADO.NET
Data Provider is a class library that provides ADO.NET services. Microsoft supplied
ADO.NET Data Providers are available for ODBC, OLE DB, SQL Server, Oracle Database, and
EDM applications, which means that ADO.NET works with not only the ODBC and OLE DB
data access methods we have discussed in this chapter, but directly with SQL Server, Oracle
Database, and .NET language applications that use EDM as well. ADO Data Providers from
other vendors are available through http://msdn.microsoft.com/en-us/data/dd363565.

A simplified version of the ADO.NET object model is shown in Figure 11-18. The
ADO.NET object classes are grouped into Data Providers and DataSets.

The ADO.NET Connection object is responsible for connecting to the data source.
It is basically the same as the ADO Connection object, except that ODBC is not used as a
data source.

The ADO.NET DataSet is a representation of the data stored in the computer memory as
a set of data separate from the one in the DBMS. The DataSet is distinct and disconnected
from the DBMS data. This allows commands to be run against the DataSet instead of the
actual data. DataSet data can be constructed from data in multiple databases, and they can be

Web
Server

Native
Interfaces DBMS

A
D
O

ODBC

O
L
E

D
B

Nonrelational
Databases

VSAM, ISAM,
Other File
Processors

E-mail, Other
Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

Relational Databases:
Oracle Database,
Microsoft SQL Server,
Oracle MySQL, Microsoft Access,
IBM DB2 . . .

Figure 11-15

The Role of ADO

DBMSADO.NET

Web
Applications

Windows
Applications

XML Web
Services

DB

Figure 11-16

The Role of ADO.NET

468 Part 5 Database Access Standards

managed by different DBMS products. The DataSet contains the DataTableCollection and the
DataRelationCollection. A more detailed version of the ADO.NET dataset object model is
shown in Figure 11-19.

The DataTableCollection mimics DBMS tables with DataTable objects. DataTable objects
include a DataColumnCollection, a DataRowCollection, and Constraints. Data values are
stored in DataRow collections in three forms: original values, current values, and proposed
values. Each DataTable object has a PrimaryKey property to enforce row uniqueness. The
Constraints collection uses two constraints. The ForeignKeyConstraint supports referential
integrity, and the UniqueConstraint supports data integrity.

DBMS

ADO.NET Data Provider

ADO.NET Data Providers:

� OLE DB
� SQL Server Client
� Oracle Database Client
� Others . . .

Data
Reader

Command

Connection

Data
Adaptor

XML
Document

DB

Or Other
OLE DB
Data Source

ApplicationApplication

Dataset
Figure 11-17

Components of an ADO.NET
Data Provider

ADO.NET

Data Providers Data ConsumersDataSet

DataTableCollectionConnection

Data Adapter

Command

Data Reader

DataRelationCollection

Relationships

DataTable

Columns

Rows

Constraints

Figure 11-18

The ADO.NET Object Model

Chapter 11 The Web Server Environment 469

The DataRelationCollection stores DataRelations, which act as the relational links
between tables. Note again that referential integrity is maintained by the ForeignKeyCon-
straint in the Constraints collection. Relationships among DataSet tables can be processed
just as relationships in a database can be processed. A relationship can be used to compute the
values of a column, and DataSet tables can also have views.

The ADO.NET Command object shown in Figures 11-17 and 11-18 is used as an SQL
statement or stored procedure and is run on data in the DataSet. The ADO.NET DataAdapter
object is the link between a Connection object and a DataSet object. The DataAdapter uses
four Command objects: the SelectCommand object, the InsertCommand object, the
UpdateCommand object, and the DeleteCommand object. The SelectCommand object
gets data from a DBMS and places it in a DataSet. The other commands send changes in the
DataSet back to the DBMS data.

The ADO.NET DataReader is similar to a cursor that provides read-only, forward-only data
transfers from a data source, and can only be used through an Execute method of a Command.

Looking ahead to Chapter 12 on XML, we see some of the advantages of ADO.NET over
ADO. Once a DataSet is constructed, its contents can be formatted as an XML document with
a single command. Similarly, an XML Schema document for the DataSet can also be produced
with a single command. This process works in reverse as well. An XML Schema document can
be used to create the structure of a DataSet, and the DataSet data can then be filled by reading
an XML document.

DataSet

DataRelationCollection

DataRelation

Extended Properties

DataTableCollection

DataTable

DataRowCollection

Constraints

DataColumnCollection

PrimaryKey

DataRow

Constraint

DataColumn

ExtendedProperties

ChildRelations

ParentRelations

Extended Properties

DataView

Figure 11-19

The ADO.NET DataSet
Object Model

You may be wondering, �Why is all of this necessary? Why do we need an
in-memory database?� The answer lies in database views like that shown

in Chapter 12 in Figure 12-16. There is no standardized way to describe and process
such data structures. Because it involves two multivalue paths through the data, SQL

(continued)

470 Part 5 Database Access Standards

DataSets do have a downside, and a serious one for some applications. Because DataSet
data are disconnected from the regular database, only optimistic locking can be used. The
data are read from the database, placed into the DataSet, and processed there. No attempt is
made to propagate changes in the DataSet back to the database. If, after processing, the
application later wants to save all of the DataSet data into a regular database, it needs to use
optimistic locking. If some other application has changed the data, either the DataSet will
need to be reprocessed or the data change will be forced onto the database, causing the lost
update problem.

Thus, DataSets cannot be used for applications in which optimistic locking is
problematic. For such applications, the ADO.NET Command object should be used instead.
But for applications in which conflict is rare or for those in which reprocessing after conflict
can be accommodated, DataSets provide significant value.

Combining Oracle Database with ASP.NET applications is somewhat
complex, and beyond the scope of this discussion. A good starting

point is the Oracle Database 2 Day + .NET Developer�s Guide for Oracle Database 11g
R2 at http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10767/toc.htm. In
particular, see Chapter 7�Using ASP.NET with Oracle Database at http://download.
oracle.com/docs/cd/E11882_01/appdev.112/e10767/using_aspnt.htm.

The only way to use Oracle Database XML facilities is to write in Java,
an object-oriented programming language. Further, the only way to

process ADO.NET is from one of the .NET languages, all of which, like Visual Basic
.NET, are object-oriented languages. Thus, if you do not yet know object-oriented
design and programming, and if you want to work in the emerging world of database
processing, you should run, not walk, to your nearest object-oriented design and
programming class!

cannot be used to describe the data. Instead, we must execute two SQL statements
and somehow patch the results to obtain the view.

Views like that shown in Figure 12-16 have been processed for many years, but
only by private, proprietary means. Every time such a structure needs to be
processed, a developer designs programs for creating and manipulating the data in
memory and for saving them to the database. Object-oriented programmers define a
class for this data structure and create methods to serialize objects of this class into
the database. Other programmers use other means. The problem is that every time a
different view is designed, a different scheme must be designed and developed to
process the new view.

As Microsoft developed .NET technology, it became clear that a generalized
means was needed to define and process database views and related structures.
Microsoft could have defined a new proprietary technology for this purpose, but
thankfully it did not. Instead, it recognized that the concepts, techniques, and
facilities used to manage regular databases can be used to manage in-memory
databases as well. The benefit to you is that all of the concepts and techniques that
you have learned to this point for processing regular databases can also be used to
process datasets.

Chapter 11 The Web Server Environment 471

The Java Platform

Having looked at the Microsoft .NET Framework in some detail, we will now turn our
attention to the Java platform and look at its components.

JDBC

Originally, and contrary to many sources, JDBC originally did not stand for Java Database
Connectivity. According to Sun Microsystems�the inventor of Java and the original source of
many Java-oriented products�JDBC was not an acronym; it just stood for JDBC. At this point
in time, however, we can even find the name Java Database Connectivity (JBDC) on Oracle�s
Web site (Oracle Corporation purchased Sun Microsystems in January of 2010�see http://
www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html)! Still, because we use
acronyms in this book after introducing the full term, we will use JDBC.

A JDBC driver is available for almost every conceivable DBMS product. Oracle maintains a
directory of them available through http://www.oracle.com/technetwork/java/javase/jdbc/
index.html). Some of the drivers are free, and almost all of them have an evaluation edition
that can be used for free for a limited period of time. The JDBC driver for MySQL is the MySQL
Connector/J, which is available at http://dev.mysql.com/downloads/connector/j/5.5.html.

Driver Types
As summarized in Figure 11-20, there are four defined JDBC driver types. Type 1 drivers are
JDBC�ODBC bridge drivers, which provide an interface between Java and regular ODBC drivers.
Most ODBC drivers are written in C or C++. For reasons unimportant to us here, there are incom-
patibilities between Java and C/C++. Bridge drivers resolve these incompatibilities and allow
access to ODBC data sources from Java. Because we use ODBC in the chapter, if you are using
MySQL you will want to download the MySQL Connector/ODBC driver from http://dev.mysql.
com/downloads/connector/. Note that the MySQL ODBC connector for Windows operating
systems is included in the MySQL Installer for Windows discussed in Chapter 10B.

Drivers of Types 2 through 4 are written entirely in Java; they differ only in how they
connect to the DBMS. Type 2 drivers connect to the native API of the DBMS. For example, they
call Oracle Database using the standard (non-ODBC) programming interface to Oracle
Database. Drivers of Types 3 and 4 are intended for use over communications networks.
A Type 3 driver translates JDBC calls into a DBMS-independent network protocol. This protocol
is then translated into the network protocol used by a particular DBMS. Finally, Type 4 drivers
translate JDBC calls into DBMS-specific network protocols.

To understand how drivers Types 2 through 4 differ, you must first understand the
difference between a servlet and an applet. As you probably know, Java was designed to be
portable. To accomplish portability, Java programs are not compiled into a particular machine
language, but instead are compiled into machine-independent bytecode. Oracle, Microsoft,
and others have written bytecode interpreters for each machine environment (Intel 386,
Alpha, and so on). These interpreters are referred to as Java virtual machines.

To run a compiled Java program, the machine-independent bytecode is interpreted by
the virtual machine at run time. The cost of this, of course, is that bytecode interpretation

Driver Type
1

2

3

4

Characteristics
JDBC�ODBC bridge. Provides a Java APl that interfaces to
an ODBC driver. Enables processing of ODBC data sources
from Java.
A Java APl that connects to the native-library of a DBMS
product. The Java program and the DBMS must reside on the
same machine, or the DBMS must handle the intermachine
communication, if not.
A Java APl that connects to a DBMS-independent network
protocol. Can be used for servlets and applets.
A Java APl that connects to a DBMS-dependent network
protocol. Can be used for servlets and applets.

Figure 11-20

Summary of JDBC Driver
Types

472 Part 5 Database Access Standards

constitutes an extra step, so such programs can never be as fast as programs that are
compiled directly into machine code. This may or may not be a problem, depending on the
application�s workload.

An applet is a Java bytecode program that runs on the application user�s computer. Applet
bytecode is sent to the user via HTTP and is invoked using the HTTP protocol on the user�s com-
puter. The bytecode is interpreted by a virtual machine, which is usually part of the browser.
Because of portability, the same bytecode can be sent to a Windows, a UNIX, or an Apple computer.

A servlet is a Java program that is invoked via HTTP on the Web server computer. It
responds to requests from browsers. Servlets are interpreted and executed by a Java virtual
machine running on the server.

Because they have a connection to a communications protocol, Type 3 and Type 4 drivers
can be used in either applet or servlet code. Type 2 drivers can be used only in situations where
the Java program and the DBMS reside on the same machine or where the Type 2 driver
connects to a DBMS program that handles the communications between the computer
running the Java program and the computer running the DBMS.

Thus, if you write code that connects to a database from an applet (two-tier architecture),
only a Type 3 or Type 4 driver can be used. In these situations, if your DBMS product has a
Type 4 driver, use it; it will be faster than a Type 3 driver.

In three-tier or n-tier architecture, if the Web server and the DBMS are running on the
same machine, you can use any of the four types of drivers. If the Web server and the DBMS
are running on different machines, Type 3 and Type 4 drivers can be used without a problem.
Type 2 drivers can also be used if the DBMS vendor handles the communications between the
Web server and the DBMS. The MySQL Connector/J, the Java connector that you can
download from http://dev.mysql.com/downloads/connector/j/5.5.html is a Type 4 driver.

Using JDBC
Unlike ODBC, JDBC does not have a separate utility for creating a JDBC data source. Instead,
all of the work to define a connection is done in Java code via the JDBC driver. The coding
pattern for using a JDBC driver is as follows:

1. Load the driver.
2. Establish a connection to the database.
3. Create a statement.
4. Do something with the statement.

To load the driver, you must first obtain the driver library and install it in a directory. You
need to ensure that the directory is named in the CLASSPATH for both the Java compiler and
for the Java virtual machine. The name of the DBMS product to be used and the name of the
database are provided at step 2. Figure 11-21 summarizes the JDBC components.

Note that Java is used to create the application shown in the figure, and because Java is an
object-oriented programming language, we see a set of objects in the application that are
similar to those we have discussed for ADO.NET. The application creates a JDBC Connection
object, JDBC Statement objects, a JDBC ResultSet object, and a JDBC ResultSetMetaData
object. Calls from these objects are routed via the JDBC DriverManager to the proper driver.
Drivers then process their databases. Notice that the Oracle database in this figure could be
processed via either a JDBC�ODBC bridge or via a pure JDBC driver.

By the way, most of this technology arose in the UNIX operating system
world. UNIX is case sensitive, and almost everything you enter here also is

case sensitive. Thus, jdbc and JDBC are not the same.

Prepared Statement objects and Callable Statement objects can be used to invoke
compiled queries and stored procedures in the database. Their use is similar to the use of
ADO.NET Command objects discussed previously in this chapter. It is possible to receive
values back from procedures as well. Start at http://www.oracle.com/technetwork/java/javase/
documentation/index.html for more information.

Chapter 11 The Web Server Environment 473

MySQL
Database

MySQL Driver

Oracle
Database
Database

SQL Server Database Oracle Database
Database

Oracle Database Driver

JDBC�ODBC Bridge

ODBC Driver

Driver
ManagerConnection

Statement CallableStatement

Application

PreparedStatementResultSet

ResultSetMetaData

Figure 11-21

JDBC Components

Java Server Pages (JSP) and Servlets

Java Server Pages (JSP) technology provides a means to create dynamic Web pages using
HTML (and XML) and the Java programming language. With Java, the capabilities of a
complete object-oriented language are directly available to the Web page developer. This is
similar to what can be done using ASP.NET using the Microsoft .NET languages.

Because Java is machine independent, JSP is also machine independent. With JSP, you are
not locked into using Windows and IIS. You can run the same JSP page on a Linux server, on a
Windows server, and on others as well. The official specification for JSP can be found at http://
www.oracle.com/technetwork/java/javaee/jsp/index.html.

JSP pages are transformed into standard Java language and then compiled just like a
regular program. In particular, they are transformed into Java servlets, which means that JSP
pages are transformed into subclasses of the HTTPServlet class behind the scenes. JSP code
thus has access to the HTTP request and response objects and also to their methods and to
other HTTP functionality.

Apache Tomcat

The Apache Web server does not support servlets. However, the Apache Foundation and Sun
cosponsored the Jakarta Project that developed a servlet processor named Apache Tomcat
(now in version 6). You can obtain the source and binary code of Tomcat from the Apache
Tomcat Web site at http://tomcat.apache.org/.

Tomcat is a servlet processor that can work in conjunction with Apache or as a
stand-alone Web server. Tomcat has limited Web server facilities, however; so it is normally
used in stand-alone mode only for testing servlets and JSP pages. For commercial production
applications, Tomcat should be used in conjunction with Apache. If you are running Tomcat
and Apache separately on the same Web server, they need to use different ports. The default
port for a Web server is 80, and Apache normally uses it. When used in stand-alone mode,
Tomcat is usually configured to listen to port 8080, though this, of course, can be changed.

Figure 11-22 shows the process by which JSP pages are compiled. When a request for a JSP
page is received, a Tomcat (or other) servlet processor finds the compiled version of the page
and checks to determine whether it is current. It does this by looking for an uncompiled
version of the page having a creation date and time later than the compiled page�s creation

474 Part 5 Database Access Standards

date and time. If the page is not current, the new page is parsed and transformed into a Java
source file, and that source file is then compiled. The servlet is then loaded and executed. If the
compiled JSP page is current, then it is loaded into memory, if not already there, and then
executed. If it is in memory, it is simply executed.

Load the JSP Servlet

Parse JSP and
Create Java
Source File

Compile Java
Source File

JSP
Servlet

Current?

Yes

Yes

Execute the JSP
Servlet

JSP Page Response

JSP
Servlet in
Memory?

No

No

JSP Page Request

Figure 11-22

JSP Compilation Process

The downside of such automatic compilation is that if you make syntax
errors and forget to test your pages, the first user to access your page will

receive the compiler errors!
Unlike common gateway interface (CGI) files and some other Web server programs,

only one copy of a JSP page can be in memory at a time. Further, pages are executed
by one of Tomcat�s threads, not by an independent process. This means that much less
memory and processor time are required to execute a JSP page than to execute a
comparable CGI script.

Web Database Processing with PHP

At this point in our discussion, it is time to build an actual Web database application and apply
both some of the knowledge from this chapter and some new techniques yet to be discussed.
We have already created an ODBC data source for the View Ridge Gallery database, and now
we will use it to look at Web database processing. Although we have introduced technologies
such as ADO.NET, ASP.NET, Java, and JSP, these technologies are complex subjects and beyond
the scope of this book. Further, these technologies tend to become vendor specific�you are
either working in a Microsoft-centric world with .NET technologies and ASPs or a Oracle
Corporation-centric world with Java and JSPs.

Chapter 11 The Web Server Environment 475

Before working your way through this chapter, you should install and setup
the software we will be using�the Microsoft IIS Web server, the Java JRE,

PHP and the Eclipse PDT IDE�on your computer if you do not have the software
available for your use in a computer lab or similar facility. Installing and setting up this
software correctly, which is complex but straightforward, is described in detail in
Appendix I. We strongly suggest that you read Appendix I now, and make sure your
computer is completely setup before continuing with the material this chapter. Then try
out each of our examples on your computer to get the most out of this discussion.

In this book, we will take a vendor-neutral approach and use technologies that can be
used with any operating system or DBMS. We will use the PHP language. PHP, which is an
abbreviation for PHP: Hypertext Processor (and that was previously known as the Personal
Hypertext Processor), is a scripting language that can be embedded in Web pages. Although
PHP started as purely a scripting language, it now also has object-oriented programming
elements, but we will not cover those in this book.

PHP is extremely popular. In the summer of 2007, more than 2 million Internet domains
had servers running PHP,2 and the April 2011 TIOBE Programming Community Index ranked
PHP as the fifth most popular programming language (following, in order, Java, C, C++, and
C#).3 PHP is easy to learn and can be used in most Web server environments and with most
databases. As an added bonus, it is an open-source product available for free download from
the PHP Web site (www.php.net).

Although Microsoft would probably prefer that you use ASP.NET for Web applications, there
is still good information on using PHP in a Microsoft environment on the Microsoft Web site (e.g.,
see Running PHP on IIS7 at http://php.iis.net). Both Oracle DBMS products�Oracle Database 11g
and MySQL 5.5�enthusiastically support PHP. Oracle publishes the Oracle Database 2 Day + PHP
Developer�s Guide (available in both HTML and PDF format at www.oracle.com/pls/db111/
homepage), which is an excellent reference for using PHP with Oracle Database 11g. Because PHP
is often the P in AMP, LAMP, and WAMP, many books are available that discuss the combination
of PHP and MySQL, and the MySQL Web site contains basic documentation on using PHP with
MySQL (e.g., see http://dev.mysql.com/doc/refman/5.5/en/apis-php.html).

Web Database Processing with PHP and Eclipse

To start, we need a Web server to store the Web pages that we will build and use. We could use
the Apache HTTP Server (available from the Apache Software Foundation at www.apache.org).
This is the most widely used Web server, and there is a version that will run on just about every
operating system in existence. However, because we have been using the Windows operating
system for the DBMS products shown in this book, we will build a Web site using the Microsoft
IIS Web server. One advantage of using this Web server for users of the Windows 7 and the
Windows Server 2008 R2 operating systems is that IIS is included with the operating system: IIS
version 7.5 is included with both Windows 7 and Windows Server 2008 R2. IIS is installed but
not operational by default, but it can easily be made operational at any time. This means that
any user can practice creating and using Web pages on his or her own workstation, as well as
working on a networked Web server. See Appendix I for a detailed discussion of setting up IIS.

2 See www.php.net/usage.php.
3 See www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

This discussion of Web database processing has been written to be as
widely applicable as possible. With minor adjustments to the following

steps, you should be able to use the Apache Web server if you have it available. When-
ever possible, we have chosen to use products and technologies that are available for
many operating systems.

476 Part 5 Database Access Standards

When IIS is installed, it creates an inetpub folder on the C: drive as C:\inetpub.
Within the inetpub folder is the wwwroot folder, which is where IIS stores the most basic
Web pages used by the Web server. Figure 11-23 shows this directory structure in Windows
Server 2008 R2 after IIS has been installed, with the files in the wwwroot folder displayed in
the file pane.

IIS is managed using a program called Internet Information Services Manager in
Windows 7 Server 2008 R2, as shown in Figure 11-24. The location of the program icon varies
depending on the operating system. In Windows 7, open Control Panel, then open System
and Security and then open Administrative Tools. The shortcut icon for Internet
Information Services Manager is located in Administrative Tools. For Windows Server 2008
R2, use Start | Administrative Tools | Internet Information Services (IIS) Manager.

The C: drive

The inetpub folder

The iisstart.htm file

The wwwroot folder

Figure 11-23

The IIS wwwroot Folder in
Windows Server 2008 R2

The Default Web Site
location maps to the
wwwroot folder

The iisstart.htm file

The Content View
pane is selected

Figure 11-24

Managing IIS with the
Internet Information Services
Manager

Chapter 11 The Web Server Environment 477

Note that the files shown in the Default Web Site folder in Figure 11-23 are the same files
that are in the wwwroot folder in Figure 11-24�they are the default files created by IIS when it
is installed. In Windows 7, Windows Server 2008 and Windows Server 2008 R2, the file
iisstart.htm generates the Web page that Internet Explorer (or any other Web browser)
contacting this Web server over the Internet will display.

To test the Web server installation, open your Web browser, type in the URL http://localhost,
and press the Enter key. For Windows Server 2008 R2, the Web page shown in Figure 11-25 (in the
Microsoft IE 9 Web browser) appears. If the appropriate Web page isn�t displayed in your Web
browser, your Web server is not properly installed.

Now we will set up a small Web site that can be used for Web database processing of the
View Ridge Gallery VRG database. First, we will create a new folder named DBP (Database
Processing) under the wwwroot folder. This new folder will be used to hold all the Web pages
developed in discussions and exercises in this book. Second, we will create a subfolder of
DBC named VRG. This folder will hold the VRG Web site. You create these folders using
Windows Explorer.

Getting Started with HTML Web Pages

The most basic Web pages are created using Hypertext Markup Language (HTML). The
term hypertext refers to the fact that you can include links to other objects, such as Web pages,
maps, pictures, and even audio and video files in a Web page, and when you click the link, you
are immediately taken to that other object, and it is displayed in your Web browser. HTML
itself is a standard set of HTML syntax rules and HTML document tags that can be
interpreted by Web browsers to create specific onscreen displays.

Tags are usually paired, with a specific beginning tag and a matching ending tag that
includes the backslash character (/). Thus, a paragraph of text is tagged as <p>{paragraph
text here}</p>, and a main heading is tagged as <h1>{heading text here}</h1>. Some tags do
not need a separate end tag because they are essentially self-contained. For example, to insert
a horizontal line on a Web page, you use the horizontal rule tag, <hr />. Note that such single,
self-contained tags must include the backslash character as part of the tag.

The rules of HTML are defined as standards by the World Wide Web Consortium
(W3C), and the details of current and proposed standards can be found at www.w3c.org

This Web page is
generated by the
iisstart.htm file

Figure 11-25

The Default IIS Web Page

478 Part 5 Database Access Standards

(this site also has several excellent tutorials on HTML4). The W3C Web site has current
standards for HTML; Extensible Markup Language (XML), which we will discuss in
Chapter 12; and a hybrid of the two called XHTML. A full discussion of these standards is
beyond the scope of this text. Note that although HTML 5 is being discussed in many places,
it is still in development, and this chapter uses the current HTML 4.01 standard (usually in
what is called the "strict" form).

In this chapter, we will create a simple HTML homepage for the View Ridge Gallery Web
site and place it in the VRG folder. We will discuss some of the numerous available Web page
editors shortly, but all you really need to create Web pages is a simple text editor. For this first
Web page, we will use the Microsoft Notepad ASCII text editor, which has the advantage of
being supplied with every version of the Windows operating system.

The index.html Web Page

The name for the file we are going to create is index.html. We need to use the name
index.html because it is a special name as far as Web servers are concerned. The file name
index.html is one of only a few file names that most Web servers automatically display when a
URL request is made without a specific file reference, and thus it will become the new default
display page for our Web database application. However, note the phrase �most Web servers� in
the last sentence. Although Apache, IIS 7.0, and IIS 7.5 (as shown in Figure 11-26) are
configured to recognize index.html, IIS 5.1 is not. If you are using Windows XP and IIS 5.1, you
need to add index.html to the list of recognized files using the Internet Information Services
management program.

Creating the index.html Web Page

Now we can create the index.html Web page, which consists of the basic HTML statements
shown in Figure 11-27. Figure 11-28 shows the HTML code in Microsoft Notepad.

The Features View
Default Document
settings page

The index.html
file name is already
listed

The Features View
pane is selected

Figure 11-26

The index.html file in
Windows Server 2008 R2 IIS
Manager

4 To learn more about HTML, go to the Web site of the World Wide Web Consortium (W3C) at www.w3.org. For
good HTML tutorials, see David Raggett�s �Getting Started with HTML� tutorial at www.w3.org/MarkUp/Guide,
his �More Advanced Features� tutorial at www.w3.org/MarkUp/Guide/Advanced.html, and his �Adding a Touch
of Style� tutorial at www.w3.org/MarkUp/Guide/Style.html.

Chapter 11 The Web Server Environment 479

Figure 11-27

The HTML Code for the
index.html File in the VRG
Folder

In the HTML code for index.html, the HTML code segment:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Strict//EN"

"http://www.w3.org/TR/html4/strict.dtd">

is an HTML/XML document type declaration (DTD), which is used to check and validate
the contents of the code that you write. DTDs are discussed in Chapter 12. For now, just
include the code as it is written.

The index.html HTML
code„note how
indentation is used to
keep the code
organized and
readable

Figure 11-28

The HTML Code for the
index.html File in Microsoft
Notepad

If we now use either the URL http://localhost/DBC/VRG (if the Web server is on the same
computer we are working on) or the URL http://{Web server DNS Name or IP Number}/DBC/WPC
(if the Web server is on another computer), we get the Web page shown in Figure 11-29.

480 Part 5 Database Access Standards

This IP number
indicates that the Web
server is on a separate
computer„if the Web
server is on your
computer itself, use
the URL
http://localhost/
DBP/VRG

Figure 11-29

The index.html Web Page
in VRG

Using PHP

Now that we have our basic Web site set up, we will expand its capabilities with a Web
development environment that allows us to connect Web pages to our database. Several
technologies allow us to do this. Developers using Microsoft products usually work with the
.NET framework and use ASP.NET technology. Developers who use the Apache Web server
may prefer creating JSP files in the JavaScript scripting language or using the Java
programming language in the Java Enterprise Edition (Java EE) environment.

The PHP Scripting Language
In this chapter, we will use PHP, which is available as this is being written in versions 5.2.17 and
5.3.6 (we are using 5.3.6), and available for free download from the PHP Web site (www.php.net).
See Appendix I for a complete discussion of installing and testing PHP on your computer. You
should download the latest version of PHP available for your operating system and install it on
your computer. In addition to Appendix I, documentation is available on the PHP Web site,
and good discussion can also be found by searching the Web for �PHP installation.� Setting up
PHP usually requires several steps (not just running an installation routine), so take some time
and be sure you have PHP running correctly. Also be sure to enable PHP Data Objects (PDO)�
this is not done automatically.

The Eclipse Integrated Development Environment (IDE)
Although a simple text editor such as Microsoft Notepad is fine for simple Web pages, as we start
creating more complex pages we will move to an integrated development environment (IDE).

If you are working on a single computer, with the DBMS, Web server, and
development tools all installed together, you will see a consistent user

interface. It may be Windows XP, Windows Vista, or a version of Linux. This is, in fact,
typical of small development platforms, and allows you to easily test each application
component as you create it.

In a larger production environment, however, the Web server and database server
(which may or may not be the same physical server) are separate from the developer�s
workstation. In this case you, as the developer, will see different user interfaces
depending on which computer you are using.

We are illustrating this latter setup in this chapter. Our Web server (IIS) and DBMS
server (SQL Server 2008 R2) are on one server running Windows Server 2008. Our devel-
opment tools (the IE 8 Web browser and the Eclipse IDE) are on a separate workstation
running Windows 7. Thus, you will see the differences in the user interface depending
on whether the work is being done on the server (e.g., in Figures 11-23 through 11-26)
or on the workstation (e.g., Figure 11-29).

Chapter 11 The Web Server Environment 481

5 As noted on the PDT download page, you also need to install the Java Runtime Environment (as of this
writing, it is JRE 6.25 from Oracle at http://java.com/en/). Also note that the Windows version of Eclipse does
not install like most Windows program: You need to create a folder named Eclipse in the Program Files folder
on your C: drive (the full path name will be C:\Program Files\Eclipse), unzip the Eclipse PDT files in that
directory, and create a desktop shortcut to Eclipse.exe. See Appendix I for more details.

An IDE is intended to be a complete development framework, with all the tools you need in one
place. An IDE gives you the most robust and user-friendly means of creating and maintaining
your Web pages.

If you are working with Microsoft products, you will most likely use Visual Studio (or the
Visual Studio 2010 Express Editions, available for free from www.microsoft.com/express/). In
fact, if you have installed SQL Server 2010 R2 Express Advanced or any non-Express version of
the product, you have already installed some Visual Studio components. These are installed to
support SQL Server Reporting Services, and they are sufficient for creating basic Web pages. If
you are working with JavaScript or Java, you might prefer the NetBeans IDE (downloadable
from www.netbeans.org).

For this chapter, we will again turn to the open-source development community and use the
Eclipse IDE. Eclipse provides a framework that can be modified by add-in modules for many
purposes. For PHP, we can use Eclipse as modified for the Eclipse PDT (PHP Development Tools)
Project, which is specifically intended to provide a PHP development environment in Eclipse (see
www.eclipse.org/pdt/ for general information and http://download.eclipse.org/tools/pdt/downloads/
for downloadable files�download the current stable build for your operating system).5

Figure 11-29 shows the index.html file as created in the Eclipse IDE. Compare this version
with the Notepad version in Figure 11-30.

The ReadArtist.php File
Now that we have our basic Web site set up, we will start to integrate PHP into the Web pages.
First, we will create a page to read data from a database table and display the results in a Web
page. Specifically, we will create a Web page in the VRG folder named ReadArtist.php to run
the SQL query:

SELECT LastName, FirstName, Nationality FROM ARTIST;

This page displays the result of the query, without the table�s surrogate key of ArtistID, in
a Web page. The HTML and PHP code for ReadArtist.php is shown in Figure 11-31, and the
same code is shown in Eclipse in Figure 11-32.

The DBP-e12-VRG
project„Eclipse
organizes work into
projects

The index.html HTML
code„note how color
coding has been
added to indentation
to keep the code
organized and
readable

Figure 11-30

The HTML Code for the
index.html File in the
Eclipse IDE

482 Part 5 Database Access Standards

Figure 11-31

The HTML and PHP Code
for ReadArtist.php

Figure 11-31

Continued

The ReadArtist.php
code„PHP code is
enclosed in the <?php
and ?> symbols, which
are displayed in red
in Eclipse

Figure 11-32

The HTML and PHP Code
for ReadArtist.php in Eclipse

Now if you use the URL http://localhost/DBP/VRG in your Web browser and then click the
Example 1: Display the ARTIST Table (No surrogate key) link on that page, the Web page
shown in Figure 11-33 is displayed.

This IP number
indicates that the Web
server is on a separate
computer„if the Web
server is on your
computer itself, use
the URL
http://localhost/
DBP/VRG

Click to return to the
View Ridge Gallery
Home Page

Figure 11-33

The Results of
ReadArtist.php

Chapter 11 The Web Server Environment 483

484 Part 5 Database Access Standards

6 Styles are used to control the visual presentation of the Web page and are defined in the HTML section
between the <style> and </style> tags. For more information about styles, see David Raggett�s �Adding a Touch
of Style� tutorial at www.w3.org/MarkUp/Guide/Style.html.

The ReadArtist.php code blends HTML (executed on the user�s workstation) and PHP
statements (executed on the Web server). In Figure 11-30, the statements included between
the <?php and ?> tags are program code that is to be executed on the Web server computer.
All the rest of the code is HTML that is generated and sent to the browser client. In Figure 11-30,
the statements:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">

<html>

<head>

<meta http-equiv="Content-Type" content=�text/html;
charset=UTF-8">
<title>ReadArtist</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align:
left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>

</head>

<body>

are normal HTML code. When sent to the browser, these statements set the title of
the browser window to ReadArtist; define styles to be used by the headings,6 the results
table, and the footer; and cause other HTML-related actions. The next group of statements
are included between <?php and ?> and, thus, are PHP code that will be executed on
the Web server. Also note that all PHP statements, like SQL statements, must end with a
semicolon (;).

Creating a Connection to the Database
In the HTML and PHP code in Figure 11-31, the following PHP code is embedded in the HTML
code to create and test a connection to the database:

<?php

// Get connection

$DSN = "VRG";

$User = "VRG-User";

$Password = "VRG-User+password";

$Conn = odbc_connect($DSN, $User, $Password);

// Test connection

if (!$Conn)

{

exit ("ODBC Connection Failed: " . $Conn);

}

Chapter 11 The Web Server Environment 485

Be sure to use comments to document your Web pages. PHP code
segments with two forward slashes (//) in front of them are comments. This

symbol is used to define single-line comments. In PHP, comments can also be inserted
in blocks between the symbols /* and */, whereas in HTML comments must be inserted
between the symbols <!-- and -->.

The connection is used to open the VRG ODBC data source. Here, the user ID of VRG-
User and the password of VRG-User+password that we created in Chapter 10 for SQL Server
2008 R2 are being used to authenticate to the DBMS. If you are using Oracle Database or
MySQL, use the ODBC data source name, user name, and user password as you created it for
your database.

The test of the connection is contained in the code segment:

// Test connection

if (!$Conn)

{

exit ("ODBC Connection Failed: " . $Conn);

}

In English, this statement says, �IF the connection Conn does not exist, THEN print the
error message �ODBC Connection Failed� followed by the contents of the variable $Conn.�
Note that the code (!$Conn) means NOT $Conn�in PHP the exclamation point symbol (!)
means NOT.

At this point, a connection has been established to the DBMS via the ODBC data source,
and the database is open. The $Conn variable can be used whenever a connection to the
database is needed.

Creating a RecordSet
Given the connection with an open database, the following code segment from Figure 11-31
will store an SQL statement in the variable $SQL and then use the PHP odbc_exec command
to run that SQL statement against the database to retrieve the query results and store them in
the variable $RecordSet:

// Create SQL statement
$SQL = "SELECT LastName, FirstName, Nationality FROM ARTIST";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);
// Test existence of recordset
if (!$RecordSet)

{

exit ("SQL Statement Error: " . $SQL);

}

?>

Note that you need to test the results to be sure the PHP command executed correctly.

After it runs, the variable $Conn can be used to connect to the ODBC data source VRG. Note
that all PHP variables start with the dollar sign symbol ($).

486 Part 5 Database Access Standards

Displaying the Results
Now that the RecordSet name $RecordSet has been created and populated, we can process the
$RecordSet collection with the following code:

<!-- Page Headers -->

<h1>

The View Ridge Gallery ARTIST Table

</h1>

<hr />

<h2>

ARTIST

</h2>

<?php

// Table headers

echo "<table class=’output’ border=’1’>

<tr>
<th>LastName</th>
<th>FirstName</th>
<th>Nationality</th>

</tr>";

// Table data

while($RecordSetRow = odbc_fetch_array($RecordSet))

{

echo "<tr>";
echo "<td>" . $RecordSetRow[’LastName’] . "</td>";
echo "<td>" . $RecordSetRow[’FirstName’] . "</td>";
echo "<td>" . $RecordSetRow[’Nationality’] . "</td>";

echo "</tr>";
}

echo "</table>";

The HTML section defines the page headers, and the PHP section defines how to
display the SQL results in a table format. Note the use of the PHP command echo to
allow PHP to use HTML syntax within the PHP code section. Also note that a loop is
executed to iterate through the rows of the RecordSet using the PHP variable
$RecordSetRow.

Disconnecting from the Database
Now that we have finished running the SQL statement and displaying the results, we can end
our ODBC connection to the database with the code:

// Close connection

odbc_close($Conn);

?>

The basic page we have created here illustrates the basic concepts of using ODBC and
PHP to connect to a database and process data from that database in a Web database

Chapter 11 The Web Server Environment 487

processing application. We can now build on this foundation by studying PHP command
syntax and incorporating additional PHP features into our Web pages.7

Challenges for Web Database Processing

Web database application processing is complicated by an important characteristic of HTTP.
Specifically, HTTP is stateless; it has no provision for maintaining sessions between requests. Using
HTTP, a client at a browser makes a request of a Web server. The server services the client request,
sends results back to the browser, and forgets about the interaction with that client. A second
request from that same client is treated as a new request from a new client. No data are kept to
maintain a session or connection with the client.

This characteristic poses no problem for serving content, either static Web pages or
responses to queries of a database. However, it is not acceptable for applications that require
multiple database actions in an atomic transaction. Recall from Chapter 6 that in some cases,
a group of database actions needs to be grouped into a transaction, with all of them
committed to the database or none of them committed to the database. In this case, the Web
server or other program must augment the base capabilities of HTTP.

For example, IIS provides features and functions for maintaining data about sessions
between multiple HTTP requests and responses. Using these features and functions, the
application program on the Web server can save data to and from the browser. A particular
session will be associated with a particular set of data. In this way, the application program can
start a transaction, conduct multiple interactions with the user at the browser, make intermedi-
ate changes to the database, and commit or roll back all changes when ending the transaction.
Other means are used to provide for sessions and session data with Apache.

In some cases, the application programs must create their own methods for tracking
session data. PHP does include support for sessions�see the PHP documentation for more
information.

The particulars of session management are beyond the scope of this chapter. However,
you should be aware that HTTP is stateless, and, regardless of the Web server, additional
code must be added to database applications to enable transaction processing.

7 For more information on PHP, see the PHP documentation at www.php.net/docs.php.

Web Page Examples with PHP

The following three examples extend our discussion of using PHP Web pages in Web
database applications. These examples focus mainly on the use of PHP and not as much on
the graphics, presentation, or workflow. If you want a flashy, better-behaving application,
you should be able to modify these examples to obtain that result. Here, just learn how PHP
is used.

All of these examples process the View Ridge Gallery database. In all of them we use the
VRG database in each DBMS as we constructed it for SQL Server 2008 R2, Oracle Database 11g,
and MySQL 5.5 in Chapters 10, 10A, and 10B, respectively. For simplicity, we connect to each
using an ODBC system data source�VRG for SQL Server, VRG-Oracle for Oracle Database,
and VRG-MySQL for MySQL. And if we use the same user name and password in each
DBMS, we need to only change the ODBC data source name to switch between DBMSs! That
is amazing, and exactly what the originators of ODBC hoped for when they created the
ODBC specification.

Note, however, that although we are using ODBC functions, PHP actually provides a
specific set for most DBMS products. These sets are generally more efficient than ODBC, and if

488 Part 5 Database Access Standards

Figure 11-34

Modifications to the VRG
index.html Home Page

you are working with a specific DBMS you will want to explore the PHP function set for it.8 As
an example of this, note that we connected to the database using

// Get connection

$DSN = "VRG";
$User = "VRG-User";
$Password = "VRG-User+password";
$Conn = odbc_connect($DSN, $User, $Password);

If we are using MySQL, however, we can use:

// Get connection

$Host = "localhost";
$User = "VRG-User";
$Password = "VRG-User+password";
$Database = "VRG";
$Conn = mysqli_connect($Host, $User, $Password, $Database);

Similarly, SQL Server uses the sqlsrv_connect function (using the Microsoft PHP driver
described in footnote 8), and Oracle uses the oci_connect function.

PHP 5.2.x and 5.3.x also support object-oriented programming and a new data abstraction
layer called PHP Data Objects (PDO) that provides a common syntax for accessing DBMS
products. There is a lot of power in PHP, and we will barely scratch the surface here.

However, before proceeding with our examples, we need to add some links to our VRG
homepage. The necessary code is shown in Figure 11-34. If you are working through these
examples (and you should be), be sure to make these changes.

8 Microsoft has created an updated set of functions for SQL Server If you are going to use the SQL Server�specific
functions, you should download the Microsoft Drivers for PHP for SQL Server from Microsoft at http://
www.microsoft.com/downloads/en/details.aspx?FamilyID=80E44913-24B4-4113-8807-CAAE6CF2CA05.

Chapter 11 The Web Server Environment 489

The artist name is
entered in the Last
Name and First Name
text boxes

The artist nationality is
selected from the
drop-down list

The Add New Artist
button is used to
submit the data

The Reset Values
button is used to clear
the data in the form

Figure 11-35

The Add New Artist Form

The New Artist
Added message is
displayed along with
the artist data

Click this link to see
the ARTIST table with
the new artist data

Figure 11-36

The New Artist
Acknowledgment Page

Example 1: Updating a Table

The previous example of a PHP Web page just read data. This next example shows how to update
table data by adding a row to a table with PHP. Figure 11-35 shows a data entry form that will
capture artist name and nationality and create a new row. This form has three data entry fields:
the First Name and Last Name fields are text boxes where the user types in the artist�s name and
the Nationality field has been implemented as a drop-down list to control the possible values and
to make sure they are spelled correctly. When the user clicks the Add New Artist button, the
artist is added to the database; and if the results are successful, the acknowledgment Web page in
Figure 11-36 is displayed. The Display the ARTIST Table (LastName, FirstName, Nationality) link
will invoke the ReadArtist.php page, which will display the ARTIST table with the new row, as
shown in Figure 11-37. We have tested these pages by adding the American artist Guy Anderson
(born 1906, deceased 1998), who is a member of the Northwest School.

This processing necessitates two PHP pages. The first, shown in Figure 11-38, is the data
entry form with three fields: artist last name, artist first name, and artist nationality.

It also contains the form tag:

<form action="InsertNewArtist.php" method="POST">

This tag defines a form section on the page, and the section will be set up to obtain data
entry values. This form has only one data entry value: the table name. The POST method

490 Part 5 Database Access Standards

refers to a process that causes the data in the form (here, the last name, the first name, and the
selected nationality) to be delivered to the PHP server so it can be used in an array variable
named $_POST. Note that $_POST is an array, and thus can have multiple values. An alterna-
tive method is GET, but POST can carry more data, and this distinction is not too important to
us here. The second parameter of the form tag is action, which is set to InsertNewArtist.php.
This parameter tells the Web server that when it receives the response from this form it should
store the data values in the $_POST array and pass control to the InsertNewArtist.php page.

The rest of the page is standard HTML, with the addition of the <select><option> . . .
</option></select> structure for creating a drop-down list in the form. Note that the variable
name for the selected value is Nationality.

When the user clicks the Add New Artist button, these data are to be processed by the
InsertNewArtist.php page. Figure 11-39 shows the InsertNewArtist.php, the page that will be
invoked when the response is received from the form. Note that the variable values for the INSERT
statement are obtained from the $_POST[] array. First, we create short variable names for the
$_POST version of the name, and then we use these short variable names to create the SQL
INSERT statement. Thus:

// Create short variable names

$LastName = $_POST["LastName"];
$FirstName = $_POST["FirstName"];
$Nationality = $_POST["Nationality"];

// Create SQL statement

$SQL = "INSERT INTO ARTIST(LastName, FirstName, Nationality) ";
$SQL .= "VALUES(’$LastName’, ’$FirstName’, ’$Nationality’)";

Note the use of the PHP concatenation operator (.=) (a combination of a period and an
equals sign) to combine the two sections of the SQL INSERT statement. As another example,
to create a variable named $AllOfUs with the value me, myself, and I we would use:

$AllOfUs = "me, ";

$AllOfUs .= "myself, ";

$AllOfUs .= "and I";

Most of the code is self-explanatory, but make sure you understand how it works.

The Guy Anderson
data

Figure 11-37

The Artist Table with the
New Artist

Chapter 11 The Web Server Environment 491

Figure 11-38

The HTML Code for
NewArtistForm.html

492 Part 5 Database Access Standards

Figure 11-39

The HTML and PHP Code
for InsertNewArtist.php

493

Figure 11-39

Continued

Example 2: Using PHP Data Objects (PDO)

Our next example is an exercise in using PHP Data Objects (PDO). Here we are re-creating the
ReadArtist.php page, but using PDO to do it. We call the new Web page ReadArtistPDO.php,
and it is shown in Figure 11-40. The PHP code to create the page is shown in Figure 11-41, and
you should compare this PHP code to the PHP code for ReadArtist.php in Figure 11-31.

PHP PDO will become important as newer versions of PHP are released. The power of PHP
PDO is that the only line of PHP code that needs to be changed when using a different DBMS
product is the one that establishes the connection to the database. In Figure 11-41, this is the line:

$PDOconnection = new PDO("odbc:$DSN", $User, $Password);

Figure 11-40

The Results of
ReadArtistPDO.php

494 Part 5 Database Access Standards

Figure 11-41

The HTML and PHP Code
for ReadArtistPDO.php

Chapter 11 The Web Server Environment 495

Example 3: Invoking a Stored Procedure

We created a stored procedure named InsertCustomerAndInterest for the SQL Server 2008 R2,
Oracle Database 11g, and MySQL 5.5 versions of the VRG database in Chapters 10, 10A, and
10B, respectively. In all cases, the stored procedure accepts a new customer�s last name, first
name, area code, local number, e-mail, and the nationality of all artists in whom the customer
is interested. It then creates a new row in CUSTOMER and adds appropriate rows to the
CUSTOMER_ARTIST_INT table.

To invoke the stored procedure using a PHP page using PDO, we create a Web form page to
collect the necessary data, as shown in Figure 11-42. Then, when the user clicks the Add New
Customer button, we want to invoke a PHP page that uses PDO to call the stored procedure with
the form data as the input parameters. So that the user can verify that the new data have been

Figure 11-41

Continued

The customer data is
entered in the Last
Name, First Name,
Area Code, Phone,
and Email text boxes

The artist nationality is
selected from the
drop-down list

The Reset Values
button is used to clear
the data in the form

The Add New
Customer button is
used to submit
the data

Figure 11-42

The New Customer and
Interests Form

496 Part 5 Database Access Standards

The New Customer
and Artist Interests
Added message is
displayed along with
the customer and
artist interest data

Figure 11-43

The Added New Customer
Acknowledgment Page

entered correctly, the PHP then queries a view that joins customer names with artist names and
nationalities. The result is shown in Figure 11-43. In this case, we are adding Richard Baxendale,
with phone number 206-876-7733 and e-mail address Richard.Baxendale@elsewhere.com.
Richard is interested in United States artists.

Figure 11-44 shows the code for the NewCustomerAndInterestsForm.html page used to
generate the data-gathering form. The form invokes the InsertNewCustomerAndInterests-
PDO.php page code shown in Figure 11-45.

In Figure 11-45, note that the PDO statements take the form of $Variable01 =
$Variable02 -> {PDO command}($Variable03). For example, in the PDO statement
$RecordSet = $PDOconnection-> query($SQL), we are using the PDO command query to
send the contents of the variable $SQL to the database through the connection named
$PDOconnection, and then storing the results in the variable $RecordSet. Note that
although PDO standardizes the PDO command set itself, the exact SQL statements used
various DBMS products will vary, and even PHP code using PDO has to be modified for
those differences. For example, SQL Server uses EXEC to call a stored procedure, whereas
MySQL uses CALL.

This PHP page is very straightforward, but it is interesting because it includes two SQL
statements. First, we use an SQL CALL statement to invoke the stored procedure and pass
the necessary parameters to it. Then we use an SQL SELECT statement to retrieve the
values we need for the construction of our Web page acknowledging the addition of a new
customer. The rest of the page reuses the same elements we have used in the previous
examples.

It is also interesting that in this page we have made use of both an SQL view (Customer-
InterestsView) and an SQL stored procedure (InsertCustomerAndInterests). This page
illustrates the power of both these SQL structures and how we can use them in a Web database
processing environment.

These examples give you an idea of the uses of PHP. The best way to learn more is to write
some pages yourself. This chapter has shown all the basic techniques that you will need. You
have worked hard to get to this point, and if you are able to understand enough to create some
of your own pages, you have come very far indeed since Chapter 1.

Figure 11-44

The HTML Code for
NewCustomerAnd
InterestsForm.html

(continued)

497

498 Part 5 Database Access Standards

Figure 11-45

The HTML and PHP Code
for InsertNewCustomerAnd
InterestsPDO.php

Figure 11-44

Continued

Chapter 11 The Web Server Environment 499

Figure 11-45

Continued

(continued)

Today, database applications reside in rich and compli-
cated environments. In addition to relational databases,
there are nonrelational databases, VSAM and other file-
processing data, e-mail, and other types of data. To ease
the job of the application programmer, various standards
have been developed. The ODBC standard is for relational
databases; the OLE DB standard is for relational databases
and other data sources. ADO was developed to provide
easier access to OLE DB data for the non-object-oriented
programmer.

ODBC, or the Open Database Connectivity standard,
provides an interface by which database applications can
access and process relational data sources in a DBMS-
independent manner. ODBC was developed by an industry
committee and has been implemented by Microsoft and
many other vendors. ODBC consists of an applications
program, a driver manager, DBMS drivers, and data source
components. Single- and multiple-tier drivers are defined.
The three data source names are file, system, and user.
System data sources are recommended for Web servers. The
process of defining a system data source name involves
specifying the type of driver and the identity of the database
to be processed.

The Microsoft .NET Framework is Microsoft�s compre-
hensive application development framework. The current
version is .NET Framework 4.0, which is built on top of the
.NET Framework 2.0 and .NET Framework 3.0 (and their
service pack updates). It includes ADO.NET, ASP.NET, CLR,
and the Base Class Library. Enhancements specific to .NET
Framework 3.5 include the ADO.NET Entity Framework,
which supports the EDM, and LINQ.

OLE DB is one of the foundations of the Microsoft data
access world. It implements the Microsoft OLE and COM
standards, and it is accessible to object-oriented programs
through those interfaces. OLE DB breaks the features and
functions of a DBMS into objects, thus making it easier for

vendors to implement portions of functionality. Key object
terms are objects, abstractions, properties, methods and
collections. A rowset is an abstraction of a recordset, which,
in turn, is an abstraction of a relation. Objects are defined by
properties that specify their characteristics and by methods,
which are the actions they can perform. A collection is an
object that contains a group of other objects. An interface is
a set of objects and the properties and methods they expose
in that interface. Objects may expose different properties
and methods in different interfaces. An implementation is
how an object accomplishes its tasks. Implementations are
hidden from the outside world and may be changed without
impacting the users of the objects. An interface ought not to
be changed, ever.

Tabular data providers present data in the form of
rowsets. Service providers transform data into another form;
such providers are both consumers and providers of data. A
rowset is equivalent to a cursor. Basic rowset interfaces are
IRowSet, IAccessor, and IColumnsInfo. Other interfaces are
defined for more advanced capabilities.

ADO.NET is a new, improved, and greatly expanded
version of ADO that was developed for the Microsoft .NET
initiative. ADO.NET incorporates all of the functionality of
ADO, but adds much more. In particular, ADO.NET facilitates
the transformation of XML documents to and from database
data. Most important, ADO.NET introduces the concept of
DataSets, which are in-memory, fully functioned, independent
databases.

A .NET data provider is a library of classes that provides
ADO.NET services. A data provider data reader provides
fast, forward-only access to data. A Command object can be
processed to execute SQL and also to invoke stored
procedures in a manner similar to but improved from that
in ADO. The major new concept of ADO.NET is the
DataSet. A DataSet is an in-memory database that is
disconnected from any regular database but that has all the

500 Part 5 Database Access Standards

Figure 11-45

Continued

Chapter 11 The Web Server Environment 501

important characteristics of a regular database. DataSets
can have multiple tables, relationships, referential integrity
rules, referential integrity actions, views, and the equivalent
of triggers. DataSet tables may have surrogate key columns
(called auto-increment columns) and primary keys and may
be declared unique.

DataSets are disconnected from the database(s) from
which they are constructed, and they may be constructed
from several different databases and possibly managed by
different DBMS products. After a DataSet is constructed, an
XML document of its contents and an XML Schema of its
structure are easily produced. Further, the process works in
reverse as well. XML Schema documents can be read to
create the structure of the DataSet, and XML documents
can be read to fill the DataSet.

DataSets are needed to provide a standardized, nonpropri-
etary means to process database views. They are especially
important for the processing of views with multiple multivalue
paths. The potential downside of DataSets is that because
they are disconnected, any updates against the databases they
access must be performed using optimistic locking. In the case
of conflict, either the DataSet must be reprocessed or the data
change must be forced onto the database, causing the lost
update problem.

JDBC is an alternative to ODBC and ADO that provides
database access to programs written in Java. A JDBC driver is
available for almost every conceivable DBMS product. Sun
defines four driver types. Type 1 drivers provide a bridge
between Java and ODBC. Types 2, 3, and 4 are written entirely
in Java. Type 2 drivers rely on the DBMS product for interma-
chine communication, if any. Type 3 drivers translate JDBC
calls into a DBMS-independent network protocol. Type 4
drivers translate JDBC calls into a DBMS-dependent network
protocol.

An applet is a compiled Java bytecode program that is
transmitted to a browser via HTTP and is invoked using
the HTTP protocol. A servlet is a Java program that is
invoked on the server to respond to HTTP requests. Type 3
and Type 4 drivers can be used for both applets and
servlets. Type 2 drivers can be used only in servlets, and
only then if the DBMS and Web server are on the same
machine or if the DBMS vendor handles the intermachine
communication between the Web server and the data-
base server.

There are four steps when using JDBC: (1) load the
driver, (2) establish a connection to the database, (3) create a
statement, and (4) execute the statement.

Java Server Pages (JSP) technology provides a means to
create dynamic Web pages using HTML (and XML) and Java.
JSP pages provide the capabilities of a full object-oriented
language to the page developer. Neither VBScript nor
JavaScript can be used in a JSP page. JSP pages are compiled
into machine-independent bytecode.

JSP pages are compiled as subclasses of the HTTPServlet
class. Consequently, small snippets of code can be placed in a
JSP page, as well as complete Java programs. To use JSP, the
Web server must implement the Java Servlet 2.1+ and JSP 1.0+
specifications. Apache Tomcat, an open-source product from
the Jakarta Project, implements these specifications. Tomcat
can work in conjunction with Apache or as a stand-alone
Web server for testing purposes.

When using Tomcat (or any other JSP processor), the
JDBC drivers and JSP pages must be located in specified
directories. When a JSP page is requested, Tomcat ensures
that the most recent page is used. If an uncompiled newer
version is available, Tomcat will automatically cause it to
be parsed and compiled. Only one JSP page can be in
memory at a time, and JSP requests are executed as a
thread of the servlet processor, not as a separate process.
The Java code in a JSP page can invoke a compiled Java
bean, if desired.

PHP (PHP: Hypertext Processor) is a scripting language
that can be embedded in Web pages. PHP is extremely popular
and easy to learn, and it can be used in most Web server
environments and with most databases.

For creating complex pages, you need an integrated
development environment (IDE). An IDE gives you the
most robust and user-friendly means of creating and
maintaining Web pages. Microsoft Visual Studio, Net-
Beans for Java users, and the open-source Eclipse IDE are
all good IDEs. Eclipse provides a framework that can be
modified by add-in modules. For PHP, there is a modi-
fication of Eclipse called the Eclipse PDT Project that
is specifically intended to provide a PHP development
environment.

PHP now includes object-oriented features and PHP
Data Objects (PDO), which simplify connecting Web pages
to databases.

<?php and ?>
.NET Framework
abstraction
Active Data Objects (ADO)
Active Server Pages (ASP)

ADO.NET
ADO.NET Command object
ADO.NET Connection object
ADO.NET Data Provider
ADO.NET DataAdapter object

502 Part 5 Database Access Standards

ADO.NET DataReader
ADO.NET DataSet
ADO.NET Entity Framework
AMP
Apache Tomcat
Apache Web server
applet
application program interface (API)
ASP.NET
Base Class Library
bytecode interpreter
Callable Statement object
collection
Common Language Runtime (CLT)
Component Object Model (COM)
Constraints
current values
cursor
data consumer
data provider
DataColumn Collection
DataRelations
DataRelationCollection
DataRow Collection
DataTable object
DataTableCollection
Default Web Site folder
DeleteCommand object
document type declaration (DTD)
Eclipse IDE
Eclipse PDT (PHP Development Tools) Project
Entity Data Model (EDM)
Extensible Markup Language (XML)
file data source
ForeignKeyConstraint
HTML document tags
HTML syntax rules
http://localhost
Hypertext Markup Language (HTML)
iisstart.htm
implementation
index.html
inetpub folder
InsertCommand object
integrated development environment (IDE)
interface
Internet Information Services (IIS)
Internet Information Services Manager
Java Data Objects (JDO)
Java Database Connectivity (JDBC)
Java platform
Java programming language

JavaServer Page (JSP)
Java virtual machine
JDBC Connection object
JDBC DriverManager
JDBC ResultSet object
JDBC ResultSetMetaData object
JDBC Statement object
LAMP
Language Integrated Query (LINQ)
method
Microsoft Transaction Manager (MTS)
object
object class
ODBC conformance levels
ODBC data source
ODBC Data Source Administrator
ODBC driver
ODBC driver manager
ODBC multiple-tier driver
ODBC single-tier driver
ODBC SQL conformance levels
Object Linking and Embedding (OLE)
OLE DB
Open Database Connectivity (ODBC)
original values
Parallel LINQ (PLINQ)
PHP
PHP concatenation operator (.=)
PHP Data Objects (PDO)
PHP: Hypertext Processor
POST method
Prepared Statement objects
PrimaryKey property
properties
proposed values
recordset
rowset
SelectCommand object
service provider
servlet
system data source
tabular data providers
Task Parallel Library (TPL)
three-tier architecture
two-tier architecture
UniqueConstraint
UpdateCommand object
user data source
WAMP
World Wide Web Consortium (W3C)
wwwroot folder
XHTML

Chapter 11 The Web Server Environment 503

11.1 Describe why the data environment is complicated.

11.2 Explain how ODBC, OLE DB, and ADO are related.

11.3 Explain the author�s justification for describing Microsoft standards. Do you agree?

11.4 Name the components of the ODBC standard.

11.5 What role does the driver manager serve? Who supplies it?

11.6 What role does the DBMS driver serve? Who supplies it?

11.7 What is a single-tier driver?

11.8 What is a multiple-tier driver?

11.9 Do the uses of the term tier in the three-tier architecture and its use in ODBC have
anything to do with each other?

11.10 Why are conformance levels important?

11.11 Summarize the three ODBC API conformance levels.

11.12 Summarize the three SQL grammar conformance levels.

11.13 Explain how the three types of data sources differ.

11.14 Which data source type is recommended for Web servers?

11.15 What are the two tasks to be accomplished when setting up an ODBC data source name?

11.16 What is the Microsoft .NET Framework? What basic elements does it include?

11.17 What is the current version of the .NET Framework, and what new features does it include?

11.18 Why is OLE DB important?

11.19 What disadvantage of ODBC does OLE DB overcome?

11.20 Define abstraction, and explain how it relates to OLE DB.

11.21 Give an example of abstraction involving rowset.

11.22 Define object properties and methods.

11.23 What is the difference between an object class and an object?

11.24 Explain the role of data consumers and data providers.

11.25 What is an interface?

11.26 What is the difference between an interface and an implementation?

11.27 Explain why an implementation can be changed but an interface should not be changed.

11.28 Summarize the goals of OLE DB.

11.29 Explain the difference between a tabular data provider and a service provider. Which
transforms OLE DB data into XML documents?

11.30 In the context of OLE DB, what is the difference between a rowset and a cursor?

11.31 What is ADO.NET?

11.32 What is a data provider?

11.33 What is a data reader?

504 Part 5 Database Access Standards

11.34 How can ADO.NET be used to process a database without using DataReaders or DataSets?

11.35 What is an ADO.NET DataSet?

11.36 How do ADO.Net DataSets differ conceptually from databases?

11.37 List the primary structures of an ADO.NET DataSet, as described in this chapter.

11.38 How do ADO.NET DataSets solve the problem of views with multivalue paths?

11.39 What is the chief disadvantage of ADO.NET DataSets? When is this likely to be a problem?

11.40 Why, in database processing, is it important to become an object-oriented programmer?

11.41 What is an ADO.NET Connection?

11.42 What is a DataAdapter?

11.43 What is the purpose of the SelectCommand property of a DataAdapter?

11.44 How is a data table relationship constructed in ADO.NET?

11.45 How is referential integrity defined in ADO.NET? What referential integrity actions are
possible?

11.46 Explain how original, current, and proposed values differ.

11.47 How does an ADO.NET DataSet allow for trigger processing?

11.48 What is the purpose of the UpdateCommand property of a DataAdapter?

11.49 What are the purposes of the InsertCommand and DeleteCommand of a DataAdapter?

11.50 Explain the flexibility inherent in the use of the InsertCommand, UpdateCommand,
and DeleteCommand properties.

11.51 What is the one major requirement for using JDBC?

11.52 What does JDBC stand for?

11.53 What are the four JDBC driver types?

11.54 Explain the purpose of Type 1 JDBC drivers.

11.55 Explain the purpose of Types 2, 3, and 4 JDBC drivers.

11.56 Define applet and servlet.

11.57 Explain how Java accomplishes portability.

11.58 List the four steps of using a JDBC driver.

11.59 What is the purpose of Java Server Pages?

11.60 Describe the differences between ASP and JSP.

11.61 Explain how JSP pages are portable.

11.62 What is the purpose of Tomcat?

11.63 Describe the process by which JSP pages are compiled and executed. Can a user ever
access an obsolete page? Why or why not?

11.64 Why are JSP programs preferable to CGI programs?

11.65 What is Hypertext Markup Language (HTML), and what function does it serve?

11.66 What are HTML document tags, and how are they used?

11.67 What is the World Wide Web Consortium (W3C)?

11.68 Why is index.hmtl a significant file name?

11.69 What is PHP, and what function does it serve?

Chapter 11 The Web Server Environment 505

11.70 How is PHP code designated in a Web page?

11.71 How are comments designated in PHP code?

11.72 How are comments designated in HMTL code?

11.73 What is an integrated development environment (IDE), and how is it used?

11.74 What is the Eclipse IDE?

11.75 What is the Eclipse PDT Project?

11.76 Show a snippet of PHP code for creating a connection to a database. Explain the
meaning of the code.

11.77 Show a snippet of PHP code for creating a RecordSet. Explain the meaning of the code.

11.78 Show a snippet of PHP code for displaying the contents of a RecordSet. Explain the
meaning of the code.

11.79 Show a snippet of PHP code for disconnecting from the database. Explain the meaning
of the code.

11.80 With respect to HTTP, what does stateless mean?

11.81 Under what circumstances does statelessness pose a problem for database processing?

11.82 In general terms, how are sessions managed by database applications when using HTTP?

11.83 What are PHP Data Objects (PDO)?

11.84 What is the significance of PDOs?

11.85 Show two snippets of PHP Code that compare creating a connection to a database in
standard PHP and in PDO. Discuss the similarities and differences in the code.

11.86 In this exercise you will create a Web page in the DBP folder and link it to the VRG Web
page in the VRG folder.

A. Figure 11-46 shows the HTML code for a Web page for the DBP folder. Note that the
page is called index.html, the same name as the Web page in the VRG folder. This is
not a problem because the files are in different folders. Create the index.html Web
page in the DBP folder.

B. Figure 11-47 shows some additional HTML to be added near the end of the code for
the VRG Web page in the file index.html in the VRG folder. Update the VRG
index.html file with the code.

C. Try out the pages. Type http://localhost/DBP into your Web browser to display
the DBP homepage. From there, you should be able to move back and forth between
the two pages by using the hyperlinks on each page. Note: You may need to click the
Refresh button on your Web browser when using the VRG homepage to get the
hyperlink back to the DBP homepage to work properly.

11.87 Microsoft expends much effort to promote the .NET Framework. It does not directly
receive revenue from these standards. IIS is free with Windows 7 and Windows Sever
2008 R2. Microsoft�s Web sites have numerous articles to help developers learn more
about these standards, and all of the information is free. Why do you think Microsoft
does this? What goal is served?

506 Part 5 Database Access Standards

Figure 11-47

HTML Modifications for the
index.html File in the VRG
Folder

Figure 11-46

The HTML Code for the
index.html File in the DBP
Folder

Chapter 11 The Web Server Environment 507

If you have not already done so, implement the Marcia’s Dry Cleaning database as
described in the Project Questions in Chapter 10 for SQL Server 2008 R2, Chapter 10A for
Oracle Database 11g, or Chapter 10B for MySQL 5.5, depending upon which DBMS you
are using. Use that database as the basis for you answers to the following questions:

A. Add a new folder to the DBP Web site named MDC. Create a Web page for Marcia�s Dry
Cleaning in this folder, using the file name index.html. Link this page to the DBP Web page.

B. Create an appropriate ODBC data source for your database.

C. Add a new column Status to the INVOICE table. Assume that Status can have the values
[�Waiting�, �In-process�, �Finished�, �Pending�].

D. Create a view called CustomerInvoiceView that has the columns LastName, FirstName,
Phone, InvoiceNumber, DateIn, DateOut, Total, and Status.

E. Code a PHP page to display CustomerInvoiceView. Using your sample database, demon-
strate that your page works.

F. Code two HTML/PHP pages to receive a date value AsOfDate and to display rows of
CustomerInvoiceView for orders having DateIn greater than or equal to AsOfDate. Using
your sample database, demonstrate that your pages work.

G. Code two HTML/PHP pages to receive customer Phone, LastName, and FirstName and
to display rows for customers having that Phone, LastName, and FirstName. Using your
sample database, demonstrate that your pages work.

H. Write a stored procedure that receives values for InvoiceNumber and NewStatus and that
sets the value of Status to NewStatus for the row having the given value of InvoiceNumber.
Generate an error message if no row has the given value of InvoiceNumber. Using your
sample database, demonstrate that your stored procedure works.

I. Code two HTML/PHP pages to invoke the stored procedure created in part H. Using
your sample database, demonstrate that your page works.

508 Part 5 Database Access Standards

If you have not already done so, implement the Morgan Importing database as
described in the Project Questions in Chapter 10 for SQL Server 2008 R2, Chapter 10A
for Oracle Database 11g, or Chapter 10B for MySQL 5.5, depending upon which DBMS
you are using. Use that database as the basis for you answers to the following questions

A. Add a new folder to the DBP Web site named MI. Create a Web page for Morgan Importing
in this folder, using the file name index.html. Link this page to the DBP Web page.

B. Create an appropriate ODBC data source for your database.

C. Create a view called StorePurchasesView that has the columns StoreName, City, Country,
Email, Contact, PurchaseDate, ItemDescription, Category, and PriceUSD.

D. Code a PHP page to display StorePurchasesView. Using your sample database, demonstrate
that your page works.

E. Code two HTML/PHP pages to receive a date value AsOfDate and display rows of
StorePurchases for purchases having PurchaseDate greater than or equal to AsOfDate.
Using your sample database, demonstrate that your pages work.

F. Code two HTML/PHP pages to receive values of Country and Category and display rows of
StorePurchases having values for input Country and Category values. Using your sample
database, demonstrate that your pages work.

G. Write a stored procedure that receives values for PurchaseItemID and NewPriceUSD
and sets the value of PriceUSD to NewPriceUSD for the row having the given value of
PurchaseItemID. Generate an error message if no row has the given value of Purchase-
ItemID. Using your sample database, demonstrate that your stored procedure works.

H. Code two HTML/PHP pages to invoke the stored procedure created in part G. Using
your sample database, demonstrate that your page works.

This chapter considers one of the most important, if not the most important,
developments in information systems technology today. It discusses the
confluence of two information technology subject areas: database processing
and document processing. For more than 20 years, these two subject areas
developed independently of one another. With the advent of the Internet,
however, they crashed together in what some industry pundits called a
technology train wreck. The result is still being sorted out, with new products,
product features, technology standards, and development practices emerging
every month.

� Understand the importance of XML

� Learn the elements of XML, including XML documents,
document type declarations (DTDs), and XML stylesheets

� Understand the role of XSLT in materializing XML
documents

� Learn the basic concepts of XML Schema and
understand their importance to database processing

Chapter Objectives

Database Processing
with XML12

� Understand XML documents

� Learn the basic concepts involved in using the SQL
SELECT . . . FOR XML statement

� Understand the importance of the emerging NoSQL
movement

509

510 Part 5 Database Access Standards

The Importance of XML

Database processing and document processing need each other. Database processing needs
document processing for transmitting database views; document processing needs database
processing for storing and manipulating data. However, even though these technologies need
each other, it took the popularity of the Internet to make that need obvious. As Web sites
evolved, organizations wanted to use Internet technology to display and update data from
organizational databases. Web developers began to take a serious interest in SQL, database
performance, database security, and other aspects of database processing.

As the Web developers invaded the database community, database practitioners
wondered, �Who are these people and what do they want?� Database practitioners began
to learn about HyperText Markup Language (HTML), the language used to mark up
documents for display by Web browsers. At first, the database community scoffed at HTML
because of its limitations, but they soon learned that HTML was the output of a more robust
document markup language called Standard Generalized Markup Language (SGML).
SGML was clearly important, just as important to document processing as the relational
model was to database processing. Obviously, this powerful language had some role to play in
the display of database data, but what role?

In the early 1990s, the two communities began to meet, and the result of their work is a
series of standards that concerns a language called Extensible Markup Language (XML).
XML is a subset of SGML, but additional standards and capabilities have been added to XML,
and today XML technology is a hybrid of document processing and database processing. In
fact, as XML standards evolved, it became clear that the communities had been working on
different aspects of the same problem for many years. They even used the same terms, but with
different meanings. You will see later in this chapter how the term schema is used in XML for
a concept that is completely different from the use of schema in the database world.

XML provides a standardized yet customizable way to describe the content of
documents. As such, it can be used to describe any database view, but in a standardized way.
As you will learn, unlike SQL views, XML views are not limited to one multivalued path.

In addition, when used with the XML Schema standard, XML documents can automatically
be generated from database data. Further, database data can automatically be extracted
from XML documents. Even more, there are standardized ways of defining how document
components are mapped to database schema components, and vice versa.

Meanwhile, the rest of the computing community began to take notice of XML. SOAP,
which originally meant Simple Object Access Protocol, was defined as an XML-based
standard for providing remote procedure calls over the Internet. Initially, SOAP assumed the
use of HTTP as a transport mechanism. When Microsoft, IBM, Oracle, and other large compa-
nies joined forces in support of the SOAP standard, this assumption was removed, and SOAP
was generalized to become a standard protocol for sending messages of any type, using any
protocol. With this change, SOAP no longer meant Simple Object Access Protocol, so now
SOAP is just a name, and not an acronym.

Today, XML is used for many purposes. One of the most important is its use as a
standardized means to define and communicate documents for processing over the Internet.
XML plays a key role in Microsoft�s .NET initiative, and in 2001 Bill Gates called XML the
�lingua franca of the Internet age.�

We will begin the discussion of XML by describing its use for displaying Web pages. As
you will learn, however, XML uses go far beyond Web page display. In fact, Web page display is
one of the least important applications of XML. We begin with page display only because it is
an easy way to introduce XML documents. After that, we will explain the XML Schema
standard and discuss its use for database processing.

As you read this chapter, keep in mind that this area is at the leading edge of database
processing. Standards, products, and product capabilities are frequently changing. You can
keep abreast of these changes by checking the following Web sites: www.w3c.org, www.xml.org,
http://msdn.microsoft.com, www.oracle.com, www.ibm.com, and www.mysql.com. Learning as
much as you can about XML and database processing is one of the best ways you can prepare
yourself for a successful career in database processing.

Chapter 12 Database Processing with XML 511

XML as a Markup Language

As a markup language, XML is significantly better than HTML in several ways. For one, XML
provides a clean separation between document structure, content, and materialization. XML
has facilities for dealing with each, and they cannot be confounded, as they are with HTML.

Additionally, XML is standardized, but as its name implies, the standards allow for
extension by developers. With XML, you are not limited to a fixed set of elements such as
<title>, <h1>, and <p>; you can create your own.

Third, XML eliminates the inconsistent tag use that is possible (and popular) with HTML.
For example, consider the following HTML:

<h2>Hello World</h2>

Although the <h2> tag can be used to mark a level-two heading in an outline, it can be used for
other purposes, too, such as causing �Hello World� to be displayed in a particular font size,
weight, and color. Because a tag has potentially many uses, we cannot rely on tags to discern
the structure of an HTML page. Tag use is too arbitrary; <h2> may mean a heading, or it may
mean nothing at all.

As you will see, the structure of an XML document can be formally defined. Tags are defined
in relationship to one another. In XML, if we find the tag <street>, we know exactly what data we
have, where that data belongs in the document, and how that tag relates to other tags.

XML Document Type Declarations

Figure 12-1 shows a sample XML document. Notice that the document has two sections. The
first section defines the structure of the document; it is referred to as the document type
declaration (DTD). The second part is the document data.

The DTD begins with the word DOCTYPE and specifies the name of this type of document,
which is Customer. Then, it specifies the content of the Customer document. The Customer document
consists of two groups: CustomerName and Address. The CustomerName group consists of two
elements: FirstName and LastName. FirstName and LastName are defined as #PCDATA, which
means that they are strings of character data. Next, the Address element is defined to have four
elements: Street, City, State, and Zip. Each of these is also defined as character data. The plus sign
(+) after Street indicates that one value is required and that multiple values are possible.

Figure 12-1

XML Document with Internal
DTD

512 Part 5 Database Access Standards

The data instance of customer shown in Figure 12-1 conforms to the DTD; hence, this
document is said to be a type-valid XML document. If it did not conform to the DTD, it would
be a not-type-valid document. Documents that are not-type-valid can still be perfectly good
XML; they just do not conform to their type description. For example, if the document in
Figure 12-1 had two City elements, it would be valid XML, but it would be not-type-valid.

Although DTDs are almost always desirable, they are not required in XML documents.
Documents that have no DTD are by definition not-type-valid, because there is no type to
validate them against.

The DTD does not need to be contained inside the document. Figure 12-2 shows a customer
document in which the DTD is obtained from the file C:\inetpub\wwwroot\DBP\VRG\DBP-e12-
CustomerList.dtd. In this case, the DTD is located on the computer that stores this document.
DTDs can also be referenced by URL Web addresses. The advantage of storing the DTD
externally is that many documents can be validated against the same DTD.

The creator of a DTD is free to choose any elements he or she wants. Hence, XML documents
can be extended, but in a standardized and controlled way.

Materializing XML Documents with XSLT

The XML document shown in Figure 12-1 shows both the document�s structure and
content. Nothing in the document, however, indicates how it is to be materialized. The
designers of XML created a clean separation among structure, content, and format.
The most popular way to materialize XML documents is to use Extensible Style Language:
Transformations (XSLT). XSLT is a powerful and robust transformation language. It can
be used to materialize XML documents into HTML, and it can be used for many other
purposes as well.

One common application of XSLT is to transform an XML document in one format into a
second XML document in another format. A company can, for example, use XSLT to trans-
form an XML order document in its own format into an equivalent XML order document in its
customer�s format. We will be unable to discuss many of the features and functions of XSLT
here. See www.w3.org for more information.

XSLT is a declarative transformation language. It is declarative because you create a set of
rules that govern how the document is to be materialized instead of specifying a procedure for
materializing document elements. It is transformational because it transforms the input
document into another document.

Figure 12-3(a) shows DBP-e12-CustomerList.dtd, which is a DTD for a document that has
a list of customers, and Figure 12-3(b) shows DBP-e12-CustomerListDocument.xml, which is
an XML document that is type-valid on that DTD. The DOCTYPE statement in Figure 12-3(b)
points to a file that contains the DTD shown in Figure 12-3(a). The next statement in the XML
document indicates the location of another document, called a stylesheet. Shown in the

Figure 12-2

XML Document with
External DTD

Chapter 12 Database Processing with XML 513

Figure 12-3

An External DTD and an
Example XML Document

DBP-e12-CustomerListStyleSheet.xsl in Figure 12-4, a stylesheet is used by XSLT to indicate
how to transform the elements of the XML document into another format. Here, those ele-
ments will transform it into an HTML document that will be acceptable to a browser.

The XSLT processor copies the elements of the stylesheet until it finds a command in the
format {item, action}. When it finds such a command, it searches for an instance of the
indicated item; when it finds one, it takes the indicated action. For example, when the XSLT
processor encounters

<xsl:for-each select = "CustomerList/Customer">

it starts a search in the document for an element named CustomerList. When it finds such an
element, it looks further within the customerlist element for an element named Customer. If a
match is found, it takes the actions indicated in the loop that ends with </xsl:for-each>
(twelfth from the bottom of the stylesheet). Within the loop, styles are set for each element in
the DBP-e12-CustomerListDocument.xml XML document.

(a) The DBP-e12-CustomerList.dtd DTD

(b) The DBP-e12-CustomerListDocument.xml XML Document with Two Customers

Figure 12-4

The DBP-e12-
CustomerListStyleSheet.xsl
XSL Stylesheet

514 Part 5 Database Access Standards

The examples we have created are based on the View Ridge Gallery database that we
have used in previous chapters. Here, we are creating an XML document that can be viewed
using a Web browser to display the list of customers at the View Ridge Gallery. As shown in
Figure 12-5(a), we have revised the View Ridge Gallery home page we created in Chapter 11
to include a link to the XML document. Clicking the link displays the Web page shown in
Figure 12-5(b), which is the result of applying the stylesheet in Figure 12-4 to the document
in Figure 12-3(b).

Use this link to display
the XML document in
a Web browser

Figure 12-5

HTML Result from
Application of Stylesheet

Chapter 12 Database Processing with XML 515

(a) The View Ridge Gallery Home Page

(b) The CustomerList Web Page as Displayed in Web Browser

XSLT processors are context oriented; each statement is evaluated in the context of
matches that have already been made. Thus, the following statement:

<xsl:value-of select = "CustomerName/LastName"/>

operates in the context of the CustomerList/Customer match that was made above. There is
no need to code

516 Part 5 Database Access Standards

This context orientation explains the need for the following statement (in the center of
the stylesheet):

<xsl:value-of select = "node()"/>

The context at the location of this statement has been set to CustomerList/
Customer/Address/Street. Hence, the current node is a Street element, and this expression
indicates that the value of that node is to be produced.

Observe, too, that a small transformation has been made by the stylesheet. The original
document has FirstName followed by LastName, but the output stream has LastName
followed by FirstName.

The XML document in Figure 12-3(b) is transformed into HTML using the XSL stylesheet
in Figure 12-4. Figure 12-5(a) shows the VRG home page, which now has a link to display the
XML document. When this transformed document is input to a browser, the browser will
materialize it, as shown in Figure 12-5(b).

Browsers have built-in XSLT processors. You need only supply the document to the
browser; it will locate the stylesheet and apply it to the document for you. The results will be
like those shown in Figure 12-5(b).

XML Schema

DTDs were the XML community�s first attempt at developing a document structure specifica-
tion language. DTDs work, but they have some limitations, and, embarrassingly, DTD
documents are not XML documents. To correct these problems, the W3C Committee defined
another specification language called XML Schema. Today, XML Schema is the preferred
method for defining document structure.

XML Schemas are XML documents. This means that you use the same language to define
an XML Schema as you would use to define any other XML document. It also means that
you can validate an XML Schema document against its schema, just as you would any other
XML document.

The nature of XSLT processing is: �When you find one of these, do this.�
Thus, the document in Figure 12-4 says, for each Customer that you

find under the tag CustomerList, do the following: output an HTML <div> . . . </div>
section and then some HTML with the value that you find in the document for
CustomerName/LastName. Then, output more HTML and the value that you find for
CustomerName/FirstName. Then, for each Address/Street you find, output some HTML
along with the value of the Address/Street you just found, and so forth.

XSL can output anything. Instead of outputting HTML, it could be writing Russian
or Chinese or algebraic equations. XSL is simply a transformation facility for structured
documents such as XML documents.

<xsl:select = "CustomerList/Customer/CustomerName/LastName"/>

because the context has already been set to CustomerList/Customer. In fact, if the select were
coded in this second way, nothing would be found. Similarly,

<xsl:select "LastName"/>

results in no match, because LastName occurs only in the context CustomerList/Customer/
CustomerName. and not in the context CustomerList/Customer.

Chapter 12 Database Processing with XML 517

XML Schema validation requires thinking at two meta levels. To understand
why, recall that metadata is data about data. The statement CUSTOMER

contains column CustomerLastName Char(25) is metadata. Extending this idea, the
statement SQL has a data type Char(n) for defining character data of length n is data
about metadata, or meta-metadata.

XML has the same meta levels. An XML document has a structure that is defined
by an XML Schema document. The XML Schema document contains metadata,
because it is data about the structure of other XML documents. But an XML Schema
document has its own structure that is defined by another XML Schema. That XML
Schema document is data about metadata, or meta-metadata.

The XML case is elegant. You can write a program to validate an XML document (but
don�t�use one of the hundreds that already exist). Once you have such a program, you
can validate any XML document against its XML Schema document. The process is
exactly the same, regardless of whether you are validating an XML document, an XML
Schema document, or a document at any other level.

XML Schema Validation

Figure 12-6(a) shows a simple XML Schema document that can be used to represent a single
row from the ARTIST table at View Ridge Gallery. The second line indicates what schema is to
be used to validate this document. Because this is an XML Schema document, it is to be
validated against the mother of all schemas, the one at www.w3.org. This same reference will be
used in all XML Schemas, in every company, worldwide. (By the way, this reference address is
used only for identification purposes. Because this schema is so widely used, most schema
validation programs have their own built-in copy of it.)

This first statement not only specifies the document that is to be used for validation, it also
establishes a labeled namespace. Namespaces are a complicated topic in their own right, and we
will not discuss them in this chapter other than to explain the use of labels. In this first state-
ment, the label xs is defined by the expression xmlns:xs. The first part of that expression stands
for xml namespace, and the second part defines the label xs. Notice that all of the other lines in
the document use the label xs. The expression xs:complexType simply tells the validating
program to look into the namespace called xs (here, the one specified as www.w3.org/2001/
XMLSchema) to find the definition of the term complexType.

The name of the label is up to the designer of the document. You could change xmlns:xs to
xmlns:xsd or to xmlns:mylabel, and you would set xsd or mylabel to point to the w3 document.
Documents can have multiple namespaces, but that topic is beyond the scope of this discussion.

Elements and Attributes

As shown in Figure 12-6(a), schemas consist of elements and attributes. Elements are either
simple or complex. Simple elements have a single data item. In Figure 12-6(a), the elements
LastName, FirstName, Nationality, DateOfBirth, and DateDeceased are all simple elements.

Complex elements contain other elements that can be either simple or complex. In
Figure 12-6(a), the Artist element is complexType. It contains a sequence of five simple

If you are following this discussion, then you realize that there is a chicken-and-the-egg
problem here. If XML Schema documents are themselves XML documents, what document is
used to validate them? What is the schema of all of the schemas? There is such a document;
the mother of all schemas is located at www.w3.org. All XML Schema documents are validated
against this document.

XML Schema is a broad and complex topic. Dozens of sizable books have been written
just on XML Schema alone. Clearly, we will not be able to discuss even the major topics of XML
Schema in this chapter. Instead, we will focus on a few basic terms and concepts and show
how those terms and concepts are used with database processing. Given this introduction, you
will then be able to learn more on your own.

518 Part 5 Database Access Standards

Figure 12-6

Use of an XML Schema

elements: LastName, FirstName, Nationality, DateOfBirth, and DateDeceased. Later you will
see examples of complex types that contain other complex types.

Complex types can have attributes. Figure 12-6(a) defines the attribute ArtStyle. The
creator of an XML document uses this attribute to specify a characteristic about an artist; in
this case, his or her style. The example document in Figure 12-6(c) specifies the ArtStyle for
this artist (Miro) as Modern.

(a) XML Schema Document

(b) Graphical Representation of the XML Schema

(c) Schema-Valid XML Document

Chapter 12 Database Processing with XML 519

Elements and attributes both carry data, and you may be wondering when
to use one or the other. As a general rule, for database/XML applications,

use elements to store data and attributes to store metadata. For example, define an
ItemPrice element to store the value of a price, and define a Currency attribute to store
the currency type of that price, such as USD, Aus$, or Euros.

The XML standards do not require that elements and attributes be used in this way.
It is a matter of style, and in subsequent sections we will show how it is possible to
cause SQL Server to place all of the column values in attributes, to place all of them in
elements, or to mix them up so that some columns are placed in attributes and others
are placed in elements. Thus, these decisions are a matter of design choice rather than
XML standard.

By default, the cardinality of both simple and complex elements is 1.1, meaning that a
single value is required and no more than a single value can be specified. For the schema in
Figure 12-6(a), the minOccurs = �0� expressions indicate that the defaults are being overridden
for Birthdate and DeceasedDate so that they need not have a value. This is similar to the NULL
constraint in SQL schema definitions.

Figure 12-6(b) shows the XML Schema in a diagram format as drawn by Altova�s XMLSpy
XML editing tool (see www.altova.com/xml-editor/). Being able to see an XML Schema as a
diagram often makes it easier to interpret exactly what the XML Schema is specifying. In this
diagram, note that required elements (NOT NULL in SQL terms) are indicated with solid lines
and box outlines, whereas optional elements (NULL in SQL terms) are indicated by dashed
line and box outlines.

You can find out more about this excellent product from a small company,
which is not yet owned by Microsoft or some other behemoth corporation,

from the Web site www.altova.com. A 30-day trial version is available. You can process
all of the XML code in this chapter using XMLSpy.

Figure 12-6(c) shows an XML document that is valid on the schema shown in Figure 12-6(a).
Observe that the value of the ArtStyle attribute is given with the heading of the Artist element.
Also note that a namespace of xsi is defined. This namespace is used just once�for the
noNamespaceSchemaLocation attribute. Do not be concerned about the name of this attri-
bute; it is simply a means of telling the XML parser where to find the XML Schema for this
document. Focus your attention on the relationship of the structure of the document and the
description in the XML Schema.

Flat Versus Structured Schemas

Figure 12-7 shows an XML Schema and an XML document that represent the columns of
the CUSTOMER table in the View Ridge database. As shown in Figure 12-7(a), CustomerID,
LastName, and FirstName are required, but all of the other elements are required.

XML Schemas like the one shown in Figure 12-7(a) are sometimes called flat, because all
of the elements reside at the same level. Figure 12-7(b) shows a diagram of the XML Schema as
drawn by XMLSpy, and this diagram graphically depicts why this schema is called flat. The
XML document in Figure 12-7(c) contains one of the rows of the CUSTOMER table.

If you think about the elements in Figure 12-7(a) for a moment, you will realize that
something about the semantics of them has been left out. In particular, the group {Street, City,
State, ZipPostalCode, Country} is part of an Address theme. Also, the group {AreaCode,

Figure 12-7

Example of a Flat
Structure

(a) XML Schema with a Flat Structure

(b) Graphical Representation of the XML Schema

(c) Schema-Valid XML Document

Chapter 12 Database Processing with XML 521

PhoneNumber} is part of a Phone theme. As you know, in the relational model, all columns are
considered equal, and there is no way to represent these themes.

With XML, however, such groups can be modeled. The schema shown in Figure 12-8(a)
structures the appropriate columns into an AddressType complexType and other columns into a
PhoneType complexType. A graphical display of this schema is shown in Figure 12-8(b). An XML
document for one of the rows of CUSTOMER expressed in this format is shown in Figure 12-8(c).

Such schemas are sometimes called structured schemas because they add structure
to table columns. Such a model captures additional user meaning, so it is superior to the
relational model from a descriptive standpoint.

Note that in this structured XML Schema, Address and Phone remain as optional (NULL
values allowed) in Customer. This maintains the optional status of these columns in the
CUSTOMER table. However, in the AddressType complexType, {Street, City, State, ZipPostalCode}
are required (NOT NULL). Similarly, in the PhoneType complexType, {AreaCode, Phone Number}
are required. These conditions can be read as �IF there is Address data for a customer, it MUST
include the street address, city, state and zip/postal code,� and �IF there is Phone data for a
customer, it MUST include both the area code and phone number.�

Global Elements

Suppose that we want to use XML Schema to represent a document that extends the
customer data in Figure 12-8 to include the salesperson assigned to that customer. Further,
suppose that both customers and salespeople have address and phone data. We can use the
techniques shown thus far to represent this new customer structure, but, if we do so, we will
duplicate the definition of Phone and Address.

Figure 12-8

Example of a Structured
Schema

(a) Structured XML Schema

522 Part 5 Database Access Standards

In the relational world, we worry about duplication of data, not so much because of wasted
file space, but more because there is always the chance of inconsistent data when one copy of the
data is changed and the other copy is not changed. Similarly, in the document-processing world,
people worry about the duplicate definition of elements because there is always the chance that
they will become inconsistent when one is changed and the other is not. As shown in Figure 12-9,
elements can be declared globally and then reused to eliminate the definition duplication.

Figure 12-8

Continued

(b) Graphical Representation of the XML Schema

(c) Schema-Valid XML Document

Chapter 12 Database Processing with XML 523

In Figure 12-9(a), for example, the Address group is defined as the global element
AddressType, and the Phone group is defined as the global element PhoneType. According
to the XML Schema standard, these are global elements because they reside at the top level of
the schema.

Figure 12-9

Example of a Schema with
Global Elements

(a) XML Schema with Global PhoneType Element

(b) Graphical Representation of the PhoneType
Global Element

524 Part 5 Database Access Standards

If you examine Figure 12-9(a) further, you will see that both Customer and Salesperson
within Customer use the AddressType and PhoneType global definitions. They are referenced
by the notations type = �AddressType� and type = �PhoneType.� By using these global defini-
tions, if either PhoneType or AddressType is changed, the definition of Customer and Salesperson
will inherit the change.

One other change in this figure is that the cardinality of the Phone group of Salesperson has
been set to 1.3. This notation means that at least one Phone group is required and as many as
three are allowed. As you learned in Chapter 5, representing such multivalued attributes in the
entity-relationship model requires the definition of an ID-dependent entity. That entity will later
be transformed into a table in the relational model. We will ignore this issue here. This notation
is shown only so that you can see how multivalued elements are documented in an XML Schema.

Figure 12-9(b) shows how XMLSpy graphically represents the PhoneType global element,
and Figure 12-9(c) illustrates the way that the PhoneType reference is shown for Customer and
Salesperson.

Figure 12-9

Continued

In the VRG table structure we specified in Chapter 7 and used in Chapters 10,
10A, and 10B, no SALESPERSON table was defined. The XML Schema in

Figure 12-9, however, suggests how we could add a SALESPERSON table to the VRG
database.

(c) Graphical Representation of the XML Schema

Chapter 12 Database Processing with XML 525

Creating XML Documents from Database Data

SQL Server, Oracle Database, and MySQL have facilities for generating XML documents from
database data. The Oracle XML features require the use of Java. Because we do not assume that
you are a Java programmer, we will not discuss those features further in this chapter. If you are
a Java programmer, you can learn more about Oracle�s XML features at www.oracle.com.

The facilities in SQL Server, Oracle Database, and MySQL are undergoing rapid develop-
ment. In the case of SQL Server, version 7.0 added the expression FOR XML to SQL SELECT
syntax. That expression was carried forward to SQL Server 2000. In 2002, the SQL Server group
extended the SQL Server capabilities with the SQLXML class library. SQLXML, which was
produced by the SQL Server group, is different from ADO.NET. All of these features and
functions were merged together in SQL Server 2005 and are carried forward in SQL Server 2008
and SQL Server 2008 R2.

Using the SQL SELECT . . . FOR XML Statement

SQL Server 2008 R2 uses the SQL SELECT . . . FOR XML statement to work with XML.
Consider the following SQL statement:

/* *** SQL-Query-CH12-01 *** */

SELECT *

FROM ARTIST

FOR XML RAW;

The expression FOR XML RAW tells SQL Server to place the values of the columns as attributes
in the resulting XML document. Figure 12-10(a) shows an example of as FOR XML RAW query
in the Microsoft SQL Server Management Studio. The results of the query are displayed in a sin-
gle cell. Clicking this cell displays the results as shown in Figure 12-10(b). As expected, each
column is placed as an attribute of the element named row. The complete output, edited as it
would appear in an XML document (and with extra spaces in the attribute values removed) is
shown in Figure 12-10(c).

The SQL FOR XML
RAW query

The SQL FOR XML
RAW query results„
click this cell to display
the results in a
separate window

Figure 12-10

FOR XML RAW Examples (a) FOR XML RAW Query

526 Part 5 Database Access Standards

It is also possible to cause SQL Server to place the values of the columns into elements
rather than attributes by using FOR XML AUTO, ELEMENTS. For example, we can display the
data in the ARTIST table using the SQL query:

/* *** SQL-Query-CH12-02 *** */

SELECT *

FROM ARTIST

FOR XML AUTO, ELEMENTS;

Figure 12-11(a) shows the query in the Microsoft SQL Server Management Studio, and
Figure 12-11(b) shows the full results in a separate tabbed window. Here, each attribute value

The SQL FOR XML
RAW query results

Figure 12-10

Continued

(b) FOR XML RAW Results in the Microsoft SQL Server Management Studio

(c) FOR XML RAW Results in XML Document

Chapter 12 Database Processing with XML 527

appears as a separate element. The complete output, edited as it would appear in an XML
document (and with MyData tags added to contain the entire data set) is shown in Figure 12-11(c).
The XML Schema for this document is shown in Figure 12-11(d), and the graphical representa-
tion of the XML Schema is shown in Figure 12-11(e).

Using another option, FOR XML EXPLICIT, you can cause SQL Server to place some columns
into elements and others into attributes. For example, you might decide to place all column values
except surrogate key values into elements and all surrogate key values into attributes. The justifi-
cation for this design is that surrogate key values have no meaning to the users, so they are more
like metadata than data. The means by which this is done is beyond the scope of this discussion.
See FOR XML EXPLICIT in the SQL Server documentation for more information.

The SQL FOR XML
AUTO, ELEMENTS
query

The SQL FOR XML
AUTO, ELEMENTS
query results„click
this cell to display the
results in a separate
window

Figure 12-11

FOR XML AUTO, ELEMENTS
Examples

The SQL FOR XML
AUTO, ELEMENTS
query results

(a) FOR XML AUTO, ELEMENTS Query

(b) FOR XML AUTO, ELEMENTS Results in the
Microsoft SQL Server Management Studio

Figure 12-11

Continued

528

(c) FOR XML AUTO, ELEMENTS Results in XML Document

(d) XML Schema

Figure 12-11

Continued (e) Graphical Representation of the XML Schema
529

530 Part 5 Database Access Standards

The SQL FOR XML
AUTO, ELEMENTS
query

The SQL FOR XML
AUTO, ELEMENTS
query results„click
this cell to display the
results in a separate
window

Figure 12-12

FOR XML AUTO ELEMENTS
Example Displaying
Customer and Artist
Interests

Multitable SELECT with FOR XML

FOR XML SELECT statements are not limited to single-table SELECTs�they can be applied
to joins as well. For example, we can use the following SQL join query to produce a list of VRG
customers and the artists they are interested in:

/* *** SQL-Query-CH12-03 *** */

SELECT CUSTOMER.LastName AS CustomerLastName,

CUSTOMER.FirstName AS CustomerFirstName,

ARTIST.LastName AS ArtistName

FROM CUSTOMER,

CUSTOMER_ARTIST_INT,

ARTIST

WHERE CUSTOMER.CustomerID = CUSTOMER_ARTIST_INT.CustomerID

AND CUSTOMER_ARTIST_INT.ArtistID = ARTIST.ArtistID

ORDER BY CUSTOMER.LastName, ARTIST.LastName

FOR XML AUTO, ELEMENTS;

Figure 12-12(a) shows the query in the Microsoft SQL Server Management Studio, and
Figure 12-12(b) shows the full results in a tabbed window. Figure 12-12(c) shows results in an
XML document.

SQL Server uses the order of the tables in the FROM clause to determine the hierarchical
placement of the elements in the generated XML document. Here, the top-level element is
CUSTOMER, and the next element is ARTIST. The CUSTOMER_ARTIST_INT table does not
appear in the generated document because no column from that table appeared in the SQL
SELECT statement.

You can write the expression FOR XML AUTO, XMLDATA to cause SQL Server to
produce an XML Schema statement in front of the XML document that it writes. The
schema produced, however, involves topics that we will not cover in this chapter, so we will
not do that.

(a) FOR XML AUTO, ELEMENTS Query

Chapter 12 Database Processing with XML 531

The SQL FOR XML
AUTO, ELEMENTS
query results

(b) FOR XML AUTO, ELEMENTS Results in the
Microsoft SQL Server Management Studio

Figure 12-12

Continued
(continued)

532 Part 5 Database Access Standards

Figure 12-12

Continued

Chapter 12 Database Processing with XML 533

(c) FOR XML AUTO, ELEMENTS Results in XML Document
Figure 12-12

Continued

An XML Schema for the XML document in Figure 12-12(c) is shown in Figure 12-13(a), and
Figure 12-13(b) shows the graphical display of this same schema. Observe that the MyData element
can have an unbounded number of CUSTOMER elements, and each CUSTOMER can have an
unbounded number of ARTIST elements, one for each artist interest. In this figure, the notation
1..� means that at least one CUSTOMER is required and an unlimited number will be allowed.

534 Part 5 Database Access Standards

An XML Schema for All CUSTOMER Purchases

Suppose now that we want to produce a document that has all of the customer purchase data.
To do that, we need to join CUSTOMER to TRANS to WORK to ARTIST and select the appro-
priate data. The following SQL statement produces the required data:

/* *** SQL-Query-CH12-04 *** */

SELECT CUSTOMER.LastName AS CustomerLastName,

CUSTOMER.FirstName AS CustomerFirstName,

TRANS.TransactionID, SalesPrice,

WORK.WorkID, Title, Copy,

ARTIST.LastName AS ArtistName

Figure 12-13

Customer and Artist
Interests

(a) XML Schema

(b) Graphical Representation of the XML Schema

Chapter 12 Database Processing with XML 535

FROM CUSTOMER, TRANS, [WORK], ARTIST

WHERE CUSTOMER.CustomerID = TRANS.CustomerID

AND TRANS.WorkID = WORK.WorkID

AND WORK.ArtistID = ARTIST.ArtistID

ORDER BY CUSTOMER.LastName, ARTIST.LastName

FOR XML AUTO, ELEMENTS;

Figure 12-14(a) shows the query in the Microsoft SQL Server Management Studio, and
Figure 12-14(b) shows the full results in a tabbed window. Figure 12-14(c) shows partial results
in an XML document (this is a very long XML document).

The SQL FOR XML
AUTO, ELEMENTS
query

The SQL FOR XML
AUTO, ELEMENTS
query results„click
this cell to display the
results in a separate
window

Figure 12-14

FOR XML AUTO ELEMENTS
Displaying Customer
Purchases

(a) FOR XML AUTO, ELEMENTS Query

The SQL FOR XML
AUTO, ELEMENTS
query results

(b) FOR XML AUTO, ELEMENTS Results in the Microsoft
SQL Server Management Studio

536 Part 5 Database Access Standards

Figure 12-14

Continued

Chapter 12 Database Processing with XML 537

Figure 12-14

Continued Figure 12-15(a) shows an XML Schema document for this SQL statement, and a graphical
view of it is shown in Figure 12-15(b). According to the XML Schema in Figure 12-15(b), a
CUSTOMER has from zero to unlimited TRANS elements, a TRANS element has exactly one
WORK element, and a WORK element has exactly one ARTIST element.

A Schema with Two Multivalued Paths

Suppose now that we want to construct an XML document that has all of the View Ridge
Gallery customer data. We cannot construct such a view from a single SQL statement because
it has two multivalued paths. We need one SQL statement to obtain all of the customer pur-
chase data and a second SQL statement to obtain all of the customer/artist interests.

XML Schema does not have this limitation, however. An XML document may have as
many multivalued paths as the application requires. In our case, all we need to do is to com-
bine the schemas in Figure 12-13(a) and Figure 12-15(a). While we are at it, we can also add the
surrogate keys for each of the underlying tables.

The result of combining these results (using cut and paste in XMLSpy!) is shown in
Figure 12-16(a). Observe that in Figure 12-16(b) MyData may have from one to an unlimited
number of CUSTOMER elements, and that each such element may have from zero to many
TRANS and from zero to many ArtistInterests elements. All of the simple elements in this
schema are required.

(c) FOR XML AUTO, ELEMENTS Partial Results in XML Document

Why Is XML Important?

At this point, you should have some idea of the nature of XML and the XML standards. You
know that XML makes a clear separation between structure, content, and materialization.
Structure is defined by either a DTD or an XML Schema document. Content is expressed in an
XML document, and the materializations of a document are expressed in an XSL document.
You also understand that SQL statements can be used to create XML documents, but only as
long as those documents involve at most one multivalued path. If more than one such path
exists in the document, multiple SQL statements need to be issued to fill the document in
some fashion.

You may be asking, �These are interesting ideas, but why do they matter? What�s so
important about all of this?� The answer to these questions is that XML processing provides a
standardized facility to describe, validate, and materialize any database view.

Consider the View Ridge Gallery. Suppose that the gallery wants to share all of its
customer data with another gallery, maybe because of a joint sales program. If both galleries
agree on an XML Schema like the one shown in Figure 12-16, they can prepare customer data
documents in accordance with that schema. Before sending a document, they can run an
automated process to validate the document against the schema. In this way, only correct data

538 Part 5 Database Access Standards

are transmitted. Of course, this process works in both directions. Not only can View Ridge
ensure that it is sending only valid documents; by validating the documents it receives it
can ensure that it is receiving only valid documents. Best of all, the programs for document
validation are publicly available and free to the galleries. The galleries do not need to write
program code for validation.

Additionally, each gallery can develop its own set of XSL documents to materialize the
customer data documents in whatever ways they want. View Ridge can develop one XSL
document to display the data on a customer�s computer, another to display it on salespersons�
computers, another to display it on mobile devices when art buyers are on the road, and so
forth. Given these XSLs, customer data can be displayed regardless of whether it came from
one gallery or the other.

Figure 12-15

Customer Purchases

(a) XML Schema

Figure 12-15

Continued

539

(b) Graphical Representation of the XML Schema

540 Part 5 Database Access Standards

Figure 12-16

View Ridge Gallery Customer
with Two Multivalued Paths

(a) XML Schema

Figure 12-16

Continued

541

(b) Graphical Representation of the XML Schema

Industry Type
Real Estate

Software

Workflow

Example Standards
OpenMLS: Real Estate Listing Management System (OpenMLS) [OASIS
Cover page]

Real Estate Transaction Standard working group (RETS): Real Estate
Transaction Standard (RETS) [OASIS Cover page]

IBM: [OASIS Cover page]

Flashline.com: Software Component Documentation DTD

Flashline.com

INRIA: Koala Bean Markup Language (KBML) [OASIS Cover page]

Marimba and Microsoft: Open Software Description Format (OSD) [OASIS
Cover page]

Object Management Group (OMG) [OASIS Cover page]

Internet Engineering Task Force (IETF): Simple Workflow Access
Protocol (SWAP) [OASIS Cover page]

Workflow Management Coalition (MfMC): Wf-XML [OASIS Cover page]

�

�

�

�

�

�

�

�

�

�

Industry Type
Accounting

Architecture and
Construction

Automotive

Banking

Electronic Data
Interchange

Human Resources

Insurance

Example Standards
American Institute of Certified Public Accountants (AICPA): Extensible
Financial Reporting Markup Language (XFRML) [OASIS Cover page]

Open Applications Group, Inc (OAG)

Architecture, Engineering, and Construction XML Working Group
(aecXML Working Group)

ConSource.com: Construction Manufacturing and Distribution Extensible
Markup Language (cmdXML)

Automotive Industry Action Group (AIAG)

Global Automedia

MSR: Standards for Information Exchange in the Engineering Process
(MEDOC)

The Society of Automotive Engineers (SAE): XML for the Automotive
Industry�SAE J2008 [OASIS Cover page]

Open Applications Group, Inc (OAG)

Banking Industry Technology Secretariat (BITS): [OASIS Cover page]

Financial Services Technology Consortium (FSTC): Bank Internet
Payment System (BIPS) [OASIS Cover page]

Open Applications Group, Inc (OAG)

Data Interchange Standards Association (DISA): [OASIS Cover page]

EEMA EDI/EC Work Group [OASIS Cover page]

European Committee for Standardization/Information Society
Standardization System (CEN/ISSS; The European XML/EDI Pilot
Project) [OASIS Cover page]

XML/EDI Group [OASIS Cover page]

DataMain: Human Resources Markup Language (hrml)

HR-XML Consortium [OASIS Cover page]: JobPosting, CandidateProfile,
Resume

Open Applications Group (OAG): Open Applications Group Interface
Specification (OASIS) [OASIS Cover page]

Tapestry.Net: JOB Markup Language (JOB)

Open Applications Group, Inc (OAG)

ACORD: Property and Casualty [OASIS Cover page], Life (XMLife)
[OASIS Cover page]
Lexica: iLingo

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 12-17

Example XML
Industry Standards

542

Chapter 12 Database Processing with XML 543

Additional XML Standards

As you know, XML was developed as a series of standards. So far, we have mentioned XML,
XSL, XSLT, and XML Schema. You will probably encounter a number of other XML standards,
and some of these are listed in Figure 12-18. You can find the standards, their documentation,
and some tutorials on the www.w3.org and www.xml.org Web sites.

In addition to the four standards discussed in this chapter, XPath is a standard for
addressing elements within documents. In Figure 12-4, expressions like

<xsl: value-of-select = "Name/LastName"/>

use XPath to locate a particular element in the document. XPath includes concepts from
another standard, XPointer, which was developed to provide a sophisticated means for
documents to reference elements in other documents.

SAX and DOM refer to different methods of parsing XML documents. The process of
parsing consists of reading a document, breaking it into components, and responding to those
components in some way�perhaps storing them into a database. XML parsers also validate
documents against the DTDs and XML Schemas.

To use the SAX API, a program that is working on an XML document�an XSLT processor,
for example�invokes the SAX-compliant parser and passes it the name of the document
to parse. The SAX parser processes the document and calls back objects within the XSLT
processor whenever particular structures are encountered. A SAX parser, for example, calls the
XSLT parser when it encounters a new element, passing the name of the element, its content,
and other relevant items.

Now, broaden this idea from two small businesses to an industry. Suppose, for example,
that the real estate industry agrees on an XML Schema document for property listings. Every
real estate company that can produce data in the format of the schema can then exchange
listings with every other real estate company. Given the schema, each company can ensure that
it is transmitting valid documents, and it can also ensure that it is receiving valid documents.
Further, each company can develop its own set of XSL documents to materialize property
listings in whatever way it wants. Once the XSL documents have been prepared, any listing from
any participating agent can be displayed in the local agency�s materializations. Figure 12-17 lists
some XML standards work that is under way in various industries.

For another example, consider business-to-business e-commerce. Suppose that Walmart
wants to send orders to its vendors in a particular standardized format and that it wants to
receive shipment responses to those orders in another particular standardized format. To do
this, Walmart can develop an XML Schema for Order documents and another for Shipment
documents. It can then publish those XML Schemas on a Web site accessible to its vendors.
In this way, all vendors can determine how they will receive orders from Walmart and how they
should send their Shipment notifications back.

The schemas can be used by Walmart and all of its vendors to ensure that they are send-
ing and receiving only valid XML documents. Further, Walmart can develop XSL documents
to cause the Order and Shipment documents to be transformed into the specific formats
needed by its accounting, operations, marketing, and general management departments.

These XSL documents work for any Order or Shipment from any of its vendors. In all of
these cases, once the XML Schema documents have been prepared and the XSL documents
have been written, all validation and materialization is done via automated processes. Thus,
there is no need for any human to touch the Order document between its origination at
Walmart and the picking of the inventory at the supplier.

So, the only challenge that remains is to populate the XML documents with database data
in accordance with the relevant XML Schema. SQL can be used to populate schemas that have
only one multivalued path, but this is too restrictive, and newer technologies like ADO.NET
ease the transformation of database data into XML documents. SQL can also be used to ease
the transformation of XML documents into database data.

544 Part 5 Database Access Standards

XML

XSL

XSLT

XML Schema

XPath

XPointer

SAX

DOM

XQuery

XML
Namespaces

Extensible Markup Language. A document markup language
that started the following:

XSLT Stylesheet. The document that provides the {match,
action} pairs and other data for XSLT to use when transforming
an XML document.

A program (or process) that applies XSLT Stylesheets to an XML
document to produce a transformed XML document.

An XML-compliant language for constraining the structure of an
XML document. Extends and replaces DTDs. Under
development and very important to database processing.

A sublanguage within XSLT that is used to identify parts of an
XML document to be transformed. Can also be used for
calculations and string manipulation. Comingled with XSLT.

A standard for linking one document to another. XPath has
many elements from XPointer.

Simple API (application program interface) for XML. An event-
based parser that notifies a program when the elements of an
XML document have been encountered during document
parsing.

Document Object Model. An API that represents an XML
document as a tree. Each node of the tree represents a piece of
the XML document. A program can directly access and
manipulate a node of the DOM representation.

A standard for expressing database queries as XML documents.
The structure of the query uses XPath facilities, and the result of
the query is represented in an XML format. Under development
and likely to be important in the future.

A standard for allocating terminology to defined collections.
X:Name is interpreted as the element Name as defined in
namespace X. Y:Name is interpreted as the element Name as
defined in namespace Y. Useful for disambiguating terms.

DescriptionStandardFigure 12-18

Important XML Standards

The DOM API works from a different paradigm. A DOM-compliant parser processes
the entire XML document and then creates a tree representation of it. Each element of the
document is a node on the tree. The XSLT processor can then call the DOM parser to
obtain particular elements using XPath or a similar addressing scheme. DOM requires
the entire document to be processed at one time and may require an unreasonable amount
of storage for very large documents. If the document is large, SAX is the better choice.
However, if all of the document contents need to be available for use at once, DOM is the
only choice.

XQuery is the W3C standard for querying XML documents. You can think of it as SQL
for XML documents. Visit www.w3.org/standards/xml/query for more information on
XQuery.

The last XML standard we will mention, XML Namespaces, is very important because it is
used to combine different vocabularies into the same XML Schema. It can be used to define and
support domains and to disambiguate terms. The need for the latter occurs when a document
contains synonyms. For example, consider a document that has two different uses for the term

Chapter 12 Database Processing with XML 545

The NoSQL Movement

We have used the relational database model and SQL thorough out this book. However, there
is another school of thought that has led to what is known as the NoSQL movement,1
although it has been noted that most, but not all, associated DBMSs are also nonrelational
DBMSs and are often known as structured storage.2

A NoSQL DBMS is typically a distributed, replicated database, as described in Chapter 9,
that is used when there is a need to support large datasets in a format that supports applica-
tions that mostly read database data. In this case, a non-normalized table structure that does
not require JOIN operations to obtain the data needed to respond to user queries will provide a
much faster response time.

This situation is typical of Web 2.0 social netting Web sites, such as Facebook and Twitter.
Therefore, it is not surprising to learn that both Facebook and Twitter use the Apache Software
Foundation�s Cassandra database (available at http://cassandra.apache.org/).

Another type of implementation of a NoSQL database is one based on the use of the XML
document structures we have just discussed for data storage. An example is the open-source
dbXML (available at www.dbxml.com). XML databases typically support the W3C XQuery
(www.w3.org/TR/xquery/) and XPath (www.w3.org/TR/xpath/) standards.

The usefulness and importance of these nonrelational DBMSs to organizations such as
Facebook demonstrate that we can look forward to the development of not only improvements
to the relational DBMSs, but also to a very different approach to data storage and information
processing. We can also look forward to a response from the companies that market relational
DBMS products. For example, MySQL 5.6 (in beta testing as this book goes to press) includes a
�NoSQL Interface� in the form of the MySQL memcached API. This API allows application
developers to interface directly with MySQL database in the MySQL InnoDB storage
engine without the use of SQL (for more information, see blogs.innodb.com/wp/2011/04/nosql-
to-innodb-with-memcached/).

1 For a good overview, see the Wikipedia article on NoSQL available at http://en.wikipedia.org/wiki/NoSQL.
2 See the Wikipedia article on structured storage at http://en.wikipedia.org/wiki/Structured_storage.

The confluence of database processing and document
processing is one of the most important developments in
information systems technology today. Database processing
and document processing need each other. Database pro-
cessing needs document processing for the representation
and materialization of database views. Document processing
needs database processing for the permanent storage
of data.

SGML is as important to document processing as the
relational model is to database processing. XML is a series
of standards that were developed jointly by the database
processing and document processing communities. XML
provides a standardized yet customizable way to describe
the contents of documents. XML documents can automati-
cally be generated from database data, and database data
can be automatically extracted from XML documents.

Instrument. Suppose that one use of this term refers to musical instruments and has the subele-
ments {Manufacturer, Model, Material}, as in {Horner, Bflat Clarinet, Wood}, and a second use of
this term refers to electronic instruments and has the subelements {Manufacturer, Model,
Voltage}, as in {RadioShack, Ohm-meter, 12-volt}. The author of the XML Schema for such a
document can define two different namespaces that each contain one of these definitions. Then,
the complexType definition for each of these definitions of Instrument can be prefixed by the
label of the namespace, as was done in our schema documents when we used the label xsd. There
is more to XML Namespaces, and you will undoubtedly learn more as you work with XML.

The XML Standards Committee continues its important work, and more standards will
be developed as the needs arise. At present, work is underway for developing security stan-
dards. Keep checking www.w3.org for more information.

546 Part 5 Database Access Standards

Although XML can be used to materialize Web pages,
this is one of its least important uses. More important is its
use for describing, representing, and materializing database
views. XML is on the leading edge of database processing; see
www.w3.org and www.xml.org for the latest developments.

XML is a better markup language than HTML, primarily
because XML provides a clear separation between document
structure, content, and materialization. Also, XML tags are
not ambiguous.

The content of XML documents can be described by
Document Type Declarations (DTDs) and by XML Schemas.
An XML document that conforms to its DTD is called type-
valid. A document can be well formed and not be type-valid,
either because it violates the structure of its DTD or because
it has no DTD.

XML documents are transformed when an XSLT processor
applies an XSL document to the XML document. A common
transformation is to convert the XML document into HTML
format. In the future, other transformations will be more impor-
tant. For example, XSL documents can be written to transform
the same Order document into different formats needed by
different departments, say for sales, accounting, or production.
XSLT processing is context oriented; given a particular context,
an action is taken when a particular item is located. Today, most
browsers have built-in XSLT processors.

XML Schema is a standard for describing the content of an
XML document. XML Schema can be used to define custom
vocabularies. Documents that conform to an XML Schema are
called schema-valid. Unlike DTDs, XML Schema documents
are themselves XML documents and can be validated against
their schema, which is maintained by the W3C.

Schemas consist of elements and attributes. There are
two types of elements: simple and complex. Simple elements
have one data value. ComplexType elements can have multi-
ple elements nested within them. ComplexTypes may also
have attributes. The elements contained in a ComplexType
may be simple or other ComplexTypes. ComplexTypes may
also define element sequences. A good rule of thumb is that
elements represent data and attributes represent metadata,
although this is not part of any XML standard.

XML Schemas (and documents) may have more struc-
ture than the columns of a table. Groups, such as Phone and
Address, can be defined. An XML Schema that has all

elements at the same level is a flat schema. Structured
schemas are those that have defined subgroups, such as
Phone and Address. To avoid definition duplication, elements
can be defined globally. Duplication is undesirable because
there is the risk that definitions will become inconsistent if a
change is made to one definition and not the other.

Oracle Database, SQL Server, and MySQL can produce
XML documents from database data. The Oracle Database
facilities require the use of Java; see www.oracle.com for more
information. SQL Server supports an add-on expression to
the SQL SELECT statement, the FOR XML expression. FOR
XML can be used to produce XML documents in which all
data are expressed as attributes or as elements. FOR XML can
also write an XML Schema description as well as the XML
document. Using FOR XML EXPLICIT, the developer can
place some columns into elements and others into attributes.

When interpreting multitable selects, the FOR XML
processor uses the order of the tables to determine the
hierarchical order of elements in the document. FOR XML can
be used to produce XML documents with one multivalued
path. Documents with more than one multivalued path must
be patched together in the application by some means.

XML is important because it facilitates the sharing of
XML documents (and hence database data) among organi-
zations. After an XML Schema has been defined, organiza-
tions can ensure that they are receiving and sending only
schema-valid documents. Additionally, XSL documents can
be coded to transform any schema-valid XML document,
from any source, into other standardized formats. These
advantages become even more important as industry groups
standardize their own XML Schemas. XML also facilitates
business-to-business processing. This chapter concludes
with a brief description of additional XML standards: XPath,
SAX, DOM, XQuery, and XML Namespaces.

The NoSQL movement has been responsible for intro-
ducing nonrelational databases into the Web application
environment. A NoSQL DBMS is typically a distributed, repli-
cated database that is used when there is a need to support
large datasets with many data read operations. For example,
both Facebook and Twitter use the Apache Software Founda-
tion�s Cassandra database. Relational DBMS products are also
responding to this emerging market requirement, as seen in
MySQL memcached API in MySQL 5.6.

document type declaration (DTD)
Extensible Markup Language (XML)
Extensible Style Language: Transformations

(XSLT)
HyperText Markup Language (HTML)
NoSQL movement
not-type-valid
Simple Object Access Protocol

SOAP
SQL SELECT . . . FOR XML statement
Standard Generalized Markup Language (SGML)
structured schemas
structured storage
stylesheet
type-valid
XML Schema

Chapter 12 Database Processing with XML 547

12.1 Why do database processing and document processing need each other?

12.2 How are HTML, SGML, and XML related?

12.3 Explain the phrase �standardized but customizable.�

12.4 What is SOAP? What did it stand for originally? What does it stand for today?

12.5 What are the problems in interpreting a tag such as <h2> in HTML?

12.6 What is a DTD, and what purpose does it serve?

12.7 What is the difference between a well-formed XML document and a type-valid XML
document?

12.8 Why is it too limiting to say that XML is just the next version of HTML?

12.9 How are XML, XSL, and XSLT related?

12.10 Explain the use of the pattern {item, action} in the processing of an XSL document.

12.11 What is the purpose of XML Schema?

12.12 How does XML Schema differ from DTD?

12.13 What is a schema-valid document?

12.14 Explain the chicken-and-egg problem concerning the validation of XML Schema
documents.

12.15 Explain the difference between simple and complex elements.

12.16 Explain the difference between elements and attributes.

12.17 What is a good basic rule for using elements and attributes to represent database data?

12.18 Give an example, other than one in this text, of a flat XML Schema.

12.19 Give an example, other than one in this text, of a structured XML Schema.

12.20 What is the purpose of global elements?

12.21 What requirement is necessary for processing XML documents with Oracle?

12.22 Explain the difference between FOR XML RAW and FOR XML AUTO, ELEMENTS.

12.23 When would you use FOR XML EXPLICIT?

12.24 What is the importance of the order of tables in a SQL statement that uses FOR XML?

12.25 Explain, in your own words, why SQL with FOR XML cannot be used to construct an
XML document having two multivalued paths.

12.26 Why is the limitation in Review Question 12.25 important?

12.27 Explain, in your own words, why XML is important to database processing.

12.28 Why is XML Schema important for interorganizational document sharing?

12.29 What is XPath?

12.30 How does DOM differ from SAX?

12.31 What is XQuery? What is it used for?

12.32 What is XML Namespaces? What is its purpose?

12.33 What is the NoSQL movement?

12.34 What are the main databases associated with the NoSQL movement, and who uses
these databases?

548 Part 5 Database Access Standards

12.35 Create an XML Schema Document for a row of ARTIST table (see Figure 7-13). Use
only simple elements, and use Figure 12-7 as an example.

12.36 Create an XML Schema document for a row of TRANS. Place TransactionID as an
attribute. Group acquisition data into a complexType, and group sales data into a
second complexType. Use Figure 12-7 as an example.

12.37 Create an XML Schema for artists and the customers who are interested in them. Use
Figure 12-13 as an example.

12.38 Create an XML Schema for artist, work, transaction, and customer data. Use Figure 12-15
as an example and include your answer to Project Question 12.37 in the schema.

12.39 Create an XML Schema for all artist data. Use Figure 12-16 and your answer from
Project Question 12.37.

If you have not already done so, implement the Marcia's Dry Cleaning database as
described in the Project Questions in Chapter 10 for SQL Server 2008 R2, Chapter 10A
for Oracle Database 11g, or Chapter 10B for MySQL 5.5, depending upon which DBMS
you are using.

A. Create an XML Schema Document for a row of CUSTOMER table. Use only simple
elements, and use Figure 12-7 as an example.

B. Create an XML Schema document for a join of CUSTOMER and ORDER data. Assume
that the document has one customer and from zero to many orders for that customer.
Use Figure 12-13 as an example.

C. Write an SQL statement with FOR XML that will produce the document you created in
part C.

D. Create an XML Schema document that has all of the data for a given customer. How
many multivalued paths does this schema have?

E. Explain how the XML Schema document you created in part E can be used to advantage
by Marcia�s Dry Cleaning.

If you have not already done so, implement the Morgan Importing database as described
in the Project Questions in Chapter 10 for SQL Server 2008 R2, Chapter 10A for Oracle
Database 11g, or Chapter 10B for MySQL 5.5, depending upon which DBMS you are using.

A. Create an XML Schema Document for a row of PURCHASE table. Use only simple
elements, and use Figure 12-7 as an example.

B. Create an XML Schema document for a join of STORE and PURCHASE data. Assume
that the document has one store and from zero to many purchases for that store.
Use Figure 12-13 as an example.

C. Write an SQL statement with FOR XML that will produce the document you created in
part C.

D. Create an XML Schema document that has all of the data for a given purchase. How
many multivalued paths does this schema have?

E. Explain how the XML Schema document you created in part E can be used to advantage
by Morgan Importing.

This chapter discusses the evolving field of business intelligence systems,
which are information systems used to analyze data and report the conclusions
of this analysis to users. This information�recall that in Chapter 1 one of our
definitions of information was knowledge derived from data�is then used by
business management to make decisions about business operations. We also
discuss the database structures, know as data warehouses, that support
business intelligence systems.

� To learn the basic concepts of data warehouses and
data marts

� To learn the basic concepts of dimensional
databases

Chapter Objectives

Database
Processing for
Business Intelligence
Systems13

� To learn the basic concepts of business intelligence (BI)
systems

� To learn the basic concepts of OnLine Analytical
Processing (OLAP) and data mining

549

Business Intelligence Systems

Business intelligence (BI) systems are information systems that assist managers and other
professionals in the analysis of current and past activities and in the prediction of future
events. Unlike transaction processing systems, they do not support operational activities, such
as the recording and processing of orders. Instead, BI systems are used to support manage-
ment assessment, analysis, planning, control, and, ultimately, decision making.

550 Part 5 Database Access Standards

The Relationship Between Operational and BI Systems

Figure 13-1 summarizes the relationship between operational and business intelligence
systems. Operational systems�such as sales, purchasing, and inventory control systems�
support primary business activities. They use a DBMS to both read data from and store data in
the operational database. They are also known as transactional systems or online
transaction processing (OLTP) systems because they record the ongoing stream of business
transactions.

Instead of supporting the primary business activities, BI systems support management�s
analysis and decision-making activities. BI systems obtain data from three possible sources.
First, they read and process data existing in the operational database�they use the operational
DBMS to obtain such data, but they do not insert, modify, or delete operational data. Second, BI
systems process data that are extracted from operational databases. In this situation, they
manage the extracted database using a BI DBMS, which may be the same as or different from
the operational DBMS. Finally, BI systems read data purchased from data vendors.

Reporting Systems and Data Mining Applications

BI systems fall into two broad categories: reporting systems and data mining applications.
Reporting systems sort, filter, group, and make elementary calculations on operational data.
Data mining applications, in contrast, perform sophisticated analyses on data, analyses that
usually involve complex statistical and mathematical processing. The characteristics of BI
applications are summarized in Figure 13-2.

Reporting Systems

Reporting systems filter, sort, group, and make simple calculations. All reporting analyses can
be performed using standard SQL, although extensions to SQL, such as those used for OnLine
Analytical Processing (OLAP), are sometimes used to ease the task of report production.

Reporting systems summarize the current status of business activities and compare that
status with past or predicted future activities. Report delivery is crucial. Reports must be
delivered to the proper users on a timely basis, in the appropriate format. For example, reports
may be delivered on paper, via a Web browser, or in some other format.

Data Mining Applications

Data mining applications use sophisticated statistical and mathematical techniques to
perform what-if analyses, to make predictions, and to facilitate decision making. For example,
data mining techniques can analyze past cell phone usage and predict which customers are

Operational
Applications

(Order Entry,
Manufacturing,

Purchasing,
Inventory,

Etc.)

Business Intelligence Applications

Operational
DBMS

BI
DBMS

Functional
Users

Operational
Database

Extract of
Operational
Database

Purchased
Data

Management
& Management
Support Users

Reporting Data Mining

Figure 13-1

Relationship Between
Operational and BI Systems

Chapter 13 Database Processing for Business Intelligence Systems 551

� Reporting
 � Filter, sort, group, and make simple calculations
 � Summarize current status
 � Compare current status to past or predicted status
 � Classify entities (customers, products, employees, etc.)
 � Report delivery crucial
� Data Mining
 � Often employ sophisticated statistical and mathematical
 techniques
 � Used for:
 � What-if analyses
 � Predictions
 � Decisions
 � Results often incorporated into some other report
 or system

Figure 13-2

Characteristics of Business
Intelligence Applications

likely to switch to a competing phone company. Or, data mining can be used to analyze past
loan behavior to determine which customers are most (or least) likely to default on a loan.

Report delivery is not as important for data mining systems as it is for reporting
systems. First, most data mining applications have only a few users, and those users have
sophisticated computer skills. Second, the results of a data mining analysis are usually
incorporated into some other report, analysis, or information system. In the case of cell
phone usage, the characteristics of customers who are in danger of switching to another
company may be given to the sales department for action. Or, the parameters of an equation
for determining the likelihood of a loan default may be incorporated into a loan approval
application.

Data Warehouses and Data Marts

According to Figure 13-1, some BI systems read and process operational data directly from the
operational database. Although this is possible for simple reporting systems and small
databases, such direct reading of operational data is not feasible for more complex
applications or larger databases. Those larger applications usually process a separate database
constructed from an extract of the operational database.

Operational data are difficult to read for several reasons. For one, querying data for BI
applications can place a substantial burden on the DBMS and unacceptably slow the
performance of operational applications. Additionally, operational data have problems that
limit their use for BI applications. Further, the creation and maintenance of BI systems require
programs, facilities, and expertise that are not normally available from operations. Because of
these problems, many organizations have chosen to develop data warehouses and data marts to
support BI applications.

Components of a Data Warehouse

To overcome the problems just described, many organizations have created data warehouses,
which are database systems that have data, programs, and personnel that specialize in the prepa-
ration of data for BI processing. Data warehouse databases differ from operational databases
because the data warehouse data are frequently denormalized. Data warehouses vary in scale and
scope. They can be as simple as a sole employee processing a data extract on a part-time basis or
as complex as a department with dozens of employees maintaining libraries of data and programs.

Figure 13-3 shows the components of a data warehouse. Data are read from operational
databases by the Extract, Transform, and Load (ETL) system. The ETL system then cleans
and prepares the data for BI processing. This can be a complex process.

552 Part 5 Database Access Standards

ETL System

Data Extraction/
Cleaning/

Preparation
Programs

Data Warehouse
DBMS

Business
Intelligence

Tools

Other
Internal

Data

Data
Warehouse
Metadata

Data
Warehouse
Database

BI Users

Operational
Databases

External
Data

Figure 13-3

Components of a Data
Warehouse

First, the data may be problematic, which we will discuss in the next section. Second,
data may need to be changed or transformed for use in a data warehouse. For example, the
operational systems may store data about countries using standard two-letter country
codes, such as US (United States) and CA (Canada). However, applications using the data
warehouse may need to use the country names in full. Thus, the data transformation
{CountryCode CountryName} will be needed before the data can be loaded into the
data warehouse.

The ETL stores the extracted data in a data warehouse database using a data
warehouse DBMS, which can be different from the organization�s operational DBMS. For
example, an organization might use Oracle database for its operational processing, but
use SQL Server for its data warehouse. Other organizations might use SQL Server for
operational processing and data management programs from statistical package vendors
such as SAS (SAS Analytics) or IBM (IBM SPSS Statistics) in the data warehouse.

Metadata concerning the data�s source, format, assumptions and constraints, and other
facts are kept in a data warehouse metadata database. The data warehouse DBMS extracts
and provides data to BI tools, such as data mining programs.

Once problematic operational data have been cleaned in the ETL
system, the corrected data can also be used to update the operational

system to fix the original data problems.

Problems with Operational Data
Most operational databases have problems that limit their usefulness to all but the simplest BI
applications. Figure 13-4 lists the major problem categories.

First, although data that are critical for successful operations must be complete and
accurate, data that are only marginally necessary need not be. For example, some operational
systems gather customer demographic data during the ordering process. But, because such
data are not needed to fill, ship, or bill orders, the quality of the demographic data suffers.

Problematic data are termed dirty data. Examples are a value of �G� for customer sex and a
value of �213� for customer age. Other examples are a value of �999-999-9999� for a U.S. phone
number, a part color of �gren,� and an e-mail address of �WhyMe@somewhereelseintheuniverse.
who.� All of these values pose problems for reporting and data mining purposes.

Purchased data often contain missing elements. In fact, most data vendors state the
percentage of missing values for each attribute in the data they sell. An organization buys such data
because, for some uses, some data are better than no data at all. This is especially true for data items
whose values are difficult to obtain, such as the number of adults in a household, household

Chapter 13 Database Processing for Business Intelligence Systems 553

� Dirty data
� Missing values
� Inconsistent data
� Data not integrated
� Wrong format
 � Too fine
 � Not fine enough
� Too much data
 � Too many attributes
 � Too much volume

Figure 13-4

Problems of Using
Transaction Data for
Business Intelligence

income, dwelling type, and the education of primary income earner. Some missing data are not too
much of a problem for reporting applications. For data mining applications, however, a few missing
or erroneous data points can actually be worse than no data at all, because they bias the analysis.

Inconsistent data, the third problem in Figure 13-4, is particularly common for data that
have been gathered over time. When an area code changes, for example, the phone number for
a given customer before the change will differ from the customer�s phone number after the
change. Part codes can change, as can sales territories. Before such data can be used, it must be
recoded for consistency over the period of the study.

Some data inconsistencies occur because of the nature of the business activity. Consider a
Web-based order entry system used by customers around the world. When the Web server records
the time of order, which time zone does it use? The server�s system clock time is irrelevant to an
analysis of customer behavior. Any standard time such as Universal Time Coordinate (UTC) time
is also meaningless. Somehow, Web server time must be adjusted to the time zone of the customer.

Another problem is nonintegrated data. Suppose, for example, that an organization wants
to report on customer order and payment behavior. Unfortunately, order data are stored in a
Microsoft Dynamics CRM system, whereas payment data are recorded in an Oracle PeopleSoft
financial management database. To perform the analysis, the data must somehow be integrated.

The next problem is that data can be inappropriately formatted. First, data can be too fine.
For example, suppose, that we want to analyze the placement of graphics and controls on an
order entry Web page. It is possible to capture the customers� clicking behavior in what is termed
click-stream data. However, click-stream data include everything the customer does. In the
middle of the order stream there may be data for clicks on the news, e-mail, instant chat, and
the weather. Although all of this data might be useful for a study of consumer computer behavior,
it will be overwhelming if all we want to know is how customers respond to an ad located on the
screen. Because the data are too fine, the data analysts must throw millions and millions of clicks
away before they can proceed.

Data can also be too coarse. A file of order totals cannot be used for a market basket
analysis, which identifies items that are commonly purchased together. Market basket
analyses require item-level data; we need to know which items were purchased with which
others. This doesn�t mean the order total data are useless; it can be adequate for other analyses,
it just won�t do for a market basket analysis.

If the data are too fine, they can be made coarser by summing and combining. An analyst
and a computer can sum and combine such data. If the data are too coarse, however, they
cannot be separated into their constituent parts.

The final problem listed in Figure 3-4 concerns data volume. We can have an excess of
columns, rows, or both. Suppose that we want to know the attributes that influence
customers� responses to a promotion. Between customer data stored within the organization
and customer data that can be purchased, we might have a hundred or more different
attributes, or columns, to consider. How do we select among them? Because of a phenomenon
called the curse of dimensionality, the more attributes there are, the easier it is to build a
model that fits the sample data but that is worthless as a predictor. For this and other reasons,
the number of attributes should be reduced and one of the major activities in data mining
concerns the efficient and effective selection of variables.

554 Part 5 Database Access Standards

� Name, Address, Phone
� Age, Gender
� Ethnicity, Religion
� Income
� Education
� Marital Status, Life Stage
� Height, Weight, Hair and Eye Color
� Spouse�s Name, Birth Date, etc.
� Kids� Names and Birth Dates
� Voter Registration
� Home Ownership
� Vehicles
� Magazine Subscriptions
� Catalog Orders
� Hobbies
� Attitudes

Figure 13-5

AmeriLINK Sells Data on
230+ Million Americans

Finally, we may have too many instances, or rows, of data. Suppose that we want to ana-
lyze click-stream data on CNN.com. How many clicks does this site receive per month?
Millions upon millions! To meaningfully analyze such data, we need to reduce the number of
instances. A good solution to this problem is statistical sampling. However, developing a
reliable sample requires specialized expertise and information system tools.

Purchasing Data for Vendors
Data warehouses often include data that are purchased from outside sources. A typical
example is customer credit data. Figure 13-5 lists some of the consumer data than can be
purchased from the KBM Group in their AmeriLINK database of consumer data (www.kbmg.
com/services-expertise/data/data-sourcing/datacard-search-and-listings/). An amazing, and
from a privacy standpoint frightening, amount of data is available just from this one vendor.

Data Warehouses Versus Data Marts

You can think of a data warehouse as a distributor in a supply chain. The data warehouse takes
data from the data manufacturers (operational systems and purchased data), cleans and
processes them, and locates the data on the shelves, so to speak, of the data warehouse. The
people who work in a data warehouse are experts at data management, data cleaning, data
transformation, and the like. However, they are not usually experts in a given business function.

A data mart is a collection of data that is smaller than that in the data warehouse and
that addresses a particular component or functional area of the business. A data mart is like a
retail store in a supply chain. Users in the data mart obtain data that pertain to a particular
business function from the data warehouse. Such users do not have the data management
expertise that data warehouse employees have, but they are knowledgeable analysts for a given
business function. Figure 13-6 illustrates these relationships.

The data warehouse takes data from the data producers and distributes the data to three
data marts. One data mart analyzes click-stream data for the purpose of designing Web pages.

The second analyzes store sales data and determines which products tend to be
purchased together. This information is used to train salespeople on the best way to up-sell
customers. The third data mart analyzes customer order data for the purpose of reducing labor
for item picking from the warehouse. A company such as Amazon.com, for example, goes to
great lengths to organize its warehouses to reduce picking expenses.

When the data mart structure shown in Figure 13-6 is combined with the data warehouse
architecture shown in Figure 13-3, the combined system is known as an enterprise data warehouse
(EDW) architecture. In this configuration, the data warehouse maintains all enterprise BI data and
acts as the authoritative source for data extracts provided to the data marts. The data marts receive
all their data from the data warehouse�they do not add or maintain any additional data.

Chapter 13 Database Processing for Business Intelligence Systems 555

Web Sales Data Mart

BI Tools
for Web click-stream

analysis

Data
Warehouse

DBMS
Data

Producers

Data
Warehouse
Metadata

Data
Warehouse
Database

Web
Log
Data

Store Sales Data Mart

BI Tools
for store

management

Store
Sales
Data

Inventory Data Mart

BI Tools
for inventory
management

Inventory
History
Data

Web page
design features

Market basket
analysis for sales
training

Inventory layout
for optimal item
picking

Figure 13-6

Data Warehouses and Data
Marts

Of course, it is expensive to create, staff, and operate data warehouses and data marts, and
only large organizations with deep pockets can afford to operate a system such as an EDW.
Smaller organizations operate subsets of this system. For example, they may have just a single
data mart for analyzing marketing and promotion data.

Dimensional Databases

The databases in a data warehouse or data mart are built to a different type of database design
than the normalized relational databases used for operational systems. The data warehouse
databases are built in a design called a dimensional database that is designed for efficient
data queries and analysis. A dimensional database is used to store historical data rather than
just the current data stored in an operational database. Figure 13-7 compares operational
databases and dimensional databases.

Because dimensional databases are used for the analysis of historical data, they must be
designed to handle data that change over time. For example, a customer may have moved from
one residence to another in the same city or may have moved to a completely different city and
state. This type of data arrangement is called a slowly changing dimension, and in order to track
such changes a dimensional database must have a date dimension or time dimension as well.

The Star Schema
Rather than using the normalized database designs used in operational databases, a
dimensional database uses a star schema. A star schema is so named because, as shown in
Figure 13-8, it visually resembles a star, with a fact table at the center of the star and
dimension tables radiating out from the center. The fact table is always fully normalized, but
dimension tables may be non-normalized.

Operational Database Dimensional Database

Data are inserted, updated, and
deleted by users

Used for structured transaction
data processing

Current data are used

Data are loaded and updated
systematically, not by users

Used for unstructured analytical
data processing

Current and historical data are
used

Figure 13-7

Characteristics of
Operational and Dimensional
Databases

556 Part 5 Database Access Standards

PRODUCT
(Dimension Table)

PRODUCT_SALES
(Fact Table)

TIME
(Dimension Table)

CUSTOMER
(Dimension Table)

Figure 13-8

The Star Schema

CUSTOMER
EmailAddress

LastName
FirstName
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
EmailAddress (FK)
ContactDate

ContactNumber
ContactType
SeminarID (FK)

INVOICE
InvoiceNumber

InvoiceDate
PaymentType
Subtotal
Shipping
Tax
Total
EmailAddress (FK)

LINE_ITEM
InvoiceNumber (FK)
LineNumber

Quantity
UnitPrice
Total
ProductNumber (FK)

PRODUCT
ProductNumber

Description
UnitPrice
QuantityOnHand

SEMINAR_CUSTOMER
SeminarID (FK)
EmailAddress (FK)

Figure 13-9

The HSD Database
Design

There is a more complex version of the star schema called the snowflake
schema. In the snowflake schema, each dimension table is normalized,

which may create additional tables attached to the dimension tables.

To illustrate a star schema for a dimensional database, we will build a small (very small) data
warehouse for Heather Sweeney Designs (HSD), a Texas company specializing in products for
kitchen-remodeling services. HSD puts on seminars to attract customers and sell books and
videos in addition to doing actual design work. A database design for HSD is shown in Figure 13-9,
and an SQL Server database diagram for the HSD database is shown in Figure 13-10. The actual
dimensional database for BI use at HSD is named HSD-DW, and it is shown in Figure 13-11. The
SQL statements needed to create the tables in the HSD-DW database are shown in Figure 13-12,
and the data for the HSD-DW database are shown in Figure 13-13. Compare the HSD-DW
dimensional database model in Figure 13-11 to the HSD database diagram shown in Figure 13-10
and note how data in the HSD database have been used in the HSD-DW schema.

Chapter 13 Database Processing for Business Intelligence Systems 557

Figure 13-10

The HSD Database
Diagram

PRODUCT dimension
table

PRODUCT_SALES
fact table

TIMELINE dimension
table

CUSTOMER
dimension table

Figure 13-11

The HSD-DW Star Schema

Note that in the HSD-DW database the CUSTOMER table has a surrogate
primary key named CustomerID, which has an integer value, whereas

in the HSD database the primary key EmailAddress was used. There are two reasons
for this. First, the primary key EmailAddress used in the HSD database is simply too
cumbersome for a data warehouse, so we switched to the preferable small and numeric
surrogate key. Second, we do not use individual EmailAddress values in the HSD-DW
database, only values of EmailDomain, which is not unique and cannot be used as a
primary key.

558 Part 5 Database Access Standards

Figure 13-12

The HSD-DW SQL
Statements

A fact table is used to store measures of business activity, which are quantitative or
factual data about the entity represented by the fact table. For example, in the HSD-DW
database, the fact table is PRODUCT_SALES:

PRODUCT_SALES (TimeID, CustomerID, ProductNumber, Quantity,
UnitPrice, Total)

Chapter 13 Database Processing for Business Intelligence Systems 559

(a) TIMELINE Dimension Table

(b) CUSTOMER Dimension Table

(c) PRODUCT Dimension Table

(d) PRODUCT_SALES Fact Table

Figure 13-13

The HSD-DW Table Data

In this table:

� Quantity is quantitative data that record how many of the item were sold.
� UnitPrice is quantitative data that record the dollar price of each item sold.
� Total (= Quantity * UnitPrice) is quantitative data that record the total dollar value of

the sale of this item.

The measures in the PRODUCT_SALES table are for units of product per day. We do not
use individual sale data (which would be based on InvoiceNumber), but rather data summed
for each customer for each day. For example, if you could compare the HSD database INVOICE
data for Ralph Able for 6/5/11, you would see that Ralph made two purchases on that date
(InvoiceNumber 35013 and InvoiceNumber 35016). In the HSD-DW database, however, these
two purchases are summed into the PRODUCT_SALES data for Ralph (CustomerID = 3) for
6/5/11 (TimeID = 40699).

The TimeID values are the sequential serial values used in Microsoft Excel
to represent dates. Starting with 01-JAN-1900 as date value 1, the date

value is increased by 1 for each calendar day. Thus, 05-JUN-2011 = 40699. For more
information, search �Date formats� in the Excel help system.

A dimension table is used to record values of attributes that describe the fact measures in
the fact table, and these attributes are used in queries to select and group the measures in the
fact table. Thus, CUSTOMER records data about the customers referenced by CustomerID in

560 Part 5 Database Access Standards

the SALES table, TIMELINE provides data that can be used to interpret the SALES event in
time (which month? which quarter?), and so on. A query to summarize product units sold by
Customer (CustomerName) and Product (ProductName) would be:

/* *** SQL-Query-CH13-01 *** */

SELECT C.CustomerID, C.CustomerName,

P.ProductNumber, P.ProductName,

SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER AS C, PRODUCT_SALES AS PS, PRODUCT AS P

WHERE C.CustomerID = PS.CustomerID

AND P.ProductNumber = PS.ProductNumber

GROUP BY C.CustomerID, C.CustomerName,

P.ProductNumber, P.ProductName

ORDER BY C.CustomerID, P.ProductNumber;

The results of this query are shown in Figure 13-14.
In Chapter 6, we discussed how an N:M relationship is created in a database as two 1:N

relationships by use of an intersection table. We also discussed how additional attributes can
be added to the intersection table in an association relationship.

In a star schema, the fact table is often an association table�it is an intersection table for
the relationships between the dimension tables with additional measures also stored in it.
And, as with all other intersection and association tables, the key of the fact table is a composite
key made up of all the foreign keys to the dimension tables.

Illustrating the Dimensional Model
When you think of the word dimension, you might think of �two dimensional� or �three
dimensional.� And the dimensional models can be illustrated by using a two-dimensional
matrix and a three-dimensional cube. Figure 13-15 shows the SQL query results from
Figure 13-14 displayed as a two-dimensional matrix of Product (using ProductNumber) and
Customer (using CustomerID), with each cell showing the number of units of each product
purchased by each customer. Note how ProductNumber and CustomerID define the two
dimensions of the matrix: CustomerID labels what would be the x-axis, and ProductNumber
labels the y-axis.

Figure 13-16 shows a three-dimensional cube with the same ProductNumber and
CustomerID dimensions, but now with the added Time dimension on the z-axis. Now instead
of occupying a two-dimensional box, the total quantity of products purchased by each
customer on each day occupies a small three-dimensional cube, and all these small cubes
combine to form a large cube.

As human beings, we can visualize two-dimensional matrices and three-dimensional
cubes. Although we cannot visualize models with four, five, and more dimensions, BI systems
and dimensional databases can handle such models.

Multiple Fact Tables and Conformed Dimensions
Data warehouse systems build dimensional models, as needed, to analyze BI questions, and
the HSD-DW star schema in Figure 13-11 would be just one schema in a set of schemas.
Figure 13-17 shows an extended HSD-DW schema.

In Figure 13-17, a second fact table named SALES_FOR_RFM has been added:

SALES_FOR_RFM (TimeID, CustomerID, InvoiceNumber, PreTaxTotalSale)

This table shows that fact table primary keys do not need to be composed solely of foreign
keys that link to dimension tables. In SALES_FOR_RFM, the primary key includes the
InvoiceNumber attribute. This attribute is necessary because the composite key (TimeID,
CustomerID) will not be unique and thus cannot be the primary key. Note that
SALES_FOR_RFM links to the same CUSTOMER and TIMELINE dimension tables as

Chapter 13 Database Processing for Business Intelligence Systems 561

Figure 13-14

The HSD-DW Query Results

PRODUCT_SALES. This is done to maintain consistency within the data warehouse, and
when a dimension table links to two or more fact tables it is called a conformed dimension.

Why would we add a fact table named SALES_FOR_RFM? To explain that, we need to
discuss reporting systems.

Each cell shows the
total quantity of each
product that has been
purchased by each
customer

Figure 13-15

The Two-Dimensional
ProductNumber�CustomerID
Matrix

BK001

BK002

VB001

VB002

VB003

VK001

VK002

VK003

VK004

Each cell will
show the total
quantity of each
product that has
been purchased
by each customer
on a specific date

P
ro

du
ct

N
um

be
r

1 32 4 65 7 98 10 1211

CustomerID

Time

1

1

Figure 13-16

The Three-Dimensional
Time�ProductNumber�
CustomerID Cube

TIMELINE Dimension
Table

CUSTOMER
Dimension Table

SALES_FOR_RFM
Fact Table

Figure 13-17

The Extended HSD-DW Star
Schema

562

� Simple report-based customer classification scheme
� Score customers on recentness, frequency, and
 monetary size of orders
� Typically, divide each criterion into 5 groups and

score from 1 to 5
Figure 13-18

RFM Analysis

Chapter 13 Database Processing for Business Intelligence Systems 563

Reporting Systems

The purpose of a reporting system is to create meaningful information from disparate data
sources and to deliver that information to the proper users on a timely basis. As stated earlier,
reporting systems differ from data mining because they create information using the simple
operations of sorting, filtering, grouping, and making simple calculations. We begin this
section with a description of a typical reporting problem: RFM analysis.

RFM Analysis

RFM analysis is a way of analyzing and ranking customers according to their purchasing
patterns. It is a simple technique that considers how recently (R) a customer ordered, how
frequently (F) a customer orders, and how much money (M) the customer spends per order.
RFM is summarized in Figure 13-18.

To produce an RFM score, we need only two things: customer data and sales data for each
purchase (the date of the sale and the total amount of the sale) made by each customer. If you
look at the SALES_FOR_RFM table and its associated CUSTOMER and TIMELINE dimension
tables in Figure 13-17, you see that we have exactly those data: The SALE_FOR_RFM table is
the starting point for RFM analysis in the HSD-DW BI system.

To produce an RFM score, customer purchase records are first sorted by the date of their
most recent (R) purchase. In a common form of this analysis, the customers are divided into
five groups, and a score of 1 to 5 is given to customers in each group. Thus, the 20 percent of
the customers having the most recent orders are given an R score of 1, the 20 percent of the
customers having the next most recent orders are given an R score of 2, and so forth, down to
the last 20 percent, who are given an R score of 5.

The customers are then resorted on the basis of how frequently they order. The 20 percent
of the customers who order most frequently are given an F score of 1, the next 20 percent most
frequently ordering customers are given a score of 2, and so forth, down to the least frequently
ordering customers, who are given an F score of 5.

Finally, the customers are sorted again according to the amount of their orders.
The 20 percent who have ordered the most expensive items are given an M score of 1, the next
20 percent are given an M score of 2, and so forth, down to the 20 percent who spend the least,
who are given an M score of 5.

Figure 13-19 shows sample RFM data for Heather Sweeney Designs. (Note that these data
have not been calculated and are for illustrative purposes only.) The first customer, Ralph Able,
has a score of {1 1 2}, which means that he has ordered recently and orders frequently. His
M score of 2 indicates, however, that he does not order the most expensive goods. From these
scores, the salespeople can surmise that Ralph is a good customer but that they should
attempt to up-sell Ralph to more expensive goods.

Each customer is
ranked for R (recent),
F (frequent), and
M (money)
characteristics„1 is
highest (best) and 5 is
lowest (worst) score

Figure 13-19

The RFM Score Report

564 Part 5 Database Access Standards

Figure 13-20

SQL Server Tables for RFM
Analysis

Susan Baker (RFM score of {2 2 3}) is above average in terms of how frequently she
shops and how recently she has shopped, but her purchases are average in value. Sally George
(RFM score of {3 3 3}) is truly in the middle. Jenny Tyler (RFM score of {5 1 1}) is a problem. Jenny
has not ordered in some time, but, in the past, when she did order, she ordered frequently, and
her orders were of the highest monetary value. These data suggest that Jenny might be going to
another vendor. Someone from the sales team should contact her immediately. However, no one
on the sales team should be talking to Chantel Jacobs (RFM score of {5 5 5}). She has not ordered
for some time, she doesn�t order frequently, and when she does order, she only buys inexpensive
items and not many of them.

Producing the RFM Report

Like most reports, an RFM report can be created using a series of SQL statements. This section
presents two SQL Server stored procedures that produce RFM scores. Figure 13-20 shows the
five tables that are used.

The CUSTOMER_SALES table contains the raw data that are used in the RFM
calculations. CUSTOMER_RFM contains CustomerID and the final R, F, and M scores. The

Chapter 13 Database Processing for Business Intelligence Systems 565

remaining three tables�CUSTOMER_R, CUSTOMER_F, and CUSTOMER_M�are used to
store intermediate results. Note that all CustomerID columns are NOT NULL.

The stored procedure shown in Figure 13-21 is used to calculate and store the R, F, and
M scores. It begins by deleting the results from any prior analysis from the CUSTOMER_R,
CUSTOMER_F, and CUSTOMER_M tables. It then calls three procedures for computing the
R, F, and M scores. Finally, it stores the R, F, and M scores in the CUSTOMER_RFM table. Only
this table is needed for reporting purposes.

Figure 13-21

The RFM_Analysis Stored
Procedure

566 Part 5 Database Access Standards

Figure 13-22

The Calculate_R Stored
Procedure

The Calculate_R stored procedure shown in Figure 13-22 illustrates how the R score is
calculated. This procedure first places the date of each customer�s most recent order into the
MostRecentOrderDate column. Then, it uses the SQL TOP {PercentageNumber} PERCENT
syntax of SQL SELECT statements to set the R_Score values. The first UPDATE statement
sets the value of R_Score to 1 for the top 20 percent of customers (after they have been sorted
in descending order according to MostRecentOrderDate). Then, it sets the R_Score to 2 for the
top 25 percent of customers who have a null value for R_Score in descending order of MostRe-
centOrderDate. The procedure continues to set the R values for all customers. The Calculate_F
and Calculate_M procedures are similar and will be left to you as Project Question 13.58.

Chapter 13 Database Processing for Business Intelligence Systems 567

Figure 13-23 shows how the CUSTOMER_RFM table is used for reporting purposes.
Figure 13-23 shows a SELECT on CUSTOMER_RFM that was prepared using a database of more
than 5,000 customers and over 1 million transactions. The preparation of the CUSTOMER_RFM
table required less than 30 seconds on a moderately powered personal computer.

The results in Figure 13-23 are interesting, but unless this information is delivered to the
correct users it will be of no ultimate value to the organization. For example, the 2nd row in
this figure shows that 202 customers have an RFM score of {4 1 1}. These customers order
frequently, they order items of high monetary value, but they have not ordered recently. The
company may be in danger of losing them. Somehow this report and the customers who have
these scores (see Review Question 13.32) need to be made available to the appropriate sales
personnel. To understand the modern means for accomplishing this, we will consider the
components of a reporting system.

Reporting System Components

Figure 13-24 shows the major components of a reporting system. Data from disparate data
sources are read and processed. As shown, reporting systems can obtain data from operational

The SQL query for
RFM Results

The RFM tables

The SQL RFM query
results sorted by
NumberOfCustomers
in descending order

The RFM stored
procedures

Figure 13-23

Example RFM Results

Paper Report

Reporting
System

� Author
� Manage
� Deliver

Web Portal

Digital
Dashboard

E-Mail Alert

XML Web
Service

Reporting
System

Metadata

Users

Operational
Database

Data
Warehouse
Database

and/or

Data Mart
Database

and/or

Figure 13-24

Components of a Reporting
System

568 Part 5 Database Access Standards

Type Media

Query

Static

Dynamic

OnLine Analytical
Processing (OLAP)

Digital dashboard

Paper

Web portal

E-mail/alert

XML Web service and
application specific

Push

Pull

ModeFigure 13-25

Report Characteristics

databases, from data warehouses, and from data marts. Some data are generated within the
organization, other data are obtained from public sources, and still other data may be
purchased from data utilities.

A reporting system maintains a database of reporting metadata. The metadata describes
reports, users, groups, roles, events, and other entities involved in the reporting activity. The
reporting system uses the metadata to prepare and deliver appropriate reports to the proper
users in the correct format on a timely basis.

As shown in Figure 13-24, reports can be prepared in a variety of formats. Figure 13-25
lists report characteristics.

Report Types

Some reports are static. They are prepared once from the underlying data, and they do not
change. A report of last year�s sales, for example, is a static report. Other reports are dynamic;
at the time of their creation, the reporting system reads the latest, most current data and
generates the report using those fresh data. Reports on today�s sales or on current stock prices
are dynamic reports.

Query reports are prepared in response to information entered by users. Google is an
example of a query report. You enter the keywords you want to search for, and the reporting
system within Google searches its database and generates a response that is particular to your
query. Within an organization, a query report could be generated to show current inventory
levels. The user enters item numbers, and the reporting system responds with inventory levels
of those items at various stores and warehouses.

Another type of report is an OLAP, or OnLine Analytical Processing, report. OLAP reports
enable the user to dynamically change the report-grouping structures. An OLAP reporting
application is illustrated later in this chapter.

Report Media

Today, reports are delivered via many different channels. Some reports are printed on paper,
others are created in formats such as PDF that can be printed or viewed electronically. Other
reports are delivered via Web portals. An organization might place sales reports on the sales
department�s Web portal and a report on customers serviced on the customer service
department�s Web portal.

A digital dashboard is an electronic display that is customized for a particular user.
Companies such as Yahoo! and MSN offer digital dashboard services. Users of these services
can define the content they want to see�say, a local weather forecast, a list of stock prices, and
a list of news sources�and the vendor constructs the customized display for each user. Such
pages are called My Yahoo! or My MSN, or some similar title. Other dashboards are particular
to an organization. Executives at a manufacturing organization, for example, might have a
dashboard that shows up-to-the-minute production and sales activities.

Chapter 13 Database Processing for Business Intelligence Systems 569

Reports can also be delivered via alerts. Users can declare that they wish to be notified of
news and events by e-mail or on their cell phone. Of course, some cell phones are capable of
displaying Web pages and can use digital dashboards as well.

Finally, reports can be delivered to other information systems. The modern way to do this
is to publish reports as an XML Web service. This style of reporting is particularly useful for
interorganizational information systems, such as supply chain management.

Report Modes

The final report characteristic in Figure 13-25 is report mode. A push report is sent to users
based on a predetermined schedule. Users receive the report without any activity on their part.
A pull report is one that users must request. To obtain a pull report, a user goes to a Web
portal or digital dashboard and clicks a link or button to cause the reporting system to
produce and deliver the report.

Report System Functions

As shown in Figure 13-25, the reporting system serves three functions: authoring, management,
and delivery.

Report Authoring
Report authoring involves connecting to the required data sources, creating the report structure,
and formatting the report. Figures 13-26 and 13-27 show the use of SQL Server Business Intelli-
gence Development Studio to author a report that publishes the results of an RFM analysis done
in SQL Server. The SQL Server Business Intelligence Development Studio is a version of Microsoft
Visual Studio .NET that is included with SQL Server 2008 R2 (it is one of the tools in SQL Server
2008 R2 Express Advanced as well as being included in all major versions of SQL Server 2008 R2).

In Figure 13-26, the developer has specified a database that contains the CUSTOMER_RFM
table and has just entered the SQL statement shown in Figure 13-23. You can see the SQL
statement in the lower-center portion of this display.

In Figure 13-27, the report author creates the format of the report by specifying the
headings and selecting the format for the data items. In a more complicated report, the
author would specify the sorting and grouping of data items, as well as page headers and foot-
ers. The developer uses the property list in the right-hand side of the display in Figure 13-27
to set the values for item properties. The final report, as it appears in a browser window, is
shown in Figure 13-28. To learn more about this application, see www.microsoft.com/
sqlserver/en/us/solutions-technologies/business-intelligence/reporting-services.aspx.

The
CUSTOMER_RFM
table

The RFM query in
QBE format

The RFM query results

The RFM query as an
SQL statement

Figure 13-26

Setting Up a Report Data
Source Using SQL Server
Business Intelligence
Development Studio

570 Part 5 Database Access Standards

The design for the
RFM Results report

Figure 13-27

Formatting a Report Using
SQL Server Business
Intelligence Development
Studio

Figure 13-28

The RFM Report in a Web
Browser

Report Management
The purpose of report management is to define who receives what reports, when, and by
what means. Most report management systems enable the report administrator to define user
accounts and user groups and to assign particular users to particular groups. For example, all
of the salespeople would be assigned to the sales group, all of the executives would be assigned
to the executive group, and so forth. All of these data are stored in the reporting system
metadata shown in Figure 13-24.

Chapter 13 Database Processing for Business Intelligence Systems 571

Reports created using the report authoring system are assigned to groups and users. Assign-
ing reports to groups saves the administrator work; when a report is created, changed, or removed,
the administrator need only change the report assignments to the group. All of the users in the
group will inherit the changes. The report assignment metadata includes not only the user or
group and the reports assigned, but also indicates the format of the report that should be sent to
that user and the channel by which the report will be delivered. For example, Figure 13-29 shows

Figure 13-29

The RFM Report in XML
Format

572 Part 5 Database Access Standards

part of the RFM report materialized in XML. The XML file can then be input into any program
that consumes XML and manipulated via XSL, as described in Chapter 12.

As stated earlier, the report management metadata indicates which format of the report
should be sent to which user. It also indicates what channel is to be used and whether the
report is to be pushed or pulled. If pushed, the administrator declares whether the report is to
be generated on a regular schedule or as an alert.

Report Delivery
The report delivery function of a reporting system pushes reports or allows them to be pulled
based on the report management metadata. Reports can be delivered via an e-mail server, a
Web portal, XML Web services, or by other program-specific means. The report delivery
system uses the operating system and other program security components to ensure that only
authorized users receive authorized reports. It also ensures that push reports are produced at
appropriate times.

For query reports, the report delivery system serves as an intermediary between the user
and the report generator. It receives user query data, such as the item numbers in an inventory
query, passes the query data to the report generator, receives the resulting report, and delivers
the report to the user.

OLAP

OLAP provides the ability to sum, count, average, and perform other simple arithmetic opera-
tions on groups of data. OLAP systems produce OLAP reports. An OLAP report is also called
an OLAP cube. This is a reference to the dimensional data model, and some OLAP products
show OLAP displays using three axes, like a geometric cube. The remarkable characteristic of
an OLAP report is that it is dynamic: The format of an OLAP report can be changed by the
viewer, hence the term online in the name OnLine Analytical Processing.

OLAP uses the dimensional database model discussed earlier in this chapter, so it is
not surprising to learn that an OLAP report has measures and dimensions. A measure is a
dimensional model fact�the data item of interest that is to be summed or averaged or
otherwise processed in the OLAP report. For example, sales data may be summed to
produce Total Sales or averaged to produce Average Sales. The term measure is used
because you are dealing with quantities that have been or can be measured and recorded. A
dimension, as you have already learned, is an attribute or a characteristic of a measure.
Purchase date (TimeID), customer location (City), and sales region (ZIP or State) are all
examples of dimensions, and in the HSD-DW database, you saw how the time dimension
is important.

In this section, we will generate an OLAP report by using an SQL query from the HSD-DW
database and a Microsoft Excel PivotTable.

We use Microsoft SQL Server and Microsoft Excel to illustrate this
discussion of OLAP reports and PivotTables. For other DBMS products,

such as MySQL, you can use the DataPilot feature of the Calc spreadsheet application
in the OpenOffice.org product suite (see www.openoffice.org).

Now we can either create a formatted table in a Microsoft Excel worksheet:

� Copy the SQL query results into an Excel worksheet.
� Add column names to the results.
� Format the query results as an Excel table (optional).
� Select the Excel range containing the results with column names.

Chapter 13 Database Processing for Business Intelligence Systems 573

or connect to a DBMS data source:

� Click the PivotTable button in the Tables group of the Insert ribbon.
� Specify that the PivotTable should be in a new worksheet.
� Select the column variables (Column Labels), row variables (Row Labels), and the

measure to be displayed (Values).

or use the Microsoft PowerPivot For Excel 2010 add-in feature to connect to a DBMS data
source. We will discuss how to do this later in this section.

We can use an SQL query if we copy the data into an Excel worksheet. The SQL query, as
used in SQL Server, is:

/* *** SQL-Query-CH12-02 *** */

SELECT C.CustomerID, CustomerName, C.City,

P.ProductNumber, P.ProductName,

T.[Year], T.QuarterText,

SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER C, PRODUCT_SALES PS, PRODUCT P, TIMELINE T

WHERE C.CustomerID = PS.CustomerID

AND P.ProductNumber = PS.ProductNumber

AND T.TimeID = PS.TimeID

GROUP BY C.CustomerID, C.CustomerName, C.City,

P. ProductNumber, P.ProductName,

T.QuarterText, T.[Year]

ORDER BY C.CustomerName, T.[Year], T.QuarterText;

However, because SQL Server (and other SQL-based DBMS products, such as Oracle
Database and MySQL) can store views but not queries, we need to create and use an SQL view
if we are going to use an Excel-data connection. The SQL query to create the HSDDWProduct-
SalesView, as used in SQL Server, is:

/* *** SQL-CREATE-VIEW-CH13-01 *** */

CREATE VIEW HSDDWProductSalesView AS

SELECT C.CustomerID, C.CustomerName, C.City,

P.ProductNumber, P.ProductName,

T.[Year], T.QuarterText,

SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER C, PRODUCT_SALES PS, PRODUCT P, TIMELINE T

WHERE C.CustomerID = PS.CustomerID

AND P.ProductNumber = PS.ProductNumber

AND T.TimeID = PS.TimeID

GROUP BY C.CustomerID, C.CustomerName, C.City,

P. ProductNumber, P.ProductName,

T.QuarterText, T.[Year];

We can now use the DSDDWProductSalesView when we connect to the database as
the data source for a OLAP report. Figure 13-30(a) shows our starting point, a blank

574 Part 5 Database Access Standards

The PowerPivot
command tab

The PowerPivot
Window Launch
button

The Data Mining
command tab

Figure 13-30

OLAP Reports

The PivotTable for
Excel window for the
DBP-e12-HSD-DW-
BI.xlsx workbook

The PivotTable button
showing the various
options for displaying
the data

The data table is
based on the
HSDDWProductSalesView
in the HSD-DW database

The PowerPivot
data table

Microsoft Excel 2010 workbook with both the Microsoft PowerPivot For Microsoft
Excel 2010 add-in (downloadable from www.microsoft.com/downloads/en/details.aspx?
FamilyID=e081c894-e4ab-42df-8c87-4b99c1f3c49b&displaylang=en), and the Microsoft
Data Mining Add-Ins for Office 2007 (downloadable from http://www.microsoft.com/
sqlserver/2008/en/us/data-mining-addins.aspx [and despite the name, this package also
works with Office 2010]).

To connect to the HSD-DW data we click the PowerPivot Window Launch button. This will
start a Wizard that guides us through the connection process, and we finish with the data obtained
from the HSDDWProductSalesView in a table in the PivotTable for Excel window, as shown in

(a) The Microsoft Excel PowerPivot and Data Mining Command Tabs

(b) The Microsoft Excel PowerPivot for Excel Window

Chapter 13 Database Processing for Business Intelligence Systems 575

The PowerPivot
Field List pane„
select the report
elements to be
displayed here

The PivotTable report
area„the PivotTable
will be displayed in
this area, which can
be expanded as
necessary to
accomodate the
PivotTable

Figure 13-30(b). Clicking the PivotTable button in this window returns us to Microsoft Excel with
the basic PivotTable structure in place, as shown in Figure 13-30(c). Selecting the appropriate fields
in the PowerPivot File List pane then creates the PivotTable itself, as seen in Figure 13-30(d).

In Figure 13-30(d), the measure is quantity sold, and the dimensions are ProductNumber
and City. This report shows how quantity varies by product and city. For example, four copies
of VB003 (Kitchen Remodeling Dallas Style Video Companion) were sold in Dallas, but none
were sold in Austin.

We generated the OLAP report in Figure 13-30 by using a simple SQL query (run using the
Microsoft PowerPivot for Microsoft Excel add-in) and Microsoft Excel, but many DBMS and BI
products include more powerful and sophisticated tools. For example, SQL Server includes SQL
Server Analysis Services.1 It is possible to display OLAP cubes in many ways besides with Excel.

1 Up to this point in this book, we have been able to do everything in this book using SQL Server 2008 R2
Express. Unfortunately, SQL Server Express Edition does not include SQL Server Analysis Services, so you will
have to use the SQL Server Standard Edition or better if you want to use the SQL Server Analysis Services.
Although OLAP reports can be done without SQL Server Analysis Services, Server Analysis Services adds a lot
of functionality, and the Microsoft SQL Server 2008 Data Mining Add-ins for Microsoft Office 2007 (used in this
text) will not function without it.

The PowerPivot
Field List pane„
the elements have
been selected and are
now displayed here

The PivotTable report

The PivotTable
worksheet has been
named the
HSD-DW-Pivot-Table
worksheet

Figure 13-30

Continued

(c) The Microsoft Excel PowerPivot PivotTable Worksheet

(d) The ProductNumber by City OLAP Report

576 Part 5 Database Access Standards

The City = San
Antonio data are
also showing customer
data

The Customer =
Able, Ralph data are
also showing year
data

Figure 13-31

OLAP ProductNumber by
City, Customer, and Year
Report

The city variable is
on the column
designator

The ProductID
variable is on the
primary row designator

The Customer =
Able, Ralph data are
also showing year
data

The ProductID =
VB001 data are also
showing Customer
data

Figure 13-32

OLAP City by
ProductNumber, Customer,
and Year Report

Some third-party vendors provide more sophisticated graphical displays, and OLAP reports can
be delivered just like any of the other reports described for report management systems.

The distinguishing characteristic of an OLAP report is that the user can alter the format
of the report. Figure 13-31 shows an alteration in which the user added two additional
dimensions, customer and year, to the horizontal display. Quantity sold is now broken out by
customer and, in one case, by year. With an OLAP report, it is possible to drill down into the
data�that is, to further divide the data into more detail. In Figure 13-31, for example, the user
has drilled down into the San Antonio data to display all customer data for that city and to
display year sales data for Ralph Able.

In an OLAP report, it is also possible to change the order of the dimensions. Figure 13-32
shows city quantities as vertical data and ProductID quantities as horizontal data. This OLAP
report shows quantity sold by city, by product, customer, and year.

Both displays are valid and useful, depending on the user�s perspective. A product
manager might like to see product families first (ProductID) and then location data (city).

Chapter 13 Database Processing for Business Intelligence Systems 577

Transaction
Processing

Applications
Transaction
Processing

Applications
Transaction
Processing

Applications
Transaction
Processing

Applications

OLAP
ReportsOLAP

ReportsOLAP
ReportsOLAP

ReportsOLAP
ReportsOLAP

Reports

DBMS

OLAP Server

Transaction
Processing
Database

OLAP
Database

Database
Extract

Figure 13-33

Role of the OLAP Server and
OLAP Database

Data Mining

Instead of the basic calculations filtering, sorting, and grouping used in reporting applications,
data mining involves the application of sophisticated mathematical and statistical techniques
to find patterns and relationships that can be used to classify data and predict future
outcomes. As shown in Figure 13-34, data mining represents the convergence of several

Data
Mining

Artificial Intelligence
Machine Learning

Data
Management
Technology

Statistics/
Mathematics

Cheap Computer
Processing and

Storage

Sophisticated
Marketing, Finance,
and Other Business

Professionals

Huge
Databases

Figure 13-34

Convergence of Disciplines
for Data Mining

A sales manager might like to see location data first and then product data. OLAP reports
provide both perspectives, and the user can switch between them while viewing a report.

Unfortunately, all of this flexibility comes at a cost. If the database is large, doing the
necessary calculating, grouping, and sorting for such dynamic displays will require substantial
computing power. Although standard, commercial DBMS products do have the features and
functions required to create OLAP reports, they are not designed for such work. They are
designed to provide rapid response to transaction processing applications, such as those for
order entry or manufacturing planning.

Accordingly, special-purpose products called OLAP servers have been developed to
perform OLAP analyses. As shown in Figure 13-33, an OLAP server reads data from an
operational database, performs preliminary calculations, and stores the results of those
calculations in an OLAP database. For performance and security reasons, the OLAP server and
the DBMS usually run on separate computers. The OLAP server would normally be located in
the data warehouse or a data mart.

578 Part 5 Database Access Standards

The Data Mining
command tab

The Cluster Analysis
button

The connection to
SQL Server 2008
Analysis Services

The data table is in
the HSD-DW-SQL-
View-Results
worksheet

Figure 13-35

The Microsoft Excel Data
Mining Command Tab

phenomena. Data mining techniques have emerged from the statistical and mathematics
disciplines and from the artificial intelligence and machine-learning communities. In fact,
data mining terminology is an odd combination of terms used by these different disciplines.

Data mining techniques take advantage of developments for processing enormous
databases that have emerged in the past dozen or so years. Of course, all these data would not
have been generated were it not for fast and inexpensive computers, and, without such
computers, the new techniques would be impossible to compute.

Most data mining techniques are sophisticated and difficult to use. However, such
techniques are valuable to organizations, and some business professionals, especially those in
finance and marketing, have developed expertise in their use. Almost all data mining techniques
require specialized software. Popular data mining products are Enterprise Miner from SAS
Corporation, SPSS Modeler from IBM, and Insightful Miner from Insightful Corporation.

However, there is a movement to make data mining available to more users. For example,
Microsoft has created the Microsoft SQL Server 2008 Data Mining Add-ins for Office 2007�
despite the name this package also runs with Office 2010 and to date Microsoft have not
released an �updated� version for Office 2010.2 Figure 13-35 shows Excel 2010 with the Data
Mining command tab and command groups. With this add-in, data stored in Excel are sent to
SQL Server Analysis Services for processing, and the results are returned to Excel for display.

Data mining techniques fall into two broad categories: unsupervised and supervised.

Unsupervised Data Mining

When using unsupervised data mining techniques, analysts do not create a model or
hypothesis prior to beginning the analysis. Instead, the data mining technique is applied to the
data, and results are observed. After the analysis, explanations and hypotheses are created to
explain the patterns found.

One commonly used unsupervised technique is cluster analysis. With cluster analysis,
statistical techniques are used to identify groups of entities that have similar characteristics.
A common use for cluster analysis is to find customer groups in order and customer

2 For more information, and to download the Microsoft SQL Server 2008 Data Mining Add-ins for Office 2007
package, go to http://www.microsoft.com/sqlserver/2008/en/us/data-mining-addins.aspx. Note, however, that
these add-ins will not work with SQL Server Express Edition. You have to have a version of SQL Server with SQL
Server Analysis Services.

Chapter 13 Database Processing for Business Intelligence Systems 579

demographic data. For example, Heather Sweeney Designs could use cluster analysis to
determine which groups of customers are associated with the purchase of specific products.

Figure 13-36 shows part of the results of a cluster analysis using the same HSD-DW data
table in Microsoft Excel that we used to create the OLAP reports. In this case, the cluster
analysis tool was asked to generate exactly two clusters based on the ProductID and City
variables. Based on the analysis, it is clear that there are different sales patterns for the Dallas
area and the non-Dallas area (primarily San Antonio).

These findings were obtained solely by data analysis. No model was used to find these
patterns and relationships. The analysis speaks for itself. It is up to the analyst to form
hypotheses, after the fact, to explain why these results were obtained.

The Cluster Diagram
tab

The Shading Variable
is City and the cluster
with City = Dallas is
shaded

Cluster 2 is based on
City = Dallas

Figure 13-36

The Cluster Analysis Results

The Cluster Profiles
tab

Cluster 2 is based on
City = Dallas

Cluster 1 is based
on City = San Antonio

(a) The Cluster Diagram

(b) The Cluster Profiles

580 Part 5 Database Access Standards

Supervised Data Mining

With supervised data mining, data miners develop a model prior to the analysis and then
apply statistical techniques to the data to estimate parameters of the model. For example,
suppose that marketing experts at a communications company believe that the use of cell
phone weekend minutes is determined by the age of the customer and the number of months
the customer has had the cell phone account. A data mining analyst would then run an
analysis called a regression analysis to determine the coefficients of the equation of that
model. A possible result is:

CellPhoneWeekendMinutes = 12 � (17.5 * CustomerAge) � (23.7 * NumberMonthsOfAccount)

As you will learn in your statistics classes, considerable skill is required to interpret the
quality of such a model. The regression tool will create an equation; whether the equation is a
good predictor of future cell phone usage depends on t values, confidence intervals, and
related statistical techniques.

Three Popular Data Mining Techniques

Three popular data mining techniques are decision trees, logistic regression, and neural
networks. Decision tree analysis classifies customers or other entities of interest into two or
more groups according to past history. Logistic regression produces equations that offer
probabilities that particular events will occur. Common applications of logistic regression are
using donor characteristics to predict the likelihood of a donation in a given period and using
customer characteristics to predict the likelihood that customers will switch to another vendor.

Neural networks are complex statistical prediction techniques. The name is a
misnomer. Although there is some loose similarity between the structure of a neural
network and a network of biological neurons, the similarity is only superficial. Data mining
neural networks are just a technique for creating very complex mathematical functions for
making predictions.

These three techniques, like almost all data mining techniques, require specialized software.
These products, such as IBM SPSS Modeler, usually have facilities for importing data from
relational databases, and, as a database professional, you may be asked to prepare data for input
to a data mining product. Typically, this work involves joining relations together into a large flat
file and then filtering the data for particular data cases. Simple SQL is used to create such files.

Market Basket Analysis

Market basket analysis is a data mining technique that can be readily implemented with
pure SQL. What is market basket analysis?

Suppose that you run a dive shop and one day you realize that one of your salespeople is
much better at up-selling your customers. Any of your sales associates can fill a customer�s
order, but this one salesperson is especially able to sell customers items in addition to those for
which they ask. One day you ask him how he does it.

�It�s simple,� he says, �I just ask myself what is the next product they�d want to buy. If someone
buys a dive computer, I don�t try to sell her fins. If she�s buying a dive computer, she�s already a diver,
and she already has fins. But, look, these dive computer displays are hard to read. A better mask
makes it easier to read the display and get the full benefits from the dive computer.�

A market basket analysis is a data mining technique for determining such patterns.
A market basket analysis shows the products that customers tend to purchase at the same
time. Several different statistical techniques can be used to generate a market basket analysis.
Here we will discuss a technique that involves conditional probabilities.

Figure 13-37 shows hypothetical data from 1,000 transactions at a dive shop. The first
row of numbers under each column is the total number of transactions that include the
product in that column. For example, the 270 in the first row of Mask means that 270 of the
1,000 transactions include the purchase of a mask. The 120 under Dive Computer means that
120 of the 1,000 purchased transactions included a dive computer.

Chapter 13 Database Processing for Business Intelligence Systems 581

We can use the numbers in the first row to estimate the probability that a customer will
purchase an item. Because 270 out of 1,000 transactions included a mask, we can estimate the
likelihood that a customer will buy a mask to be 270/1,000, or .27. Similarly, the likelihood of a
tank purchase is 200/1,000, or .2, and that for fins is 280/1,000, or .28.

The remaining rows in this table show the occurrences of transactions that involve
two items. For example, the last column indicates that 50 transactions included both a dive
computer and a mask, 30 transactions included a dive computer and a tank, 20 included a dive
computer and fins, 10 included a dive computer and weights, 5 included a dive computer with
another dive computer (meaning the customer bought two dive computers), and 5
transactions had a dive computer and no other product.

These data are interesting, but we can refine the analysis by computing additional factors.
Marketing professionals define support as the probability that two items will be purchased
together. From these data, the support for fins and mask is 150 out of 1,000, or .15.

Confidence is defined as the probability of buying one product given that a customer
purchased another product. The confidence of fins, given that the customer has already
purchased a mask, is the number of purchases of fins and masks out of the number of
purchases of masks. Thus, in this example, the confidence is 150 out of 270, or .55556. The
confidence that a customer purchases a tank, given that the customer has purchased fins, is
40 out of 280, or .14286.

Lift is defined as the ratio of confidence divided by the base probability of an item
purchase. The lift for fins given a mask is the probability that a customer buys fins, given the
customer has purchased a mask, divided by the overall probability that the customer buys fins.
If the lift is greater than 1.0, then the probability of buying fins goes up when a customer buys
a mask; if the lift is less than 1.0, the probability of buying fins goes down when a customer
buys a mask.

For the data in Figure 13-37, the lift for fins given a mask purchase is .55556/.28, or 1.98.
This means that when someone purchases a mask, the likelihood he or she will also purchase
fins almost doubles. The lift for fins given a dive computer purchase is 20/120 (the confidence
of fins, given a dive computer) divided by .28. The probability that someone buys fins (280 of
the 1,000 transaction involved fins) is 20/120 (or .16667), and .16667/.28 is .59524. Therefore,
the lift for fins given a dive computer is just under .6, meaning that when a customer buys a
dive computer, the likelihood that he or she will buy fins decreases.

Surprisingly, as shown in the last line of Figure 13-37, lift is symmetric. If the lift of fins
given mask is 1.98, then the lift of mask given fins is also 1.98.

1,000
Transactions

Mask

270

Tank Fins Weights Dive
Computer

200 280 130 120

20Mask 20 150 20 50

20Tank 80 40 30 30

150Fins 40 10 60 20

20Weights 30 60 10 10

50Dive Computer 30 20 10 5

10No Additional Product

Support = P (A & B) Example: P (Fins & Mask) = 150 / 1000 = .15
Confidence = P (A | B) Example: P (Fins | Mask) = 150 / 270 = .55556
Lift = P (A | B) / P (A) Example: P (Fins | Mask) / P (Fins) = .55556 / .28 = 1.98

Note: P (Mask | Fins) / P (Mask) = 150 / 280 / .27 = 1.98

� � � 5

Figure 13-37

Market Basket Example

582 Part 5 Database Access Standards

Figure 13-38

SQL Statement for Creating
a Two-Item Market Basket

Using SQL for Market Basket Analysis

All of the major data mining products have features and functions to perform market basket
analysis. These products, however, are expensive; you can perform a market basket analysis
with basic SQL, if necessary.

The key SQL statement is shown in Figure 13-38. That SQL statement processes a relation
named TRANS_DATA that stores line-item data. Here, suppose that TRANS_DATA has a
column TransactionID that stores an identifier of a transaction, and ItemID that stores
the identifier of an item in that transaction. A given transaction may have multiple items, so
the key of TRANS_DATA is (TransactionID, ItemID). TRANS_DATA has other data, such as
ItemPrice, Qty, and ExtendedPrice, but those data are unnecessary for a market basket
analysis, and we ignore them here.

The SQL statement in Figure 13-38 creates a view of all items that have appeared together
in two or more transactions. You can then compute support in a view using the following
statement:

/* *** SQL-CREATE-VIEW-CH13-02 *** */

CREATE VIEW ItemSupportView AS

SELECT FirstItem, SecondItem, COUNT(*) as SupportCount

FROM TwoItemBasketView

GROUP BY FirstItem, SecondItem;

This view produces the count of transactions in which each pair of items appears. You can
divide the SupportCount in each row by the total number of transactions to obtain support for
the two items. You can then use standard SQL to compute confidence and lift for each pair of
items. See Project Questions 13.60 and 13.61.

Business intelligence (BI) systems assist managers and other
professionals in the analysis of current and past activities and in
the prediction of future events. BI applications are of two major
types: reporting applications and data mining applications.
Reporting applications make elementary calculations on data;
data mining applications use sophisticated mathematical and
statistical techniques.

BI applications obtain data from three sources: operational
databases, extracts of operational databases, and purchased
data. BI systems sometimes have their own DBMS, which may
or may not be the operational DBMS. Characteristics of
reporting and data mining applications are listed in Figure 13-2.

Direct reading of operational databases is not feasible
for all but the smallest and simplest BI applications and
databases for several reasons. Querying operational data can
unacceptably slow the performance of operational systems,

operational data have problems that limit their usefulness
for BI applications, and BI system creation and maintenance
requires programs, facilities, and expertise that are normally
not available for an operational database.

Problems with operational data are listed in Figure 13-4.
Because of these problems with operational data, many organi-
zations have chosen to create and staff data warehouses and
data marts. Data warehouses extract and clean operational
data and store the revised data in data warehouse databases.
Organizations may also purchase and manage data obtained
from data vendors. Data warehouses maintain metadata that
describes the source, format, assumptions, and constraints
about the data they contain. A data mart is a collection of data
that is smaller than that held in a data warehouse and that
addresses a particular component or functional area of the
business. In Figure 13-6, the data warehouse distributes data to

Chapter 13 Database Processing for Business Intelligence Systems 583

three smaller data marts. Each data mart services the needs of
a different aspect of the business.

Operational databases and dimensional databases
have different characteristics, as shown in Figure 13-7.
Dimensional databases use a star schema with a fully
normalized fact table that connects to dimension tables that
may be non-normalized. Dimensional databases must deal
with slowly changing dimensions, and therefore a time
dimension is important in a dimensional database. Fact
tables hold measures of interest, and dimension tables hold
attribute values used in queries. The star schema can be
extended with additional fact tables, dimension tables, and
conformed dimensions.

The purpose of a reporting system is to create meaningful
information from disparate data sources and to deliver that
information to the proper users on a timely basis. Reports are
produced by sorting, filtering, grouping, and making simple
calculations on the data. RFM analysis is a typical reporting
application. Customers are grouped and classified according
to how recently they have placed an order (R), how frequently
they order (F), and how much money (M) they spend on
orders. The result of an RFM analysis is three scores. In a
typical analysis, the scores range from 1 to 5. An RFM score
of {1 1 4} indicates that the customer has purchased
recently, purchases frequently, but does not purchase large-
dollar items. An RFM report can be produced using simple
SQL. Figures 13-21 and 13-22 show stored procedures for
computing these scores.

For the RFM data to add value to the organization, an
RFM report must be prepared and delivered to the appropriate
users. The components of a modern reporting system are
shown in Figure 13-24. Reporting systems maintain metadata
that supports the three basic report functions: authoring,
managing, and delivering reports. The metadata includes
information about users, user groups, and reports and data

about which users are to receive which reports, in what
medium, and when. As shown in Figure 13-24, reports vary by
type, media, and mode.

OnLine Analytical Processing (OLAP) is a generic category
of reporting applications that enable users to dynamically
restructure reports. A measure is the data item of interest. A
dimension is a characteristic of a measure. An OLAP cube is an
arrangement of measures and dimensions. With OLAP, users
can drill down and exchange the order of dimensions. Because
of the high processing requirements, some organizations desig-
nate separate computers to function as OLAP servers.

Data mining is the application of mathematical and
statistical techniques to find patterns and relationships and
to classify and predict. Data mining has arisen in recent years
because of the confluence of factors shown in Figure 13-34.

With unsupervised data mining, analysts do not create
models or hypotheses prior to the analysis. Results are
explained after the analysis has been performed. With
supervised techniques, hypotheses are formed and tested
before the analysis. Three popular data mining techniques
are decision trees, logistic regression, and neural networks.

Although most data mining techniques require special-
purpose software, one data mining technique, market basket
analysis, can be performed by using only SQL. According to
market basket analysis terminology, the support for two
products is the frequency that they appear together in a
transaction. The confidence is the conditional probability
that one item will be purchased given that another item has
already been purchased. Lift is confidence divided by the
base probability that an item will be purchased.

An SQL join statement can be written to create a view
showing products that have appeared together in a
transaction. That view can then be processed to compute
support, and the support view can then be processed to
compute confidence and lift.

alert
business intelligence (BI) system
click-stream data
cluster analysis
confidence
conformed dimension
curse of dimensionality
data mart
data mining application
data warehouse
data warehouse metadata database
date dimension
decision tree analysis
digital dashboard
dimension table
dimensional database

dirty data
drill down
dynamic report
enterprise data warehouse (EDW) architecture
Extract, Transform, and Load (ETL) system
fact table
lift
logistic regression
market basket analysis
measure
neural network
nonintegrated data
OLAP cube
OLAP report
OLAP server
OnLine Analytical Processing (OLAP)

584 Part 5 Database Access Standards

13.1 What are BI systems?

13.2 How do BI systems differ from transaction processing systems?

13.3 Name and describe the two main categories of BI systems.

13.4 What are the three sources of data for BI systems?

13.5 Explain the difference in processing between reporting and data mining applications.

13.6 Describe three reasons why direct reading of operational data is not feasible for BI
applications.

13.7 Summarize the problems with operational databases that limit their usefulness for BI
applications.

13.8 What are dirty data? How do dirty data arise?

13.9 Why is server time not useful for Web-based order entry BI applications?

13.10 What is click-stream data? How is it used in BI applications?

13.11 Why are data warehouses necessary?

13.12 Why do the authors describe the data in Figure 13-5 as �frightening�?

13.13 Give examples of data warehouse metadata.

13.14 Explain the difference between a data warehouse and a data mart. Use the analogy of a
supply chain.

13.15 What is the enterprise data warehouse (EDW) architecture?

13.16 Describe the differences between operational databases and dimensional databases.

13.17 What is a star schema?

13.18 What is a fact table? What type of data are stored in fact tables?

13.19 What is a measure?

13.20 What is a dimension table? What type of data are stored in dimension tables?

13.21 What is a slowly changing dimension?

13.22 Why is the time dimension important in a dimensional model?

13.23 What is a conformed dimension?

13.24 State the purpose of a reporting system.

online transaction processing (OLTP)
system

operational system
PivotTable
pull report
push report
query report
regression analysis
report authoring
report delivery
report management
reporting system

RFM analysis
slowly changing dimension
SQL TOP {PercentageNumber} PERCENT

syntax
star schema
static report
supervised data mining
support
time dimension
transactional system
unsupervised data mining
Web portal

Chapter 13 Database Processing for Business Intelligence Systems 585

13.25 What do the letters RFM stand for in RFM analysis?

13.26 Describe, in general terms, how to perform an RFM analysis.

13.27 Explain the characteristics of customers having the following RFM scores: {1 1 5},
{1 5 1}, {5 5 5}, {2 5 5}, {5 1 2}, {1 1 3}.

13.28 In the RFM analysis in Figures 13-20 through 13-21, what role does the CUSTOMER_RFM
table serve? What role does the CUSTOMER_R table serve?

13.29 Explain the purpose of the following SQL statement from Figure 13-22:

INSERT INTO CUSTOMER_R (CustomerID, MostRecentOrderDate)

(SELECT CustomerID, MAX(TransactionDate)

FROM CUSTOMER_SALES

GROUP BY CustomerID);

13.30 Explain the purpose and operation of the following SQL statement from Figure 13-22:

UPDATE CUSTOMER_R

SET R_Score = 1

WHERE CustomerID IN

(SELECT TOP 20 PERCENT CustomerID

FROM CUSTOMER_R

ORDER BY MostRecentOrderDate DESC

GROUP BY CustomerID);

13.31 Explain the purpose and operation of the following SQL statement from Figure 13-22:

UPDATE CUSTOMER_R

SET R_Score = 2

WHERE CustomerID IN

(SELECT TOP 25 PERCENT CustomerID

FROM CUSTOMER_R

WHERE R-Score IS NULL

ORDER BY MostRecentOrderDate DESC);

13.32 Write an SQL statement to query the CUSTOMER_RFM table and display the
CustomerID values for all customers having an RFM score of {5 1 1} or {4 1 1}. Why are
these customers important?

13.33 Name and describe the purpose of the major components of a reporting system.

13.34 What are the major functions of a reporting system?

13.35 Summarize the types of reports described in this chapter.

13.36 Describe the various media used to deliver reports.

13.37 Summarize the modes of reports described in this chapter.

13.38 Name three tasks of report authoring.

13.39 Describe the major tasks in report management. Explain the role of report metadata in
report management.

13.40 Describe the major tasks in report delivery.

13.41 What does OLAP stand for?

586 Part 5 Database Access Standards

13.42 What is the distinguishing characteristic of OLAP reports?

13.43 Define measure, dimension, and cube.

13.44 Give an example, other than one in this text, of a measure, two dimensions related to
your measure, and a cube.

13.45 What is drill down?

13.46 Explain two ways that the OLAP report in Figure 13-31 differs from that in Figure 13-30.

13.47 What is the purpose of an OLAP server?

13.48 Define data mining.

13.49 Explain the difference between unsupervised and supervised data mining. Give
examples, other than one in this text, of unsupervised and supervised data mining.

13.50 For the HSD-DW cluster analysis results shown in Figure 13-36, give an explanation for
the two clusters. Use the report data and data descriptions for the HSD-DW data in the
text to describe which cities and products are primarily associated with each cluster.
[Hint: Study the City and ProductNumber results in Figure 13-36(b).]

13.51 Name three popular data mining techniques. What is the purpose of logistic
regression? What is the purpose of a neural network?

Use the data in Figure 13-37 to answer Review Questions 13.52 through 13.57.

13.52 What is the probability that someone will buy a tank?

13.53 What is the support for buying a tank and fins? What is the support for buying
two tanks?

13.54 What is the confidence for fins given that a tank has been purchased?

13.55 What is the confidence for a second tank given that a tank has been purchased?

13.56 What is the lift for fins given that a tank has been purchased?

13.57 What is the lift for a second tank given that a tank has been purchased?

13.58 Using the code in Figure 13-22 as an example, write the procedures Calculate_F and
Calculate_M that are called from the Calculate_RFM stored procedure in Figure 13-21.

For questions 13.59 through 13.61, use SQL Server 2008 R2, Oracle Database 11g, or
MySQL 5.5.

13.59 Write a stored procedure to calculate support. Use the TRANS_DATA table described
on page 582 and the TwoItemBasketView view shown in Figure 13-38. Place your
results in a view named SupportView.

13.60 Write a stored procedure to calculate confidence. Use the TRANS_DATA table
described on page 582 and the SupportView. Place your results in a view named
ConfidenceView.

13.61 Write a stored procedure to compute lift. Use the TRANS_DATA table described on
page 582 to compute unconditional probabilities and use ConfidenceView for confidence.

13.62 Based on the discussion of the Heather Sweeney Designs operational database (HSD)
and dimensional database (HSD-DW) in the text, answer the following questions.

Chapter 13 Database Processing for Business Intelligence Systems 587

A. Using the SQL statements shown in Figure 13-12, create the HSD-DW database
in a DBMS.

B. What possible transformations of data where made before HSD-DW was loaded
with data? List some possible transformations, showing the original format of
the HSD data and how they appear in the HSD-DW database.

C. Write the complete set of SQL statements necessary to load the transformed
data into the HSD-DW database.

D. Populate the HSD-DW database, using the SQL statements you wrote to answer
part C.

E. Figure 13-39 shows the SQL code to create the SALES_FOR_RFM fact table
shown in Figure 13-17. Using those statements, add the SALES_FOR_RFM table
to your HSD-DW database.

F. What possible transformations of data are necessary to load the SALES_FOR_RFM
table? List some possible transformations, showing the original format of the HSD
data and how they appear in the HSD-DW database.

G. Write an SQL query similar to the one shown on page 560 that uses the total
dollar amount of each day�s product sales as the measure (instead of the number
of products sold each day).

H. Write the SQL view equivalent of the SQL query you wrote to answer part G.

I. Create the SQL view you wrote to answer part H in your HSD-DW database.

J. Create an Microsoft Excel 2010 workbook named HSD-DW-BI-Exercises.xlsx.

K. Using either the results of your SQL query from part H (copy the results of the
query into a worksheet in the HSD-DW-BI-Exercises.xlsx workbook and then
format this range as a worksheet table) or your SQL view from part K (create an
Excel data connection to the view), create an OLAP report similar to the OLAP
report shown in Figure 13-32. (Hint: If you need help with the needed Microsoft
Excel actions, search in the Microsoft Excel help system for more information.)

L. Heather Sweeney is interested in the effects of payment type on sales in dollars.
1. Modify the design of the HSD-DW dimensional database to include a

PAYMENT_TYPE dimension table.
2. Modify the HSD-DW database to include the PAYMENT_TYPE dimension

table.
Figure 13-39

The HSD-DW
SALES_FOR_RFM SQL
Statements

588 Part 5 Database Access Standards

Assume that Marcia uses a database that includes the following tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,

ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

(The SERVICE table, included above for completeness, is not needed for these exercises.)

A. Describe how an RFM analysis could be useful in Marcia�s business.

B. Using the four tables in Figure 13-20, write a set of stored procedures to compute an
RFM analysis on Marcia�s data.

C. Show SQL to process the table generated in your answer to B to display the names and
e-mail data for all customers having an RFM score of {5 1 1} or {4 1 1}.

D. Describe, in general terms, how a market basket analysis can be used on the items in a
dry cleaning order.

E. Using the instructions in Project Questions 13.59 through 13.61, write stored procedures
to perform a market basket analysis on the items in a dry cleaning order.

3. What data will be used to load the PAYMENT_TYPE dimension table?
What data will be used to load foreign key data into the PRODUCT_SALES
fact table? Write the complete set of SQL statements necessary to load
these data.

4. Populate the PAYMENT_TYPE and PRODUCT_SALES tables, using the SQL
statements you wrote to answer part 3.

5. Create the SQL queries or SQL views needed to incorporate the PaymentType
attribute.

6. Create a Microsoft Excel 2010 OLAP report to show the effect of payment
type on product sales in dollars.

13.63 The following questions require that you have completed Project Question 13.62 and
that you have a version of SQL Server 2005, SQL Server 2008, or SQL Server 2008 R2
that includes SQL Server Analysis Services.

A. Download and install the correct version of the Microsoft SQL Server Data
Mining add-ins for Microsoft Office 2010 for your version of SQL Server.

B. Use the data mining add-in in Microsoft Excel 2010 to do a cluster analysis of the
HSD-DW data results from your SQL query results from question 13.62(I) or the
SQL view from questions 13.62(J) and 13.62(K). Use only the City and Product-
Number attributes in your analysis. Interpret you results.

Chapter 13 Database Processing for Business Intelligence Systems 589

The tables we have used for Morgan Importing have no natural application for either
RFM or market basket analysis, at least not to Morgan. However, consider the
following three tables from the standpoint of a SHIPPER:

SHIPMENT (ShipmentID, ShipperName, ShipperInvoiceNumber, Origin, Destination)
SHIPMENT_ITEM (ShipmentID, PurchaseItemID, InsuredValue)
SHIPPER (ShipperName, Phone, Fax, Email, Contact)

If we substitute CUSTOMER for SHIPPER, we can create the structure of a database
that would record customers and shipments and items they�ve shipped with a specific
SHIPPER. The modified tables are:

CUSTOMER (CustomerID, CustomerName, Phone, Fax, Email, Contact)
SHIPMENT (ShipperInvoiceNumber, CustomerID, ShipDate, Origin, Destination,

Subtotal, Tax, Total)
SHIPMENT_ITEM (ShipperInvoiceNumber, ShipmentItemNumber, ShippingCost)

where CustomerID is a surrogate key for the customer data. Use these revised tables
to answer the following questions.

A. Describe how an RFM analysis could be useful to the shipper.

B. Using the four tables in Figure 13-20, write a set of stored procedures to compute an
RFM analysis for shipments.

C. Show SQL to process the table generated in your answer to B to display the names and
e-mail data for all customers having an RFM score of {5 1 1} or {4 1 1}.

D. Describe in general terms how a market basket analysis can be used on the items in a
shipment.

E. Using the instructions in questions 13.59 through 13.61, write stored procedures to
perform a market basket analysis on the items in a shipment.

590

Complete versions of these appendices are available on this textbook�s, Web site.
Go to www.pearsonhighered.com/kroenke and select the Companion Website for this book.

Appendix A

Getting Started with Microsoft Access 2010

Appendix B

Getting Started with Systems Analysis and Design

Appendix C

E-R Diagrams and the IDEF1X Standard

Appendix D

E-R Diagrams and the UML Standard

Appendix E

Getting Started with the MySQL Workbench Data Modeling Tools

Appendix F

Getting Started with Microsoft Visio 2010

Appendix G

The Semantic Object Model

Appendix H

Data Structures for Database Processing

Appendix I

Getting Started with Web Servers, PHP, and the Eclipse PDT

O nline Appendices

591

Web Links

News
CNET News.com: www.news.com
New York Times: www.nytimes.com/pages/technology
Wired: www.wired.com
ZDNet: www.zdnet.com

Data Mining
KDnuggets: www.kdnuggets.com
Google Dating Mining Directory: directory.google.com/Top/Computers/

Software/Databases/Data_Warehousing/Decision_Support_Tools/
SAS Enterprise Miner: www.sas.com/technologies/analytics/datamining/

miner
IBM SPSS Modeler: www-01.ibm.com/software/analytics/spss/products/

modeler/
Microsoft SQL Server 2008 Data Mining Add-Ins for Office 2007: www.

microsoft.com/sqlserver/2008/en/us/data-mining-addins.aspx
Microsoft PowerPivot: www.powerpivot.com

DBMS and Other Vendors
Oracle Database 11g: www.oracle.com/database/index.html
Microsoft SQL Server 2008 R2: www.microsoft.com/sqlserver/en/us/

default.aspx
Oracle MySQL 5.5: www.mysql.com
Eclipse PDT: www.eclipse.org/pdt/
PHP: http://us.php.net
NetBeans: www.netbeans.org/index.html
Microsoft Express Editions: www.microsoft.com/Express/

Standards
JDBC: http://java.sun.com/products/jdbc and http://en.wikipedia.org/

wiki/JDBC
ODBC: http://en.wikipedia.org/wiki/ODBC
Worldwide Web Consortium (W3C): www.w3.org
XML: www.w3.org/XML, www.xml.org, and http://en.wikipedia.org/

wiki/XML

Classic Articles and References

ANSI X3. American National Standard for Information Systems�
Database Language SQL. ANSI, 1992.

Bruce, T. Designing Quality Databases with IDEF1X Information Models.
New York: Dorset House, 1992.

Chamberlin, D. D., et al. �SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control.� IBM Journal of Research
and Development 20 (November 1976).

Chen, P. �The Entity-Relationship Model: Toward a Unified Model of
Data.� ACM Transactions on Database Systems 1 (March 1976).

Chen, P. Entity-Relationship Approach to Information Modeling. E-R
Institute, 1981.

Coar, K. A. L. Apache Server for Dummies. Foster City, CA: IDG Books, 1997.
Codd, E. F. �A Relational Model of Data for Large Shared Data Banks.�

Communications of the ACM 25 (February 1970).
Codd, E. F. �Extending the Relational Model to Capture More Meaning.�

Transactions on Database Systems 4 (December 1979).

B ibliography

Date, C. J. An Introduction to Database Systems, 8th ed. Upper Saddle
River, NJ: Pearson Education, 2003.

Embley, D. W. �NFQL: The Natural Forms Query Language.� ACM
Transactions on Database Systems 14 (June 1989).

Eswaran, K. P., J. N. Gray, R. A. Lorie, and I. L. Traiger. �The Notion of
Consistency and Predicate Locks in a Database System.� Communi-
cations of the ACM 19 (November 1976).

Fagin, R. �A Normal Form for Relational Databases That Is Based on
Domains and Keys.� Transactions on Database Systems 6 (September
1981).

Fagin, R. �Multivalued Dependencies and a New Normal Form for
Relational Databases.� Transactions on Database Systems 2
(September 1977).

Hammer, M., and D. McLeod. �Database Description with SDM: A
Semantic Database Model.� Transactions on Database Systems 6
(September 1981).

Keuffel, W. �Battle of the Modeling Techniques.� DBMS Magazine
(August 1996).

Kroenke, D. �Waxing Semantic: An Interview.� DBMS Magazine
(September 1994).

Moriarty, T. �Business Rule Analysis.� Database Programming and
Design (April 1993).

Muller, R. J. Database Design for Smarties: Using UML for Data Modeling.
San Francisco: Morgan Kaufmann, 1999.

Nijssen, G., and T. Halpin. Conceptual Schema and Relational Database
Design: A Fact-Oriented Approach. Upper Saddle River, NJ:
Prentice Hall, 1989.

Nolan, R. Managing the Data Resource Function. St. Paul: West
Publishing, 1974.

Ratliff, C. Wayne. �dStory: How I Really Developed dBASE.� Data Based
Advisor (March 1991).

Rogers, D. �Manage Data with Modeling Tools.� VB Tech Journal
(December 1996).

Ross, R. Principles of the Business Rule Approach. Boston: Addison-
Wesley, 2003.

Zloof, M. M. �Query by Example.� Proceedings of the National Computer
Conference, AFIPS 44 (May 1975).

Useful Books

Berry, M., and G. Linoff. Data Mining Techniques for Marketing, Sales,
and Customer Support. New York: Wiley, 1997.

Celko, J. SQL for Smarties, 4th ed. San Francisco: Morgan Kaufmann, 2011.
Celko, J. SQL Puzzles and Answers. San Francisco: Morgan Kaufmann,

1997.
Fields, D. K., M. A. Kolb, and S. Bayern. Web Development with JavaServer

Pages, 2nd ed. San Francisco: Morgan Kaufmann, 2001.
Harold, E. R. XML: Extensible Markup Language. New York: IDG Books

Worldwide, 1998.
Kay, M. XSLT: Programmers Reference, 2nd ed. Indianapolis: Wiley, 2003.
Loney, K. Oracle Database 11g: The Complete Reference. Berkeley,

CA: McGraw-Hill, 2009.
Muench, S. Building Oracle XML Applications. Sebastopol, CA: O�Reilly, 2000.
Muller, R. J. Database Design for Smarties: Using UML for Data Modeling.

San Francisco: Morgan Kaufmann, 1999.
Mundy, J., W. Thornthwaite, and R. Kimball. The Microsoft Data Warehouse

Toolkit. Indianapolis, IN: Wiley, 2006.
Pyle, D. Data Preparation for Data Mining. San Francisco: Morgan

Kaufmann, 1999.

592

Although this section defines many of the key terms in the book, it is not meant to be exhaustive. Terms related to a specific DBMS product, for
example, should be referenced in the chapter dedicated to that product. These references can be found in the index. Similarly, SQL concepts are
included, but details of SQL commands and syntax should be referenced in the chapter that discusses those details.

ADO.NET DataSet A representation of data from a database that is
stored in computer memory for immediate use. It is distinct and
disconnected from the data in the database.

ADO.NET Entity Framework An extension to ADO.NET that
supports the Microsoft EDM. See Entity Data Model (EDM).

After image A record of a database entity (normally a row or a page)
after a change. Used in recovery to perform rollforwards.

Alert In reporting systems, a type of report that is triggered by an
event.

Alternate key In entity-relationship models, a synonym for candi-
date key.

American National Standards Institute (ANSI) The American
standards organization that creates and publishes the SQL standards.
See Structured Query Language (SQL).

AMP An abbreviation for Apache, MySQL, and PHP/Pearl/Python. See
Apache Web Server, PHP.

Anomaly An undesirable consequence of a data modification. The term
is used in normalization discussions. With an insertion anomaly,
facts about two or more different themes must be added to a single
row of a relation. With a deletion anomaly, facts about two or more
themes are lost when a single row is deleted.

Apache Tomcat An application server that works in conjunction
with the Apache Web server. See Apache Web server.

Apache Web server A popular Web server that runs on most
operating systems, particularly Windows and Linux.

API See application program interface (API).
Applet A compiled, machine-independent Java bytecode program that

is run by the Java virtual machine embedded in a browser.
Application A business computer system that processes a portion of a

database to meet a user�s information needs. It consists of menus,
forms, reports, queries, Web pages, and application programs.

Application program A custom-developed program for processing
a database. It can be written in a standard procedural language,
such as Java, C#, Visual Basic .NET, or C++, or in a language unique
to the DBMS, such as PL/SQL or T-SQL.

Application program interface (API) A set of program procedures or
functions that can be called to invoke a set of services. The API
includes the names of the procedures and functions and a description
of the name, purpose, and data type of parameters to be provided. For
example, a DBMS product can provide a library of functions to call for
database services. The names of procedures and their parameters
constitute the API for that library.

Archetype/version object A two-object structure that represents
multiple versions of a standardized item; for example, a SOFTWARE-
PRODUCT (the archetype) and PRODUCT-RELEASE (the version of
the archetype). The identifier of the version always includes the iden-
tifier of the archetype object.

ASP See Active Server Pages (ASP).
ASP.NET The updated version of ASP for the .NET Framework. See

Active Server Pages (ASP), .NET Framework.

G lossary

.NET Framework Microsoft�s comprehensive application development
platform. It includes such components as ADO.NET and ASP.NET.

/* and */ The symbols used to indicate a comment line in an SQL script in
SQL Server 2008 R2, Oracle Database 11g, and MySQL 5.5.

<?php and ?> The symbols used to indicate blocks of PHP code in
Web pages.

Abstraction A generalization of something that hides some unimpor-
tant details but enables work with a wider class of types. A recordset
is an abstraction of a relation. A rowset is an abstraction of a
recordset.

ACID transaction ACID stands for �atomic, consistent, isolated, and
durable.� An atomic transaction is one in which all of the database
changes are committed as a unit; either all are done, or none are. A
consistent transaction is one in which all actions are taken against
rows in the same logical state. An isolated transaction is one that is
protected from changes by other users. A durable transaction is one
that is permanent after it is committed to the database, regardless of
subsequent failures. There are different levels of consistency and isola-
tion. See also transaction-level consistency, statement-level consis-
tency, and transaction isolation level.

Active Data Objects (ADO) An implementation of OLE DB that is
accessible via object- and non-object-oriented languages. It is used
primarily as a scripting-language (JScript, VBScript) interface to
OLE DB.

Active repository Parts of the systems development processes
where metadata is created automatically as the system compo-
nents are created. See data repository.

Active Server Pages (ASP) A file containing markup language,
server script, and client script that is processed by the Active Server
Processor in Microsoft Internet Information Server (IIS).

Ad-hoc query A query created by a user as and when needed, as
compared to a predefined and stored query.

ADO.NET A data access technology that is part of Microsoft�s .NET
initiative. ADO.NET provides the capabilities of ADO, but with a
different object structure. ADO.NET also includes new capabili-
ties for the processing of datasets. See also ADO.NET DataSet.

ADO.NET Command object The ADO.NET object that mimics an
SQL statement or stored procedure. It is run against the data in
the DataSet.

ADO.NET Connection object The ADO.NET object responsible for
connecting to a data source.

ADO.NET Data Provider A class library that provides ADO.NET
services. There are Data Providers for ODBC, OLE.DB, SQL Server,
and EDM applications.

ADO.NET DataAdapter object The ADO.NET object that is the
connector between a Connection object and a DataSet object. It
uses four command objects: Select Command, InsertCommand,
UpdateCommand, and DeleteCommand.

ADO.NET DataReader An ADO.NET object that is similar to a
read-only, forward-only cursor, and which can only be used by an
ADO.NET Command object�s Execute method.

Glossary 593

Association object An object that represents the combination of at
least two other objects and that contains data about that combina-
tion. It is often used in contracting and assignment applications.

Association pattern In database design, a table pattern where an
intersection table contains additional attributes beyond the attrib-
utes that make up the composite primary key.

Asterisk (*) wildcard character A character used in Access 2007
queries to represent one or more unspecified characters. See SQL
percent sign (%) wildcard character.

Atomic A set of actions that is completed as a unit. Either all of the
actions are completed, or none of them are.

Atomic transaction A group of logically related database operations
that is performed as a unit. Either all of the operations are
performed, or none of them are.

Attribute (1) A column of a relation; also called a column, field, or data
item. (2) A property in an entity.

Authorization rules A set of processing permissions that describes
which users or user groups can take particular actions against
particular portions of the database.

AUTO_INCREMENT attribute In MySQL, the data attribute used
to create surrogate keys.

AutoNumber In Access 2010, the data type used to create surrogate
keys.

AVG In SQL, a function that averages up a set of numbers. See SQL
built-in functions.

Base Class Library A component of the Microsoft .NET Frame-
work that provides support for the programming languages used
with the .NET Framework.

Base domain In IDEF1X, a domain definition that stands alone. Other
domains may be defined as subsets of a base domain.

Before image A record of a database entity (normally a row or a
page) before a change. Used in recovery to perform rollback.

BI See business intelligence (BI) systems.
Binary relationship A relationship between exactly two entities or

tables.
Boyce-Codd normal form (BCNF) A relation in which every

determinant is a candidate key.
Branch A subelement of a tree that may consist of one or many nodes.
Buffer An area of memory used to hold data. For a read, data are read

from a storage device into a buffer; for a write, data are written
from the buffer to storage.

Business intelligence (BI) systems Information systems that assist
managers and other professionals in the analysis of current and past
activities and in the prediction of future events. Two major categories
of BI systems are reporting systems and data mining systems.

Bytecode interpreter For an applications written in Java, the
program used by a specific operating system to execute the appli-
cation. Bytecode interpreters are known as Java virtual machines.
See Java virtual machine.

Candidate key An attribute or group of attributes that identifies a
unique row in a relation. One of the candidate keys is chosen to be
the primary key.

Cardinality In a binary relationship, the maximum or minimum
number of elements allowed on each side of the relationship. The
maximum cardinality can be 1:1, 1:N, N:1, or N:M. The minimum
cardinality may be optional-optional, optional-mandatory,
mandatory-optional, or mandatory-mandatory.

Cascading deletion A referential integrity action specifying that when
a parent row is deleted, related child rows should be deleted as well.

Cascading update A referential integrity action specifying that
when the key of a parent row is updated, the foreign keys of
matching child rows should be updated as well.

Casual relationship A relationship that is created without a foreign
key constraint. This is useful if the tables are missing data values.

Categorization cluster In IDEF1X, a group of mutually exclusive
category entities. See also complete category cluster.

Category entity In IDEF1X, a subtype that belongs to a category
cluster.

CHECK constraint In SQL, a constraint that specifies what data val-
ues are allowed in a particular column.

Checkpoint The point of synchronization between a database and a
transaction log. All buffers are force-written to external storage.
The term is sometimes used in other ways by DBMS vendors.

Child An entity or row on the many side of a one-to-many relationship.
Class attributes In the uniform modeling language (UML), attrib-

utes that pertain to the class of all entities of a given type.
Click-stream data Data about a customer�s clicking behavior on a

Web page; such data are often analyzed by e-commerce companies.
Cluster analysis A form of unsupervised data mining in which

statistical techniques identify groups of entities that have similar
characteristics.

Collection An object that contains a group of other objects. Examples
are the ADO Names, Errors, and Parameters collections.

Column A logical group of bytes in a row of a relation or a table. The
meaning of a column is the same for every row of the relation.

COM See Component Object Model (COM).
Command line utility A character user interface program that

presents a command prompt to the user. The user then types a
command and presses the Enter key for execution. Each major
DBMS product has a command line utility.

Commit A command issued to the DBMS that makes database modifi-
cations permanent. After the command has been processed, data-
base changes are written to the database and to a log so that they will
survive system crashes and other failures. A commit is usually used
at the end of an atomic transaction. Contrast this with rollback.

Common Language Runtime (CLT) A component of the Microsoft
.NET Framework that provides support for the programming
languages used with the .NET Framework.

Complete category cluster A category cluster in which all possi-
ble category entities are defined. The generic entity must also be
one of the category entities.

Component Object Model (COM) A Microsoft specification for
the development of object-oriented programs.

Composite determinant In functional dependencies, a determi-
nant consisting of two or more attributes.

Composite identifier In data modeling, an identifier consisting of
two or more attributes.

Composite key In database design, a key with two or more attributes.
Composite primary key In database design and actual databases, a

primary key with two or more attributes.
Computed value A column of a table that is computed from other

column values. Values are not stored, but are computed when they
are to be displayed.

Concurrency A condition in which two or more transactions are
processed against the database at the same time. In a single CPU
system, the changes are interleaved; in a multi-CPU system, the
transactions may be processed simultaneously, and the changes on
the database server are interleaved.

Concurrent processing The sharing of the CPU among several
transactions. The CPU is allocated to each transaction in a round
robin or in some other fashion for a certain period of time. Opera-
tions are performed so quickly that they appear to users to be
simultaneous. In local area networks (LANs) and other distrib-
uted applications, concurrent processing is used to refer to the
(possibly simultaneous) processing of applications on multiple
computers.

Concurrent transactions Two transactions that are being
processed at the same time.

Concurrent update problem An error condition in which one
user�s data changes are overwritten by another user�s data
changes. Same as lost update problem.

Confidence In market basket analysis, the probability of a customer�s
buying one product, given that the customer has purchased
another product.

Conformed dimension In a dimensional database design, a dimension
table that has relationships to two or more fact tables.

594 Glossary

Connection relationship In IDEF1X, a HAS-A relationship.
Consistency Two or more concurrent transactions are consistent if

the result of their processing is the same as it would have been if
they had been processed in some serial order.

Consistent In an ACID transaction, either statement-level or trans-
action-level consistency. See ACID transaction, consistency, state-
ment-level consistency, and transaction-level consistency.

Consistent backup A backup file where all changes to the database the
redo log have been made to the database before the backup is made.

Correlated subquery A type of subquery in which an element in the
subquery refers to an element in the containing query. A subquery
that requires nested processing.

Control-of-flow statements Procedural program statements that
direct execution of the program depending upon an existing
condition. Control-of-flow statements include, for example,
IF..THEN..ELSE logic and DO WHILE logic.

COUNT In SQL, a function that counts the number of rows in a query
result. See SQL built-in functions.

Crow�s foot model Formally known as the Information Engineering
(IE) Crow�s Foot model, it is a system of symbols used to construct
E-R diagrams in data modeling and database design.

Crow�s foot symbol A symbol in the IE Crow�s Foot E-R model that
indicates a many side of the relationship. It visually resembles a
bird�s foot, thus the name crow�s foot.

Curse of dimensionality In data mining applications, the phenome-
non that the more attributes there are, the easier it is to build a
model that fits the sample data but that is worthless as a predictor.

Cursor An indicator of the current position in a pseudofile for an SQL
SELECT that has been embedded in a program; it shows the
identity of the current row.

Cursor type A declaration on a cursor that determines how the DBMS
places implicit locks. Four types of cursor discussed in this text are
forward only, snapshot, keyset, and dynamic.

Data The values stored in database tables.
Data administration The enterprise-wide function that concerns

the effective use and control of the organization�s data assets. Data
administration may be handled by an individual, but it is usually
handled by a group. Specific functions include setting data stan-
dards and policies and providing a forum for conflict resolution.
See also database administrator (DBA).

Data consumer A user of OLE DB functionality.
Data definition language (DDL) A language used to describe the

structure of a database. SQL DDL is that portion of SQL that is used
to create, modify, and drop database structures.

Data dictionary A user-accessible catalog of database and application
metadata. The contents of an active data dictionary are automatically
updated by the DBMS whenever changes are made in the database or
application structure. The contents of a passive data dictionary must
be updated manually when changes are made.

Data integrity The state of a database in which all constraints are
fulfilled. Usually refers to interrelation constraints in which the
value of a foreign key is required to be present in the table having
that foreign key as its primary key.

Data integrity problems A table that has inconsistencies that
create insert, update, or deletion anomalies is said to have data
integrity problems.

Data manipulation language (DML) A language used to describe
the processing of a database. SQL DML is that portion of SQL
that is used to query, insert, update, and modify data.

Data mart A facility similar to a data warehouse, but with a restricted
domain. Often, the data are restricted to particular types, business
functions, or business units.

Data mining application Business intelligence systems that use
sophisticated statistical and mathematical techniques to perform
what-if analyses, to make predictions, and to facilitate decisions.
Contrast with reporting systems.

Data model A model of the users� data requirements usually
expressed in terms of the entity-relationship model.

Data provider A provider of OLE DB functionality. Examples are tab-
ular data providers and service data providers.

Data repository Collections of metadata about databases, database
applications, Web pages, users, and other application components.

Data sublanguage A language for defining and processing a data-
base to be embedded in programs written in another language, in
most cases a procedural language such as Java, C#, Visual Basic, or
C++. A data sublanguage is an incomplete programming language
because it contains only constructs for data access.

Data warehouse A store of enterprise data that is designed to facili-
tate management decision making. A data warehouse includes not
only data, but also metadata, tools, procedures, training, personnel
information, and other resources that make access to the data
easier and more relevant to decision makers.

Data warehouse metadata In a data warehouse, metadata concerning
the data, its source, its format, its assumptions and constraints, and
other facts about the data.

Data warehouse metadata database The database used to store
the data warehouse metadata.

Database A self-describing collection of integrated records.
Database administration The function that concerns the effective

use and control of a particular database and its related applications.
Database administrator (DBA) The person or group responsible

for establishing policies and procedures to control and protect a
database. The database administrator works within guidelines set
by data administration to control the database structure, manage
data changes, and maintain DBMS programs.

Database application An application that uses a database to store
the data needed by the application.

Database data The portion of a database that contains data of
interest and use to the application end users. See data.

Database design A diagram that represents that database as it will
be implemented in a DBMS product.

Database management system (DBMS) A set of programs used
to define, administer, and process the database and its applications.

Database redesign The process of changing the structure of a
database to adapt the database to changing requirements or to fix
any errors that are discovered during use.

Database save A copy of database files that can be used to restore
the database to some previous consistent state.

Database schema In MySQL, the functional equivalent of a data-
base in Microsoft Access or SQL Server.

Dataset In ADO.NET, an in-memory collection of tables that is not
connected to any database. Datasets have relationships, referen-
tial integrity constraints, referential integrity actions, and other
important database characteristics. They are processed by
ADO.NET objects. A single dataset may be materialized as tables,
as an XML document, or as an XML Schema.

DBA See database administrator (DBA).
DBMS See database management system (DBMS).
DBMS reserved word A word that has a special meaning in the

DBMS and should not be used as a table, column, or other name in
a database.

DDL See data definition language (DDL).
Deadlock A condition that can occur during concurrent processing in

which each of two (or more) transactions is waiting to access data
that the other transaction has locked. Also called a deadly embrace.

Deadly embrace See deadlock.
Decision support system (DSS) One or more applications designed

to help managers make decisions. An earlier name for business
intelligence (BI).

Decision tree analysis A form of unsupervised data mining that
classifies entities of interest into two or more groups according to
values of attributes that measure the entities� past history.

DEFAULT keyword In SQL, the work used to specify a default value
for an attribute.

Default value A value assigned to an attribute if there is no other
value assigned to it when a new row is created in a table.

Glossary 595

Default namespace In an XML Schema document, the namespace
that is used for all unlabeled elements.

Degree For relationships in the entity-relationship model, the number
of entities participating in the relationship. In almost all cases, such
relationships are of degree two.

Deletion anomaly In a relation, the situation in which the removal of
one row of a table deletes facts about two or more themes.

Delimited identifier A reserved word placed in special symbols to
distinguish it from the DBMS reserved word so that it can be used
as a table, column, or other name in a database.

Denormalize To intentionally create a set of database tables that are
not normalized to BCNF and 4NF.

Dependency graph A network of nodes and lines that represents the
logical dependencies among tables, views, triggers, stored proce-
dures, indexes, and other database constructs.

Determinant One or more attributes that functionally determine
another attribute or attributes. In the functional dependency (A, B)
: C, the attributes (A, B) are the determinant.

Differential backup A backup file that contains only changes made
since a prior backup.

Digital dashboard In reporting systems, a display that is customized
for a particular user. Typically, a digital dashboard has links to many
different reports.

Dimension table In a star schema dimensional database, the tables
that connect to the central fact table. Dimension tables hold
attributes used in the organizing queries in analyses such as those
of OLAP cubes.

Dimensional database A database design that is used for data ware-
houses and is designed for efficient queries and analysis. It contains
a central fact table connected to one or more dimension tables.

Dirty data In a business intelligence system, data with errors. Examples
are a value of �G� for customer sex and a value of �213� for customer
age. Other examples are a value of �999-999-9999� for a U.S.
phone number, a part color of �gren,� and an e-mail address of
�WhyMe@somewhereelseintheuniverse.who.� Dirty data pose
problems for reporting and data mining applications.

Dirty read Reading data that has been changed but not yet commit-
ted to the database. Such changes may later be rolled back and
removed from the database.

Discriminator In the entity-relationship model, an attribute of a
supertype entity that determines which subtype pertains to the
supertype.

DK/NF See domain/key normal form.
DML See data manipulation language (DML).
Document Object Model (DOM) An API that represents an XML

document as a tree. Each node of the tree represents a piece of the
XML document. A program can directly access and manipulate a
node of the DOM representation.

Document type declaration (DTD) A set of markup elements that
defines the structure of an XML document.

DOM See Document Object Model.
Domain A named set of all possible values that an attribute can have.

Domains can be defined by listing allowed values or by defining a
rule for determining allowed values.

Domain/key normal form (DK/NF) A relation in which all
constraints are logical consequences of domains and keys.

Drill down User-directed disaggregation of data used to break higher-
level totals into components.

DTD See document type declaration.
Durable In an ACID transaction, the database changes are permanent.

See ACID transaction.
Dynamic cursor A fully featured cursor. All inserts, updates, deletions,

and changes in row order are visible to a dynamic cursor.
Dynamic report In reporting systems, a report that reads the most

current data at the time of the report�s creation. Contrast with
static report.

Eclipse IDE A popular open-source integrated development
environment.

Eclipse PDT (PHP Development Tools) Project A version of
the Eclipse IDE customized for use with PHP. See Eclipse IDE, PHP.

Enterprise-class database system A DBMS product capable of
supporting the operating requirement of large organizations.

Enterprise data warehouse (EDW) architecture A data ware-
house architecture that links specialized data marts to a central
data warehouse for data consistency and efficient operations.

Entity (1) In the entity-relationship model, a representation of some-
thing that users want to track. See also entity class and entity
instance. (2) In a generic sense, something that users want to track.
In the relational model, an entity is stored in one row of a table.

Entity class In the entity-relationship model, a collection of entities
of a given type; for example, EMPLOYEE and DEPARTMENT. The
class is described by its attributes.

Entity Data Model (EDM) An emerging Microsoft data modeling
technology that is part of the .NET Framework.

Entity instance A particular occurrence of an entity; for example,
Employee 100 and the Accounting Department. An entity instance
is described by the values of its attributes.

Entity-relationship (E-R) data modeling Creating a data model
using E-R diagrams. See entity-relationship (E-R) diagram.

Entity-relationship (E-R) diagram A graphic used to represent
entities and their relationships. In the traditional E-R model,
entities are shown as squares or rectangles, and relationships are
shown as diamonds. The cardinality of the relationship is shown
inside the diamond. In the crow�s foot model, entities are shown in
rectangles, and relationships are shown by lines between the rectan-
gles. Attributes are generally listed within the rectangle. The many
side of many relationships is represented by a crow�s foot.

Entity-relationship (E-R) model A set of constructs and conven-
tions used to create data models. The things in the users� world are
represented by entities, and the associations among those things
are represented by relationships. The results are usually docu-
mented in an entity-relationship (E-R) diagram.

Enumerated list A list of allowed values for a domain, attribute, or
column.

Equijoin The process of joining relation A containing attribute A1 with
B containing attribute B1 to form relation C, so that for each row in
C, A1 = B1. Both A1 and B1 are represented in C.

E-R diagram See entity-relationship diagram.
Exclusive lock A lock on a data resource such that no other transac-

tion can either read or update that resource.
Existence-dependent entity Same as a weak entity. An entity that

cannot appear in the database unless an instance of one or more
other entities also appears in the database. A subclass of existence-
dependent entities is ID-dependent entities.

Explicit lock A lock requested by command from an application
program.

Extensible Markup Language See XML.
Extensible Style Language See XSLT.
Extract A portion of an operational database downloaded to a local

area network (LAN) or personal computer for local processing.
Extracts are created to reduce communication cost and time when
querying and creating reports from data created by transaction
processing.

Extract, Transform, and Load (ETL) system The portion of a data
warehouse that converts operation data to data warehouse data.

F score In RFM analysis, the �how frequently� score, which reflects
how often a customer makes a purchase. See RFM Analysis.

Fact table In a dimensional database, the central table that contains
numerical values.

Field (1) A logical group of bytes in a record such as Name or
PhoneNumber. (2) In the relational model, a synonym for attribute.

Fifth normal form (5NF) A normal form necessary to eliminate an
anomaly where a table can be split apart but not correctly joined
back together. Also know as Project-Join Normal Form (PJ/NF)

File data source An ODBC data source stored in a file that can be
e-mailed or otherwise distributed among users.

596 Glossary

First normal form (1NF) Any table that fits the definition of a
relation.

Flat file A file that has only a single value in each field. The meaning of
the columns is the same in every row.

Foreign key An attribute that is a key of one or more relations other
than the one in which it appears. Used to represent relationships.

FOREIGN KEY constraint In SQL, the constraint used to create
relationships and referential integrity between tables.

Fourth normal form (4NF) A relation in Boyce-Codd normal form
in which there are no multivalued dependencies or in which all
attributes participate in a single multivalued dependency.

Functional dependency A relationship between attributes in which
one attribute or group of attributes determines the value of
another. The expression X : Y means that given a value of X, we
can determine the value of Y. A given value of X may appear in a
relation more than once, but if so, it is always paired with the same
value of Y. Also, if X : (Y, Z), then X : Y and X : Z. However, if
(X, Y) : Z, then, in general X Not : Z and Y Not : Z.

Generic entity In IDEF1X, an entity that has one or more category
clusters. The generic entity takes the role of a supertype for the
category entities in the category cluster.

Granularity The size of the database resource that is locked. Locking
the entire database is large granularity; locking a column of a
particular row is small granularity.

Graphical User Interface (GUI) A user interface that uses graphical
elements for interaction with a user.

Growing phase The first stage in two-phase locking in which locks
are acquired but not released.

HAS-A relationship A relationship between two entities or objects
that are of different logical types; for example, EMPLOYEE HAS-A(n)
AUTO. Contrast this with an IS-A relationship.

HTML See Hypertext Markup Language.
HTML document tags The tags in HTML documents that indicate

the structure of the document.
HTML syntax rules The standards that are used to create HTML

documents.
HTTP See Hypertext Transfer Protocol.
Http://localhost For a Web server, a reference to the user�s computer.
Hypertext Markup Language (HTML) A standardized set of text

tags for formatting text, locating images and other nontext files,
and placing links or references to other documents.

Hypertext Transfer Protocol (HTTP) A standardized means for
using TCP/IP to communicate over the Internet.

ID-dependent entity An entity whose identifier contains the identifier
of a second entity. For example, APPOINTMENT is ID-dependent on
CLIENT, where the identifier of APPOINTMENT is (Date, Time,
ClientNumber) and the identifier of CLIENT is ClientNumber. An
ID-dependent entity is weak, meaning that it cannot logically exist
without the existence of that second entity. Not all weak entities are
ID-dependent, however.

IDEF1X (Integrated Definition 1, Extended) A version of the
entity-relationship model, adopted as a national standard, but
difficult to understand and use. Most organizations use a simpler
E-R version like the crow�s foot model.

Identifier An attribute that names, or identifies, and entity.
Identifying connection relationship In IDEF1X, a 1:1 or 1:N

HAS-A relationship in which the child entity is ID-dependent on
the parent.

Identifying relationship A relationship that is used when the child
entity is ID-dependent upon the parent entity.

IDENTITY ({StartValue}, {Increment}) property [MSSQL]
For SQL Server 2008, the attribute that is used to create a
surrogate key.

IIS See Internet Information Server.
Implementation In object-oriented programming, a set of objects

that instantiates a particular object-oriented interface.
Implicit lock A lock that is automatically placed by the DBMS.
Import A function of the DBMS; to read a file of data in bulk.

Inclusive subtype In data modeling and database design, a subtype
that allows a supertype entity to be associated with more than one
subtype.

Inconsistent backup A backup file that contains uncommitted
changes.

Inconsistent read problem In a transaction, a series of reads of a
set of rows in which some of the rows have been updated by a
second transaction and some of the rows have not been updated
by that second transaction. Can be prevented by two-phase
locking and other strategies.

Index Data created by the DBMS to improve access and sorting
performance. Indexes can be constructed for a single column or
groups of columns. They are especially useful for columns used by
WHERE clauses, for conditions in joins, and for sorting.

Index.html A default Web page name provided by most Web servers.
Inetpub folder In Windows operating systems, the root folder for the

IIS Web server.
Information (1) Knowledge derived from data, (2) data presented in a

meaningful context, or (3) data processed by summing, ordering,
averaging, grouping, comparing, or other similar operations.

Information Engineering (IE) model An E-R model developed by
James Martin.

Inner join Synonym for join. Contrast with outer join.
Insertion anomaly In a relation, the condition that exists when, to

add a complete row to a table, one must add facts about two or
more logically different themes.

Instance failure A failure in the operating system or hardware that
causes the DBMS to fail.

Integrated development environment (IDE) An application that
provides a programmer or application developer with a complete
set of development tools in one package.

Integrated tables Database tables that store both data and the
relationships among the data.

Interface (1) The means by which two or more programs call each
other; the definition of the procedural calls between two or more
programs. (2) In object-oriented programming, the design of a set of
objects that includes the objects� names, methods, and attributes.

International Organization for Standardization (ISO) The
international standards organization that works of SQL standards,
among others.

Internet Information Server (IIS) A Microsoft product that
operates as an HTTP server.

Internet Information Services Manager The application used to
manage Microsoft�s IIS Web server.

Intersection table A table (relation) used to represent a many-to-
many relationship. It contains the keys of the tables (relations) in
the relationship. The relationships from the parent tables to the
intersection tables must have a minimum cardinality of either
mandatory-optional or mandatory-mandatory.

Interrelation constraint A data constraint between two tables.
Intrarelation constraint A data constraint within one table.
IS-A relationship A relationship between a supertype and a subtype.

For example, EMPLOYEE and ENGINEER have an IS-A relationship.
Isolation level See transaction isolation level.
Java An object-oriented programming language that has better

memory management and bounds checking than C++. It is used
primarily for Internet applications, but it also can be used as a
general-purpose programming language. Java compilers generate
Java bytecode that is interpreted on client computers. Many
believe that Microsoft C# is a near-copy of Java.

Java Database Connectivity (JDBC) A standard interface by
which application programs written in Java can access and
process SQL databases (or table structures such as spreadsheets
and text tables) in a DBMS-independent manner. While originally
it did not stand for Java Database Connectivity, it does now and is
an acronym.

Java platform The complete set of Java tools provided by Sun
Microsystems.

Glossary 597

Java servlet See servlet.
Java virtual machine A Java bytecode interpreter that runs on a

particular machine environment; for example, Intel Core 2 Duo,
Intel Core i5, or IBM POWER7. Such interpreters are usually
embedded in browsers, included with the operating system, or
included as part of a Java development environment.

JavaScript A proprietary scripting language owned by Netscape. The
Microsoft version is called JScript; the standard version is called
ECMAScript-262. These are easily learned interpreted languages
that are used for both Web server and Web client application
processing. Sometimes written as Java Script.

JavaServer Pages (JSP) A combination of HTML and Java that is
compiled into a Java servlet that is a subclass of the HttpServlet
class. Java code embedded in a JSP has access to HTTP objects and
methods. JSPs are used similarly to ASPs, but they are compiled
rather than interpreted, as ASP pages are.

JDBC See Java Database Connectivity (JDBC).
Join A relational algebra operation on two relations, A and B, which

produces a third relation, C. A row of A is concatenated with a row
of B to form a new row in C if the rows in A and B meet a restric-
tion concerning their values. Normally, the restriction is that one
or more columns of A equal one or more columns of B. For exam-
ple, suppose that A1 is an attribute in A, and B1 is an attribute in
B. The join of A with B in which A1 = B1 will result in a relation, C,
having the concatenation of rows in A and B in which the value of
A1 equals the value of B1. In theory, restrictions other than equal-
ity are allowed; a join could be made in which A1 � B1. Such non-
equal joins are not used in practice, however.

Join operation In SQL, the process of combining data rows from two
tables. See join.

JScript A proprietary scripting language owned by Microsoft. The
Netscape version is called JavaScript; the standard version is called
ECMAScript-262. These are easily learned interpreted languages
used for both Web server and Web client application processing.

JSP See JavaServer Page.
Key (1) A group of one or more attributes identifying a unique row in

a relation. Because relations may not have duplicate rows, every
relation must have at least one key, which is the composite of all of
the attributes in the relation. A key is sometimes called a logical
key. (2) With some relational DBMS products, an index on a
column used to improve access and sorting speed. It is sometimes
called a physical key.

Labeled namespace In an XML Schema document, a namespace
that is given a name (label) within the document. All elements
preceded by the name of the labeled namespace are assumed to be
defined in that labeled namespace.

LAMP A version of AMP that runs on Linux. See AMP.
Language Integrated Query (LINQ) A Microsoft .NET Frame-

work component that allows SQL queries to be run directly from
application programs.

LEFT OUTER join A join that includes all the rows of the first table
listed in the SQL statement (the �left� table) regardless of whether
they have a matching row in the other table.

Lift In market basket analysis, confidence divided by the base proba-
bility of an item purchase.

Lock The process of allocating a database resource to a particular
transaction in a concurrent-processing system. The size of the
resource locked is known as the lock granularity. With an exclu-
sive lock, no other transaction may read or write the resource.
With a shared lock, other transactions may read the resource,
but no other transaction may write it.

Lock granularity The size of a locked data element. The lock of a
column value of a particular row is a small granularity lock, and
the lock of an entire table is a large granularity lock.

Log A file containing a record of database changes. The log contains
before-images and after-images.

Logical unit of work (LUW) An equivalent term for transaction.
See transaction.

Logistic regression A form of supervised data mining that estimates
the parameters of an equation to calculate the odds that a given
event will occur.

Lost update problem Same as concurrent update problem.
M score In RFM analysis, the �how much money� score, which reflects

how much a customer spends per purchase. See RFM Analysis.
Many-to-many (N:M) relationship A relationship in which one

parent entity instance (or row in the parent table) can be associ-
ated with many child entity instances (or rows in the child table).
At the same time, one child entity instance (or row in the child
table) can be associated with many parent entity instances (or rows
in the parent table). In an actual database, these relationships are
transformed into two one-to-many relationships between the
original entities (tables) and an intersection table.

Market basket analysis A type of data mining that estimates the
correlations of items that are purchased together. See also confi-
dence and lift.

MAX In SQL, a function that determines the largest value in a set of
numbers. See SQL built-in functions.

Maximum cardinality (1) In a binary relationship in the entity-
relationship model, the maximum number of entities on each side
of the relationship. Common values are 1:1, 1:N, and N:M. (2) In a
relationship in the relational model, the maximum number of
rows on each side of the relationship. Common values are 1:1 and
1:N. An N:M relationship is not possible in the relational model.

Measure In OLAP, the source data for the cube�data that are
displayed in the cells. It may be raw data or it may be functions of
raw data, such as SUM, AVG, or other computations.

Media failure A failure that occurs when the DBMS is unable to write
to a disk. Usually caused by a disk head crash or other disk failure.

Metadata Data concerning the structure of data that are used to
describe tables, columns, constraints, indexes, and so forth. Meta-
data is data about data.

Method A program attached to an object-oriented programming (OOP)
object. A method can be inherited by lower-level OOP objects.

Microsoft SQL Server 2008 R2 Management Studio The GUI
utility that is used with Microsoft SQL Server 2008 R2.

Microsoft Windows PowerShell A Microsoft command line utility.
MIN In SQL, a function that determines the smallest value in a set of

numbers. See SQL built-in functions.
Minimum cardinality (1) In a binary relationship in the entity-

relationship model, the minimum number of entities required on
each side of a relationship. (2) In a binary relationship in the
relational model, the minimum number of rows required on each
side of a relationship. Common values of minimum cardinality for
both definitions are optional to optional (O-O), mandatory to
optional (M-O), optional to mandatory (O-M), and mandatory to
mandatory (M-M).

Minimum cardinality enforcement actions Activities that must
be taken to preserve minimum cardinality restrictions. Summa-
rized in Figure 6-28. See also referential integrity (RI) actions.

Modification anomaly In a relation, the situation that exists when the
storage of one row records facts about two or more entities or when
the deletion of one row removes facts about two or more entities.

Multivalued dependency A condition in a relation with three or
more attributes in which independent attributes appear to have
relationships they do not have. Formally, in a relation R (A, B, C),
having key (A, B, C) where A is matched with multiple values of B
(or of C or both), B does not determine C, and C does not deter-
mine B. An example is the relation EMPLOYEE (EmpNumber,
EmpSkill, DependentName), where an employee can have multi-
ple values of EmpSkill and DependentName. EmpSkill and Depen-
dentName do not have any relationship, but they do appear to in
the relation.

MUST constraint A constraint that requires one entity to be com-
bined with another entity.

MUST COVER constraint The binary relationship indicates all
combinations that must appear in the ternary relationship.

598 Glossary

MUST NOT constraint The binary relationship indicates combina-
tions that are not allowed to occur in the ternary relationship.

MySQL Workbench The GUI utility used with MySQL 5.5.
Natural join A join of a relation A having attribute A1 with relation B

having attribute B1, where A1 equals B1. The joined relation, C,
contains either column A1 or B1, but not both. Contrast this with
equijoin.

Neural networks A form of supervised data mining that estimates
complex mathematical functions for making predictions. The
name is a misnomer. Although there is some loose similarity
between the structure of a neural network and a network of
biological neurons, the similarity is only superficial.

N:M The abbreviation for a many-to-many relationship between two
entities or relations.

Nonidentifying connection relationships In IDEF1X, 1:1 and 1:N
HAS-A relationships that do not involve ID-dependent entities.

Nonidentifying relationship In data modeling, a relationship
between two entities such that one is not ID-dependent on the
other. See identifying relationship.

Nonintegrated data Data that are stored in two incompatible
information systems.

Non-prime attribute In normalization, an attribute that is not
contained in any candidate key.

Nonrepeatable reads The situation that occurs when a transaction
reads data it has previously read and finds modifications or
deletions caused by a committed transaction.

Nonspecific IDEF1X relationships In IDEF1X, an N:M relationship.
Normal form A rule or set of rules governing the allowed structure of

relations. The rules apply to attributes, functional dependencies,
multivalue dependencies, domains, and constraints. The most
important normal forms are first normal form, second normal form,
third normal form, Boyce-Codd normal form, fourth normal form,
fifth normal form, and domain/key normal form.

Normalization (1) The process of constructing one or more relations
such that in every relation the determinant of every functional
dependency is a candidate key (BCNF). (2) The process of
removing multivalued dependencies (4NF). (3) In general, the
process of evaluating a relation to determine whether it is in a
specified normal form and of converting it to relations in that
specified normal form, if necessary.

NOT NULL constraint In SQL, a constraint that specifies that a
column must contain a value in every row.

Not-type-valid document An XML document that either does
not conform to its Document Type Declaration (DTD) or does
not have a DTD. See also type-valid document and schema-valid
document.

NULL constraint In SQL, a constraint that specifies that a column
may have empty cells in some or all rows.

Null status Whether the column has a NULL constraint or a NOT
NULL constraint. See NOT NULL constraint, and NULL constraint.

Null value An attribute value that has never been supplied. Such
values are ambiguous and can mean that (a) the value is
unknown, (b) the value is not appropriate, or (c) the value
is known to be blank.

Object class In object-oriented programming, a set of objects with a
common structure. See object-oriented programming (OOP).

Object Linking and Embedding (OLE) Microsoft�s object standard.
OLE objects are Component Object Model (COM) objects and
support all required interfaces for such objects.

Object persistence In object-oriented programming, the characteristic
that an object can be saved to nonvolatile memory, such as a disk.
Persistent objects exist between executions of a program.

Object-oriented DBMS (OODBMS or ODBMS) A DBMS that
can store the objects similar to those used in OOP. See object-
oriented programming (OOP).

Object-oriented programming (OOP) A programming method-
ology that defines objects and the interactions between them to
create application programs.

Object-relational DBMS DBMS products that support both
relational and object-oriented programming data structures, such
as Oracle Database.

ODBC See Open Database Connectivity standard.
ODBC conformance level In ODBC, definitions of the features and

functions that are made available through the driver�s application
program interface (API). A driver API is a set of functions that the
application can call to receive services. There are three conformance
levels: Core API, Level 1 API, and Level 2 API.

ODBC data source In the ODBC standard, a database and its
associated DBMS, operating system, and network platform.

ODBC Data Source Administrator The application used to create
ODBC data sources.

ODBC Driver In ODBC, a program that serves as an interface between
the ODBC driver manager and a particular DBMS product. Runs on
the client machines in a client-server architecture.

ODBC Driver Manager In ODBC, a program that serves as an inter-
face between an application program and an ODBC driver. It
determines the required driver, loads it into memory, and coordi-
nates activity between the application and the driver. On
Windows systems, it is provided by Microsoft.

ODBC multiple-tier driver In ODBC, a two-part driver, usually for a
client-server database system. One part of the driver resides on the
client and interfaces with the application; the second part resides on
the server and interfaces with the DBMS.

ODBC single-tier driver In ODBC, a database driver that accepts
SQL statements from the driver manager and processes them with-
out invoking another program or DBMS. A single-tier driver is both
an ODBC driver and a DBMS. It is used in file-processing systems.

ODBC SQL conformance levels ODBC SQL conformance levels
specify which SQL statements, expressions, and data types an
OBDC driver can process. Three SQL conformance levels are
defined: Minimum SQL Grammar, Core SQL Grammar, Extended
SQL Grammar.

OLAP See OnLine Analytical Processing.
OLAP cube In OLAP, a presentation structure having axes upon

which data dimensions are placed. Measures of the data are
shown in the cells of the cube. Also called a hypercube.

OLAP report The output of an OLAP analysis in tabular format. For
example, this can be an Excel Pivot Table. See OLAP cube.

OLAP server A server specifically developed to perform OLAP
analyses.

OLE DB The COM-based foundation of data access in the Microsoft
world. OLE DB objects support the OLE object standard. ADO is
based on OLE DB.

1:N The abbreviation for a one-to-many relationship between two
entities or relations.

OnLine Analytical Processing (OLAP) A form of dynamic data
presentation in which data are summarized, aggregated, deaggre-
gated, and viewed in the frame of a table or a cube.

Online transaction processing (OLTP) system An operational
database system available for, and dedicated to, transaction
processing.

One-to-many (1:N) relationship A relationship in which one
parent entity instance (or row in the parent table) can be associ-
ated with many child entity instances (or rows in the child table).
At the same time, one child entity instance (or row in the child
table) can be associated with only one parent entity instance
(or row in the parent table).

One-to-one (1:1) relationship A relationship in which one parent
entity instance (or row in the parent table) can be associated with
only one child entity instance (or row in the child table). At the
same time, one child entity instance (or row in the child table) can
be associated with only one parent entity instance (or row in the
parent table).

Open Database Connectivity (ODBC) standard A standard
interface by which application programs can access and process
relational databases, spreadsheets, text files, and other table-like

Glossary 599

structures in a DBMS or in a program-independent manner. The
driver manager portion of ODBC is incorporated into Windows.
ODBC drivers are supplied by DBMS vendors, Microsoft, and by
third-party software developers.

Operational system A database system in use for the operations of
the enterprise, typically an OLTP system. See Online transaction
processing (OLTP) system.

Optimistic locking A locking strategy that assumes no conflict will
occur, processes a transaction, and then checks to determine
whether conflict did occur. If conflict did occur, no changes are
made to the database and the transaction is repeated. See also
pessimistic locking.

Oracle SQL Developer The GUI utility for Oracle Database 11g.
Outer join A join in which all of the rows of a table appear in the join

result, regardless of whether they have a match in the join condi-
tion. In a left outer join, all of the rows in the left-hand relation
appear; in a right outer join, all of the rows in the right-hand
relation appear.

Overlapping candidate keys Two candidate keys are said to be
overlapping candidate keys if they have one or more attributes in
common.

Parameter A data value that is passed as input to a stored procedure
or other application.

Parent An entity or row on the one side of a one-to-many relationship.
Parent mandatory and child mandatory (M-M) A relationship

where the minimum cardinality of the parent is 1 and the minimum
cardinality of the child is 1.

Parent mandatory and child optional (M-O) A relationship where
the minimum cardinality of the parent is 1 and the minimum
cardinality of the child is 0.

Parent optional and child mandatory (O-M) A relationship where
the minimum cardinality of the parent is 0 and the minimum
cardinality of the child is 1.

Parent optional and child optional (O-O) A relationship where
the minimum cardinality of the parent is 0 and the minimum
cardinality of the child is 0.

Partially dependent In normalization, a condition where an attribute
is dependent on only part of a composite primary key instead of on
the whole key.

Passive repository Repositories that are filled only when someone
takes the time to generate the needed metadata and place it in the
repository. See data repository.

Persistent object In object-oriented programming, an object that
has been written to persistent storage.

Personal database system A DBMS product intended for use by
an individual or small workgroup. Such products typically include
application development tools such as form and report generators
in addition to the DBMS. For example, Microsoft Access 2007.

Pessimistic locking A locking strategy that prevents conflict by
locking data resources, processing the transaction, and then unlock-
ing the data resources. See also optimistic locking and deadlock.

Phantom reads The situation that occurs when a transaction reads
data it has previously read and finds new rows that were inserted
by a committed transaction.

PHP See PHP: Hypertext Processor.
PHP Data Objects (PDO) A consistent data-access specification

for PHP that allows a programmer to use the same functions
independent of which DBMS is being used.

PHP: Hypertext Processor (PHP) A Web page scripting language
used to create dynamic Web pages. It now includes an object-
oriented programming component and PHP Data Objects (PDO).
See PHP Data Objects (PDO).

PL/SQL See Procedural Language/SQL.
POST method In PHP, a method of passing data values from one

Web page to another for processing.
PowerShell sqlps utility In SQL Server 2008 R2, an add-in to the

Microsoft PowerShell command line utility that allows it to work
with SQL Server.

Primary key A candidate key selected to be the key of a relation; the
primary key is used as a foreign key for representing relationships.

PRIMARY KEY constraint In SQL, a constraint statement used to
create a primary key for a table.

Procedural language A programming language where each step
necessary to obtain a result must to specified. The language may
have the ability to contain sets of steps in structures called
procedures or subprocedures.

Procedural Language/SQL (PL/SQL) An Oracle-supplied language
that augments SQL with programming language structures such as
while loops, if-then-else blocks, and other such constructs. PL/SQL
is used to create stored procedures and triggers.

Processing rights and responsibilities Organizational policies
regarding which groups can take which actions on specified data
items or other collections of data.

Program/data independence The condition existing when the
structure of the data is not defined in application programs.
Rather, it is defined in the database and then the application
programs obtain it from the DBMS. In this way, changes can be
made in the data structures that may not necessarily be made in
the application programs.

Programmer A person who creates application programs in a
programming language.

Project-Join normal form (PJ/NF) Another name for 5NF. See
Fifth normal form (5NF).

Property Same as attribute.
Prototype A quickly developed demonstration of an application or

portion of an application.
Pull report In reporting systems, a report that must be requested by

users.
Push report In reporting systems, a report that is sent to users

according to a schedule.
QBE See query by example.
Query A request for database data that meets specific criteria. This

can be thought of as asking the database a question and getting an
answer in the form of the data returned.

Query by example (QBE) A style of query interface, first developed by
IBM but now used by Microsoft Access and other DBMS products,
that enables users to express queries by providing examples of the
results they seek.

Question mark (?) wildcard character A character used in
Access 2010 queries to represent a single unspecified characters.
See SQL underscore (_) wildcard character.

R score In RFM analysis, the �how recently� score, which reflects
how recently a customer made a purchase. See RFM Analysis.

Range constraint In SQL, a constraint that specifies that data
values must be within a specific range of values.

Read committed A level of transaction isolation that prohibits dirty
reads but allows nonrepeatable reads and phantom reads.

Read uncommitted A level of transaction isolation that allows dirty
reads, nonrepeatable reads, and phantom reads.

Record (1) In a relational model, a synonym for row and tuple. (2) A
group of fields pertaining to the same entity; used in file-processing
systems.

Recordset An ADO.NET object that encapsulates a relation; created
as the result of the execution of an SQL statement or a stored
procedure.

Recovery via reprocessing Recovering a database by restoring the
last full backup, and then recreating each transaction since the
backup.

Recovery via rollback/rollforward Recovering a database by
restoring the last full backup, and then using data stored in a trans-
action log to modify the database as needed by either adding
transactions (roll forward) or removing uncommitted transactions
(rollback).

Recursive relationship A relationship among entities or rows of the
same type. For example, if CUSTOMERs refer to other CUSTOMERs,
the relationship is recursive.

600 Glossary

ReDo files In Oracle Database, backups of rollback segments used for
backup and recovery. ReDo files may be online or off-line.

Referential integrity (RI) actions In general, rules that specify the
activities that must take place when insert, update, or delete
actions occur on either the parent or child entities in a relationship.
In this text, we use referential integrity actions only to document
activities needed to preserve required parents. Other actions can
be defined as part of the database design. See minimum cardinality
enforcement actions and Figure 6-28.

Referential integrity constraint A relationship constraint on
foreign key values. A referential integrity constraint specifies that
the values of a foreign key must be a subset of the values of the
primary key to which it refers.

Regression analysis A form of supervised data mining in which the
parameters of equations are estimated by data analysis.

Relation A two-dimensional array containing single-value entries
and no duplicate rows. Values for a given entity are shown in rows;
values of attributes of that entity are shown in columns. The
meaning of the columns is the same in every row. The order of the
rows and columns is immaterial.

Relational data model A data model in which data are stored in
relations, and relationships between rows are represented by data
values.

Relational database A database consisting of relations. In prac-
tice, relational databases contain relations with duplicate rows.
Most DBMS products include a feature that removes duplicate
rows when necessary and appropriate. Such a removal is not
done as a matter of course because it can be time-consuming to
enforce.

Relational schema A set of relations with interrelation constraints.
Relationship An association between two entities or rows.
Relationship cardinality constraint A constraint on the number

of rows that can participate in a relationship. Minimum cardinality
constraints determine the number of rows that must participate;
maximum cardinality constraints specify the largest number of
rows that can participate.

Relationship class An association between entity classes.
Relationship instance (1) An association between entity instances,

(2) a specific relationship between two tables in a database.
Repeatable read A level of transaction isolation that disallows both

dirty reads and nonrepeatable reads. Phantom reads can occur.
Replication For both Oracle Database, SQL Server, and MySQL, a

term that refers to databases that are distributed on more than
one computer.

Report A formatted set of information created to meet a user�s need.
Report authoring In a reporting system, connecting to the data

source, creating the report structure, and formatting the report.
Report delivery In a reporting system, pushing the reports to users,

or allowing them to pull the reports as needed.
Report management In a reporting system, defining who receives

which reports, when, and by what means.
Reporting system A business intelligence system that processes

data by filtering, sorting, and making simple calculations. OLAP is
a type of reporting system. Contrast with data mining systems.

Repository A collection of metadata about database structure, appli-
cations, Web pages, users, and other application components.
Active repositories are maintained automatically by tools in the
application-development environment. Passive repositories must
be maintained manually.

Reserved word A word that has a special meaning in the DBMS or
ODBC, and should not be used as a table, column, or other name
in a database. See DBMS reserved word.

Resource locking See lock.
Reverse-engineered (RE) data model The structure that results

from reverse engineering. It is not really a data model, because it
includes physical structures such as intersection tables. It is,
instead, a thing unto itself; midway between a data model and a
relational database design.

Reverse engineering The process of reading the structure of an
existing database and creating a reverse-engineered data model
from that schema.

RFM analysis A type of reporting system in which customers are
classified according to how recently (R), how frequently (F), and
how much money (M) they spend on their orders.

RIGHT OUTER join A join that include all the rows of second table
listed in the SQL statement (the �right� table) regardless of whether
they have a matching row in the other table.

Role In database administration, a defined set of permissions that can
be assigned to users or groups.

Rollback The process of recovering a database in which before-images
are applied to the database to return to an earlier checkpoint or
other point at which the database is logically consistent.

Rollforward The process of recovering a database by applying after-
images to a saved copy of the database to bring it to a checkpoint
or other point at which the database is logically consistent.

Root (1) In MySQL, the name of the DBMS administrator account.
(2) The top record, row, or node in a tree. A root does not have a
parent.

Row A group of columns in a table. All the columns in a row pertain to
the same entity. A row is the same as a tuple and a record.

Rowset In OLE DB, an abstraction of data collections such as record-
sets, e-mail addresses, and nonrelational and other data.

SAX Simple API (Application Program Interface) for XML. An
event-based parser that notifies a program when the elements
of an XML document have been encountered during document
parsing.

Schema (1) In MySQL, a synonym for database. (2) A complete
logical view of the database. (3) All database objects owned by a
single database user.

Schema-valid document An XML document that conforms to its
XML Schema definition.

SCN See system change number.
Scrollable cursor A cursor type that enables forward and backward

movement through a recordset. Three scrollable cursor types
discussed in this text are snapshot, keyset, and dynamic.

Second normal form (2NF) A relation in first normal form in which
all nonkey attributes are dependent on all of the key attributes.

Self-describing In a database, the characteristic of including data
about the database in the database itself. Thus, the data that
defines a table is included in a database along with the data that is
contained in that table. This descriptive data is called metadata.
See table, relation, and metadata.

Semantic object model The constructs and conventions used to
create a model of the users� data. The things in the users� world are
represented by semantic objects (sometimes called objects).
Relationships are modeled in the objects, and the results are
usually documented in object diagrams.

Sequence The Oracle Database 11g SQL statement used to create
surrogate key values.

Serializable A level of transaction isolation that disallows dirty
reads, nonrepeatable reads, and phantom reads.

Service provider An OLE DB data provider that transforms data.
A service provider is both a data consumer and a data provider.

Servlet A compiled, machine-independent Java bytecode program
that is run by a Java virtual machine located on a Web server.

SGML See Standard Generalized Markup Language.
Shared lock A lock against a data resource in which only one transaction

may update the data, but many transactions can concurrently read
that data.

Shrinking phase In two-phase locking, the stage at which locks are
released but no lock is acquired.

Sibling A record or node that has the same parent as another record
or node.

Simple Object Access Protocol A standard used for remote
procedure calls. It uses XML for definition of the data and HTTP
for transport. Contrast with SOAP.

Glossary 601

Slowly changing dimension In a dimensional database, a data
column with values that change occasionally but irregularly over
time, For example, a customer�s address or phone number.

Snowflake schema In a dimensional database or an OLAP database,
the structure of tables such that dimension tables may be several levels
away from the table storing the measure values. Such dimension tables
are usually normalized. Contrast with star schema.

SOAP Originally, Simple Object Access Protocol. Today, it is a protocol
for remote procedure calls that differs from the Simple Object
Access Protocol because it involves transport protocols in addition
to HTTP. It is no longer an acronym.

Software development kit (SDK) A group of development tools
provided to programmers to help them create applications.

SQL See Structured Query Language.
SQL AND operator The SQL operator used to combine conditions

in an SQL WHERE clause.
SQL built-in functions In SQL, the functions COUNT, SUM, AVG,

MAX, or MIN.
SQL CMD utility A command line utility used with SQL Server 2008.
SQL CREATE TABLE statement The SQL command used to

create a database table.
SQL CREATE VIEW statement The SQL command used to create

a database view.
SQL FROM clause The part of an SQL SELECT statement that specifies

conditions used to determine which tables are used in a query.
SQL GROUP BY clause The part of an SQL SELECT statement

that specifies conditions for grouping rows when determining the
query results.

SQL HAVING clause The part of an SQL SELECT statement that
specifies conditions used to determine which rows are in the
qroupings in a GROUP BY clause.

SQL MERGE statement This SQL command is essentially a combi-
nation of the SQL INSERT and SQL UPDATE statements, where an
INSERT or UPDATE is performed depending upon existing data.

SQL OR operator The SQL operator used to specify alternate
conditions in an SQL WHERE clause.

SQL ORDER BY clause The part of an SQL SELECT statement
that specifies how the query results should be sorted when they
are displayed.

SQL percent sign (%) wildcard character The standard SQL
wildcard character used to specify multiple characters. Microsoft
Access 2010 uses an asterisk (*) character instead of the percent
sign character.

SQL script A set of SQL statements that are intended to be executed
as a group.

SQL script comment A comment in an SQL script. See SQL script.
SQL script file A file that holds an SQL script for repeated use. See

SQL script.
SQL SELECT clause The part of an SQL SELECT statement that

specifies which columns are in the query results.
SQL SELECT * statement A variant of an SQL SELECT query that

returns all columns for all tables in the query.
SQL SELECT . . . for XML statement A variant of an SQL

SELECT query that returns the query results in XML format.
SQL SELECT/FROM/WHERE framework The basic structure of

an SQL query. See SQL SELECT clause, SQL FROM clause, SQL
WHERE clause, SQL ORDER BY clause, SQL GROUP BY clause,
SQL HAVING clause, SQL AND operator, and SQL OR operator.

SQL TRUNCATE TABLE statement The SQL TRUNCATE TABLE
command removes all data from a database table while leaving the
table structure in place.

SQL underscore (_) wildcard character The standard SQL
wildcard character used to specify a single character. Microsoft
Access 2010 uses a question mark (?) character instead of the
underscore character.

SQL WHERE clause The part of an SQL SELECT statement that
specifies conditions used to determine which rows are in the
query results.

SQL view A relation that is constructed from a single SQL SELECT
statement. SQL views have at most one multivalued path. The
term view in most DBMS products, including Access, Oracle
Database, and SQL Server, means SQL view.

SQL*Plus A command line utility in Oracle Database 11g.
Standard Generalized Markup Language (SGML) A standard

means for tagging and marking the format, structure, and content
of documents. HTML is an application of SGML. XML is a subset
of SGML.

Star schema In a dimensional database or an OLAP database, the
structure of tables such that every dimension table is adjacent to
the table storing the measure values. In the star schema, the
dimension tables are often not normalized. Contrast with
snowflake schema.

Statement-level consistency All rows impacted by a single SQL
statement are protected from changes made by other users
during the execution of the statement. Contrast with transaction-
level consistency.

Static cursor A cursor that takes a snapshot of a relation and
processes that snapshot.

Static report In reporting systems, a report that is prepared once
from underlying data and does not change when the underlying
data change. Contrast with dynamic report.

Stock-keeping unit (SKU) A unique identifier for each product
available from a vendor.

Stored procedure A collection of SQL statements stored as a file
that can be invoked by a single command. Usually, DBMS
products provide a language for creating stored procedures
that augments SQL with programming language constructs.
Oracle provides PL/SQL for this purpose; SQL Server provides
T-SQL; MySQL also adds procedural capabilities, but does not
use a separate name for these additions. With some products,
stored procedures can be written in a standard language such
as Java. Usually, stored procedures are stored within the data-
base itself.

Strong entity In an entity-relationship model, any entity whose
existence in the database does not depend on the existence of any
other entity. See also ID-dependent entity and weak entity.

Strong password A password that meets requirements intended to
make it difficult to unencrypt.

Structured Query Language (SQL) A language for defining the
structure and processing of a relational database. It can be used as
a stand-alone language or it may be embedded in application
programs. SQL has been adopted as a national standard by the
American National Standards Institute (ANSI). The most common
version used today is SQL-92, the version adopted by ANSI in 1992.
SQL was originally developed by IBM.

Structured schema An XML schema that is not flat.
Stylesheet A document used by XSLT to indicate how to transform

the elements of an XML document into another format.
Subquery In SQL, a SELECT statement within another SELECT

statement.
Subtype In generalization hierarchies, an entity or object that is a

subspecies or subcategory of a higher-level type, called a super-
type. For example, ENGINEER is a subtype of EMPLOYEE.

SUM In SQL, a function that adds up a set of numbers. See SQL built-in
functions.

Supertype In generalization hierarchies, an entity or object that
logically contains subtypes. For example, EMPLOYEE is a super-
type of ENGINEER, ACCOUNTANT, and MANAGER.

Supervised data mining A form of data mining in which an analyst
creates a prior model or hypothesis and then uses the data to test
that model or hypothesis.

Support In market basket analysis, the probability that two items will
be purchased together.

Surrogate key A unique, system-supplied identifier used as the
primary key of a relation. It is created when a row is created, it
never changes, and it is destroyed when the row is deleted.

602 Glossary

The values of a surrogate key have no meaning to the users and are
usually hidden within forms and reports.

System change number (SCN) In Oracle Database, a database-
wide value that is used to order changes made to database
data. The SCN is incremented whenever database changes are
committed.

System data source An ODBC data source that is local to a single
computer and can be accessed by that computer�s operating
system and select users of that operating system.

Table A database structure of rows and columns to create cells that
hold data values. Also known as a relation in a relational database,
although strictly only tables that meet specific conditions can be
called relations. See relation.

TableName.ColumnName syntax A syntax used to indicate which
table a column is associated with. For example, CUSTOMER.LastName
indicates the LastName column in the CUSTOMER table.

Tabular data provider An OLE DB data provider that presents data
in the form of rowsets.

Ternary relationship A relationship between three entities.
Third normal form (3NF) A relation in second normal form that has

no transitive dependencies.
Three-tier architecture A system of computers having a database

server, a Web server, and one or more client computers. The
database server hosts a DBMS, the Web server hosts an HTTP
server, and the client computer hosts a browser. Each tier can run
a different operating system.

Time dimension A required dimension table in a dimensional
database. The time dimension allows the data to be analyzed over
time.

Transaction (1) A group of actions that is performed on the database
automatically; either all actions are committed to the database, or
none of them are. (2) In general, the record of an event in the
business world.

Transaction isolation level The degree to which a database trans-
action is protected from actions by other transactions. The 1992
SQL standard specified four isolation levels: Read Uncommitted,
Read Committed, Repeatable Reads, and Serializable.

Transaction-level consistency All rows impacted by any of the
SQL statements in a transaction are protected from changes
during the entire transaction. This level of consistency is expen-
sive to enforce and reduces throughput. It may also mean that a
transaction cannot see its own changes. Contrast with statement-
level consistency.

Transact-SQL (T-SQL) A Microsoft-supplied language that is part of
SQL Server. It augments SQL with programming language structures
such as while loops, if-then-else blocks, and other such constructs.
Transact-SQL is used to create stored procedures and triggers.

Transactional system A database dedicated to processing transactions
such as product sales and orders. It is designed to make sure that only
complete transactions are recorded in the database.

Transitive dependency In a relation having at least three attributes, for
example, R (A, B, C), the situation in which A determines B, B deter-
mines C, but B does not determine A.

Tree A collection of records, entities, or other data structures in which
each element has at most one parent, except for the top element,
which has no parent.

Trigger A special type of stored procedure that is invoked by the DBMS
when a specified condition occurs. BEFORE triggers are executed
before a specified database action, AFTER triggers are executed
after a specified database action, and INSTEAD OF triggers are
executed in place of a specified database action. INSTEAD OF
triggers are normally used to update data in SQL views.

T-SQL See Transact-SQL.
Tuple Same as row.
Two dashes (- -) Symbols used to indicate a single-line comment in

a stored procedure or a trigger in SQL Server 2008, Oracle Data-
base 11g, and MySQL 5.1.

Two-phase locking The procedure by which locks are obtained and
released in two phases. During the growing phase, the locks are
obtained; during the shrinking phase, the locks are released. After a
lock is released, no other lock will be granted that transaction. Such a
procedure ensures consistency in database updates in a concurrent-
processing environment.

Two-tier architecture In a Web-based database processing environ-
ment, the Web server and the DBMS are running on the same
computer. One tier is for the Web browsers, and one is for the Web
server/DBMS computer.

Type domain In IDEF1X, a domain that is defined as a subset of a
base domain or another type of domain.

Type-valid document An XML document that conforms to its
Document Type Declaration (DTD). Contrast with not-type-valid
document.

UML See Unified Modeling Language.
Unified Modeling Language (UML) A set of structures and tech-

niques for modeling and designing object-oriented programs and
applications. It is a set of tools for object-oriented development
that has led to a development methodology. UML incorporates
the entity-relationship model for data modeling.

UNIQUE constraint In SQL, a constraint that specifies that the
values in a column must be unique.

Unsupervised data mining A form of data mining in which
analysts do not create a prior model or hypothesis, but rather let
the data analysis reveal a model.

Updatable view An SQL view that can be updated. Such views are
usually very simple, and the rules that allow updating are normally
quite restrictive. Nonupdatable views can be made updatable by
writing application-specific INSTEAD OF triggers.

User A person using an application.
User data source An ODBC data source that is available only to the

user who created it.
User group A group of users. See user.
Variable A value that may be assigned or calculated by a stored

procedure or a trigger in SQL Server 2008 R2, Oracle Database 11g,
and MySQL 5.5.

VBScript An easily learned, interpreted language used for both Web
server and Web client applications processing.

WAMP AMP running on a Windows operating system. See AMP.
Weak entity In an entity-relationship model, an entity whose logical

existence in the database depends on the existence of another
entity. All ID-dependent entities are weak, but not all weak
entities are ID-dependent.

Web portal A Web page designed to be an entrance point for a Web
site. It may display information from several sources, and may
require authentication to access.

World Wide Web Consortium (W3C) The group that creates,
maintains, revises, and publishes standards for the World Wide
Web including HTML, XML, and XHTML.

Wwwroot folder The root folder or directory of a Web site on a
Microsoft IIS Web server.

x..y cardinality format [UML] The symbology format used in UML
E-R diagrams to document minimum and maximum cardinalities.
X records the minimum cardinality, and y records the maximum
cardinality.

XHTML The Extensible Hypertext Markup Language. A reformulation
of HTML to XML standards of well-formed documents.

XML (Extensible Markup Language) A standard markup
language that provides a clear separation between structure,
content, and materialization. It can represent arbitrary hierarchies
and hence can be used to transmit any database view.

XML Namespaces A standard for assigning names to defined
collections. X:Name is interpreted as the element Name as
defined in namespace X. Y:Name is interpreted as the element
Name as defined in namespace Y. Useful for disambiguating
terms.

Glossary 603

XML Schema An XML document that defines the structure of other
XML documents. Extends and replaces Document Type Declara-
tions (DTDs).

XPath A sublanguage within XSLT that is used to identify parts of an
XML document to be transformed. Can also be used for calcula-
tions and string manipulation. Commingled with XSLT.

XPointer A standard for linking one document to another. XPath has
many elements from XPointer.

XQuery A standard for expressing database queries as XML
documents. The structure of the query uses XPath facilities, and

the result of the query is represented in an XML format.
Currently under development and likely to be important in
the future.

XSL (XSLT Stylesheet) The document that provides the {match,
action} pairs and other data for XSLT to use when transforming
an XML document.

XSLT (Extensible Style Language: Transformations) A program
(or process) that applies XSLT Stylesheets to an XML document to
produce a transformed XML document.

604

I ndex

Symbols
.= (PHP concatenation operator), 490
<?php and ?>, PHP statements included between, 484
/* and */, SQL comments enclosed in, 39, 405
; (semicolon) for terminating SQL statements, 39
<identifying> used to label weak entities, D5
+ (concatenation operator) in SQL Server 2008 R, 67
� � (single quotation marks) in SQL WHERE

clause, 41�42, 43
(pound symbol) Microsoft Access 2010 dates

enclosed with, 43
* (asterisk) Microsoft Access asterisk wildcard

character, 61, 62, 64
? (question mark) Microsoft Access wildcard

character, 62
<nonidentifying> used to label weak entities, D5
<<Per-sistent>> used to label entities, D6
% (percent sign) SQL wildcard character, 60, 62
_ (underscore) SQL wildcard character, 62
- - (two dashes) Transact-SQL comments

enclosed in, 405

A
Abstraction, 464
*.accdb file, A7
Access Database Engine (ADE), 14, 20
Access, See Microsoft Access
ACID transaction, 351
Action, 226
Active Data Objects (ADO), 452, 466�467
Active repository, 364
Active Server Pages (ASP), 452
Ad-hoc queries, 31�32
ADO.NET, 466�467

definition of, 452
object model, 467�470
values in, 468

ADO.NET Command object, 469
ADO.NET Connection object, 467
ADO.NET DataAdapter object, 469
ADO.NET Data Provider, 467
ADO.NET DataReader, 469
ADO.NET DataSet

advantages of, 469
definition of, 467�468
disadvantages of, 470

ADO.NET Entity Framework, 462
After image, 360�361
Alert, 569
Alternate key (AK), 206
American National Standards Institute (ANSI), 37
AMP (Apache-MySQL-PHP), 452
Anomalies

deletion, 112
eliminated from multivalued dependency, 114,

126�130
insertion, 112
modification, in normal forms, 112�113
update, 112

ANSI-89 SQL. See SQL-89
ANSI-92 SQL. See SQL-92
Apache Tomcat, 473�474
Apache Web server, 452
Applet, 472
Application program interface (API), 452
Applications. See Database applications
Archetype/instance pattern, 173, 177�179, 215�216
Archetype/version objects, G37�39
ARTIST table, creating, 252�254
ASP.NET, 452
Association objects, G30�34
Association pattern, 173�175
Association relationships, 212�214

Asterisk (*)
as shorthand notation for querying columns

of tables, 40
wildcard character in Microsoft

Access 2010, 61, 62, 64
Atomic, defined, 351
Atomic transactions, 342�345
Attribute, 105, 157
Attribute instances, G8
AutoNumber, A14�15
Available Databases drop-down list, 49
AVG function, 63, 64

B
Backing up database data, 11�12, 13
Backup and recovery in SQL Server 2008 R2, 437�440

backing up database, 438�439
database maintenance plans, 440
recovery models, 439
restoring database, 439�440

Base Class Library, 462
Base domains in IDEF1X, C11
Before image, 360�361
BEGIN . . . END keywords, 405
Binary relationships, 159, H12�21

complex networks, H19�20
record relationships, H12�13
representations, summary of, H20�21
simple networks, H17�19
trees, H14�17

Blocks, H5
Boyce-Codd Normal Form (BCNF), 113, 114, 116�130

eliminating anomalies from functional
dependencies, 118�126

eliminating anomalies from multivalued
dependencies, 126�130

not used in updatable database design, 141�142
Step-by-Step method, 118, 119�121
Straight-to-BNCF method, 121

B-trees, H9�11
Bulk insert in SQL INSERT statement, 264
Bulk updates in SQL UPDATE statement, 270
Business intelligence (BI) system, 31, 549�550

ad-hoc queries in, 31�32
data mining applications, 577�582
data warehouses, 551�562
extracted data sets in (Cape Codd Outdoor Sports

example), 33�37
vs. operational systems, 550
reporting systems, 563�577

Business process, B6
definition of, B6�7
information systems created from, B8
information systems included in, B7�8
information systems supported by, B7

Business process modeling notation (BPMN),
B13�14, F33�34

Business rules, B24�25
Bytecode interpreter, 471

C
Callable Statement object, 472
Candidate key, 110, 206
Cardinality

attribute, G7
definition of, 160
maximum, 160�161
minimum, 161�162
reducing (with data loss), 330

Careers in database technology, 19�20
Cascading deletion, 227
Cascading update, 227

Casual relationship, 256
Categorization clusters, C7�10

complete, C8�9
definition of, C7
discriminator in, C8
incomplete, C9�10
mutually exclusive, C8

Categorization relationships in IDEF1X, C7�10
clusters, C7�10
definition of, C7
IS-A relationship, C8

Category entities in IDEF1X, C7
Character data, A14
CHECK constraint, 249
Checkpoint, 362
Child, 160
Child constraint in SQL Server 2008 R2, 425�431
Child in minimum cardinality design

actions on parent row, 228
actions when child is required, 226, 228
in database design problem (VRG example), 238
documenting, 232
parent mandatory and child mandatory

(M-M), 225�226
parent mandatory and child optional

(M-O), 225�226
parent optional and child mandatory

(O-M), 225�226
parent optional and child optional (O-O), 225�226

Circular list, H8
Class attributes, D7
Click-stream data, 553
Client/server applications, 15
Close button, 45, 46, 48
CLOSE CURSOR keywords, 406
Cluster analysis, 578�579
Clustered index, 391�392
Clusters in IDEF1X, C7�10
Cmdlets, 379
CODASYL Committee, 22
CODASYL DBTG, 22
Codd, E. F., 22
Collection, 464
College report, 186�187
Columns

adding and dropping in SQL ALTER statement, 261
adding NOT NULL columns, 325
computed results displayed by SQL views, 281�282
definition of, 3
dropping, 325�326
general-purpose remarks, 148�149
hidden by SQL views, 280�281
in MySQL E-R (EER) diagram tables

characteristics of, E8
connecting with relationships using existing,

E15�16
creating, E12�15

naming, 3, 263�264
properties, specifying, 206�208

in database design problem (VRG example),
238�240

data constraints, 208
data type, 206�207
default value, 208
null status, 206

of tables
duplicate, eliminating, 40
order in, specifying from single table, 39�41
reading, from single table, 38�39, 42�43
shorthand notation for querying, 40

Command-line utility, 379
Command tabs in Microsoft Access 2010, A8�9
Common Language Runtime (CLT), 462
Competitive strategy, B5�6

Index 605

Complete categorization clusters, C8�9
Complex networks, H14, H19�20
Component design step in SDLC, B11
Component Object Model (COM), 452, 463
Composite determinant, 107
Composite functional dependency, 107
Composite identifier, 158
Composite key, 110
Composite objects, G13�16
Composite primary key, A21
Compound objects, G16�21

in relational structures, G19�21
Compound semantic objects, G16�21
Computer-based information system, B5
Concatenation operator (+) in SQL Server 2008 R, 67
Concurrency, 11
Concurrency control, 341�354

atomic transactions, need for, 342�345
consistent transactions, 351�352
cursor type, 353�354
implicit and explicit commit transaction, 350�351
lock characteristics, declaring, 349�350
optimistic vs. pessimistic locking, 348�349
resource locking, 346�347
in SQL Server 2008 R2, 431�433

cursor currency, 432
locking hints, 432�433
transaction isolation level, 432

transaction isolation level, 352
Concurrent transaction, 342
Concurrent update problem, 345
Confidence, 581
Conformance levels

ODBC, 454�456
SQL, 456

Conformed dimension, 561
Connections object browser, 52
Connect to Server dialog box, 376
Consistent transaction, 351
Constraints

adding and dropping, 262, 326
in ADO.NET, 468
changing, 326
CHECK, 249
creating, 256�258
FOREIGN KEY, 249
implementing, 257�258
interrelation, 257
intrarelation, 256�257
NOT NULL, 249
NULL, 249
PRIMARY KEY, 249
SQL ADD CONSTRAINT clause, 262
SQL DROP CONSTRAINT clause, 262
triggers used to enforce, 291�292
UNIQUE, 249

Contextual command tabs in Microsoft Access 2010, A9
Control-of-flow language in SQL Server 2008 R2,

405�406
Correlated subquery, 82, 315�320

common trap, 317
definition of, 315
double NOT EXISTS query, 319�320
EXISTS and NOT EXISTS, 318
functional dependencies checked with, 317�318
NOT EXISTS in double negative, 319
vs. regular subquery, 316�317
rows with same title found with, 316
searching for multiple rows with given title, 315�316

COUNT function, 63, 64�65
Create command tab, 45
Crow�s foot symbol, 163
CRUD, 38
Current values, 468
Curse of dimensionality, 553
Cursor, 288

definition of, 353
in OLE DB, 466
type in concurrency control, 353�354

Cursor currency in SQL Server 2008 R2, 432
Cursor statements in SQL Server 2008 R2, 406�407
Customer browser behavior, tracking, 7
Customer relationship management (CRM) system, 6
Customer service, B6

D
Data, 3

definition of, B4
indexes used to sort and search, 11, 13

vs. information, 5
integration, 22

Data administration, 339
See also Database administration (DBA)

Database, 12
careers in database technology, 19�20
characteristics of, 3�8
examples of (See Database applications)
first, development of, 22
information created by, 5�6
managed with SQL Server 2008 R2, 373�445
metadata in, 12�13
naming conventions in, 3
purpose of, 3
relationships of data in, 4�5
self-describing, 12
small vs. large, 8
in SQL Server 2008 R2, 376�378
systems (See Database systems)
type of, most common, 3
uses, 7

Database administration (DBA), 339�341
database structure, managing, 340�341
definition of, 339�340

Database administrator, 19�20, 340
Database applications, 8

application logic in SQL Server 2008
R2, 404�431

stored procedures, 408�416
Transact-SQL, 405�407
triggers, 416�431

application program interface (API), 452
customer browser behavior track with, 7
data mining, 7�8
digital dashboards, 7�8
e-commerce, 7
functions of, 9�11

application control, 10�11
application logic executed with, 10
forms created and processed with, 9
reports created and processed with, 10
user queries processed with, 9�10

HTTP and, 21, 24
multiuser, 6�7
process of getting and putting database data, 15
single-user, 6
SQL and, 9�11

Database backup and recovery, 322�323, 359�362
recovery via reprocessing, 360
recovery via rollback/rollforward, 360�362

Database design, 16�19, 17
database migration in, 18
database redesign, 18�19
data modeling with entity-relationship model,

155�202
data models transformed into, 203�244
definition of, 203, E6
as deliverable, B11
from existing data, 17
for new information systems, 17�18
normal forms, 112�131
normalization used in, 137�154
poor, consequences of, 16
problems, common, 145�149

general-purpose remarks column, 148�149
inconsistent values, 147
missing values, 148
multivalue, multicolumn problem, 145�147

relational model, 102�112
Database diagram in SQL Server 2008 R2,

389�390
Database integration, 18�19
Database management system (DBMS)

data repository, maintaining, 363�364
definition of, 8
functions of, 11�12
managing, 362�364
overview of, 11�12
products

CODASYL DBTG model used to develop, 22
early, 21, 22
enterprise-class database system, 15�16
microcomputer, 21, 23
object-oriented, 21, 23
open source, 21, 24
personal database system, 13�14
proprietary, 24
relational, 21, 22�23
vendors of, 11

reserved word, 235

security, 355�356
guidelines, 356�358

SQL statements in, 9�11
Database migration, 18
Database Model Diagram in Microsoft Visio

2010, F4�33
creating, F4�9
entities/tables created in, F11�15
naming and saving, F9�11

Database owner (dbo), 386, 408, 435
Database principals, 434
Database processing, history of, 20�24

early years of, 20�22
eras of, listed, 21
post-relational developments, 23�24
relational model, 22�23

Database processing with XML, 509�548
Database redesign, 18�19, 313�336

existing database, analyzing, 320�323
forward engineering, 331
need for, 314
relationship cardinalities and properties, changing,

326�330
SQL statements for checking functional

dependencies, 314�320
table names and table columns, changing,

323�326
tables and relationships, adding and deleting, 331

Database save, 360
Database security, 354�359

application security, 358�359
DBMS security, 355�358
rights and responsibilities, processing, 354�355
SQL injection attack, 359

Database structure, managing, 340�341
configuration control, 340
documentation, 341

Database systems
components of, 8�13

database, 12�13
database applications and SQL, 9�11
DBMS, 11�12

enterprise-class, 15�16
personal, 13�14

Database Task Group (DBTG), 22
Database technology

careers in, 19�20
working domains of, 20

Database Tools, A8
DataColumns Collection, 468
Data constraints

definition of, 208
triggers for enforcing, in SQL Server 2008 R2,

420�422
See also Constraints

Data consumer, 464
Data control language (DCL), 37, 38, 246
Data definition language (DDL), 37, 38, 246
Data entry form, in Microsoft Access 2010, A22
Data integrity problems, 113, 128
Data Language/I (DL/I), 22
Data manipulation language (DML), 37, 38, 246
Data mart, 17, 33, 554�555
Data mining application, 577�582

database, 7�8
definition of, 550�551
market basket analysis, 580�582
supervised, 580
techniques, 580
unsupervised, 578�579

Data model, 17, 156, B11, E6
Data modeling with entity-relationship model, 155�202

patterns in forms, reports, and E-R models,
168�185

process of, 185�191
college report, 186�187
department/major report, 189
department report, 187�188
student acceptance letter, 189�191

purpose of, 156
Data models transformed into database

design, 203�244
minimum cardinality design, 225�233
normalization, verifying, 208�209
relationships created, 209�225
tables created for entities, 204�209
See also View Ridge database

Data provider, 464
DataRelationCollection, 469
DataRelations, 469

606 Index

Data repository
definition of, 364
maintaining, 363�364

DataRow Collection, 468
Data sheet, in Microsoft Access 2010, A22
Datasheet view in Microsoft Access 2010, A22�25
Data structures for database processing, H1�28

binary relationships, representing, H12�21
B-trees, H9�11
flat file, H3�5
indexes, H8�9
introduction to, H3
linked lists, H5�8
record addressing, H5
secondary keys, representing, H22�25
summary of, H11�12

Data sublanguage, 37
DataTableCollection, 468
DataTable object, 468
Data type, 206�207
Data warehouse, 551�562

components of, 32�33, 551�554
data mart as, 33
vs. data marts, 554�555
data purchased for vendors, 554
DBMS, 33
definition of, 17, 32, 551
dimensional database, 555
metadata database, 552
operational data in, problems with, 552�554

Date dimension, 555
DBA, 340

See also Database administration (DBA)
DBase, 21, 22, 23
DBMS. See Database management system (DBMS)
Dbo schema, 386, 408, 435
Deadlock, 347
Deadly embrace, 347
DEALLOCATE CURSOR keywords, 406
Decision, defined, B4
Decision support system (DSS), 550
Decision tree analysis, 580
DECLARE CURSOR keywords, 406
Default for new databases check box, 44
DEFAULT keyword, 249
Default values, 208

creating, 256�258
implementing, 257

Default Web Site folder, 477
Degree of relationship, 159
DeleteCommand object, 469
Deletion anomaly, 112
Delimited identifier, 385
Deliverables, B9
Denormalize, 142�143
Department/major report, 189
Department report, 187�188
Dependency graph, 322
Design command tab, 46
Determinant

composite, 107
definition of, 106
of unique functional dependency, 110
unique values for, 110

Diamond, in IDEF1X, C6
Differential backup, 438
Digital dashboard, 7�8, 568
Dimensional database

conformed dimensions, 561
definition of, 555
illustrating, 560
multiple fact tables, 560�561
star schema, 555�560

Dimension table, 555
Dirty data, 552
Dirty read, 352
Discriminator, 168, C8
Distinct entities represented by objects, G5
Distributed database, 364, 452

challenges of, 365�366
definition of, 364
types of, 364

Distributed database processing
overview of, 364�366
in SQL Server 2008 R2, 440

Distributed two-phase locking, 365�366
Documentation in managing database structure, 341
Documents button, 53
Documents Folder button, 53
Document type declaration (DTD), 479, 511�512
Domain attribute, G10

Domain constraint, 208
Domain/key normal form (DK/NF), 113, 114, 130�131
Domains in IDEF1X

ambiguity reduced by, C10�11
base, C11
definition of, C10
hierarchy, C12
type, C11
useful nature of, C11

Double NOT EXISTS query, 319�320
Drill down, 576
Durable transaction, 351
Dynamic cursor, 353, 354
Dynamic report, 568

E
Eclipse, 475�477
Eclipse IDE, 480�481
Eclipse PDT (PHP Development Tools) Project, 481
E-commerce database applications, 7, 15
Editions, 374�375
Enforce Referential Integrity check box, A27
Enterprise-class database systems, 15

components of, 15
database applications in, 15
DBMS in, 15�16
vs. personal, 13�16

Enterprise data warehouse (EDW) architecture, 554
Enterprise resource planning (ERP), 6�7
Entities, 103

definition of, 156�157
ID-dependent, 164�165
in IDEF1X, C4�7
non-ID-dependent weak, 165�167
strong, 164
subtype, 167�168
supertype, 167�168
UML representation of, D4�6
weak, 164

Entity class, 156�157, D4
Entity Data Model (EDM), 462
Entity instance, 157
Entity-relationship (E-R) data modeling, 18
Entity-relationship (E-R) diagrams, 162
Entity-relationship (E-R) model, 156�168

attributes, 157
definition of, 156
entities, 156�157
entity-relationship (E-R) diagrams, 162
ID-dependent entities, 164�165
identifiers, 158
maximum cardinality, 160�161
minimum cardinality, 161�162
non-ID-dependent weak entities, 165�167
relationships, 158�160
strong entities, 164
subtype entities, 167�168
variations of, 162�164

IE Crow�s Foot model, 162, 163�164
Information Engineering (IE) model, 162
Integrated Definition 1, Extended (IDEF1X), 162
Unified Modeling Language (UML), 162

weak entities, 164
See also Data modeling with entity-relationship

model
Equijoin, 80
Error messages

in defining tables, 255, 259
null values and, 148
in SQL built-in functions, 66, 69
in SQL query in SQL Server Management Studio, 50
in stored procedures, 408, 413
syntax, 259
in updating values, 293
in VRG table structure, 386
in WORK_addWorkTransaction procedure, 296

Exclusive lock, 346
Exclusive subtype, 168, G36
Execute button, 49, 50, 51, 52, 53
Execute Current SQL Statement in Connected Server

button, 54, 55, 56
Existing database, analyzing, 320�323

database backup and test databases, 322�323
dependency graphs, 322
reverse engineering, 320�322

Explicit lock, 346
Extended E-R model terms vs. IDEF1X terms, C4
Extensible Markup Language (XML)

benefits of, 21
definition of, 478, 510

development of, 24
documents created from database data, 525�537

multitable SELECT with FOR XM, 530�534
schema for All CUSTOMER purchase, 534�537,

538�539
schema with two multivalued paths, 537, 540�541
SQL SELECT . . . FOR XML statement, 525�529

in enterprise-class database systems, 15
importance of, 21, 510, 537�543
industry standards, 542, 543�545
as markup language, 511�516

document type declaration (DTD), 511�512
materializing XML documents with XSLT,

512�516
NoSQL movement, 24, 545
not-type-valid document, 512
problems with, 24
Schema, 516�524

for All CUSTOMER purchase, 534�537, 538�539
definition of, 516
elements and attributes, 517�519
flat vs. structured, 519�521
global elements, 521�524
graphical representation of, 534
with two multivalued paths, 537, 540�541
validation, 517

SQL support for, 37
style sheet, 513�516
type-valid document, 512
Web service applications, 21, 24

Extract, Transform, and Load (ETL) System, 33,
551�552

Extracted data sets (Cape Codd Outdoor Sports
example), 33�37

common nature of, 37
ORDER_ITEM data, 35�36
process of, 33�35
RETAIL_ORDER data, 35
schema of, 36�37
SKU_DATA table, 36

F
Facebook, 24
Fact table, 555
Feature Pack in SQL Server 2008 R2, 375
FETCH keyword, 406
Fifth normal form (5NF), 113, 114, 130
File command tab, 43
File data source, 456�457
File �Open SQL Query menu command, 56
File �Save as command, 55, 56
Finished goods, B6
Finished goods inventory, B6
Firm infrastructure management, B6
First normal form (1NF), 113, 114
Five forces model, B5
Flat file, H3�5

definition of, H3
processing in multiple orders, H4�5

Flat schemas, 519�521
Foreign key, 5, 111�112, A5
FOREIGN KEY constraint, 249
ForeignKeyConstraint, 468
Forms in Microsoft Access 2010, A35
Form Wizard, in Microsoft Access 2010, A35
For-use-by pattern, 182�183
Forward engineering, 331
Forward only cursor, 353, 354
Fourth normal form (4NF), 113, 114, 130
F score, 563
Full backup, 438
Functional dependencies, 106�110

composite, 107
correlated subquery used to check, 317�318
definition of, 106
determinants of, unique, 110
finding, 107�110
in ORDER_ITEM table, 109�110
in SKU_DATA table, 107�108
SQL statements for checking, 314�320
that are not equations, 106�107
in updatable database design, 139

Functionally dependent, 106, 114�115

G
Gantt chart, B9
Gates, Bill, 24
General-purpose remarks column, 148�149
Genetic entities in IDEF1X, C7

Index 607

GO command, 416
Graphical user interface (GUI), 32
Group attribute, G6
Group identifiers, G10
Growing phase, 347
GUI displays in SQL Server 2008 R2

overview of, 380�381
reviewing table structure in, 387�389
viewing existing view in, 402�403
viewing table constraints in, 388�389

H
HAS-A relationship, 161, D4�D6
HTML. See Hypertext Markup Language (HTML)
HTTP, 21, 24
Http://localhost, 477
Human resources management, B6
Hybrid objects, G24�30
Hypertext Markup Language (HTML)

definition of, 477
document tags, 477
in PHP, 477�478
syntax rules, 477

I
IBM, 11
ID-dependent entity, 164�167

definition of, 164
in entity-relationship model, 164�167
patterns, 173�179
relationship patterns in, 173�179
relationships created in database design, 212�216

archetype/instance pattern, 215�216
association relationships, 212�214
multivalued attributes, 215

IDEF1X standard, C1�13
definition of, C3
domains, C10
entities, C4�5
genetic entities in, C7
introduction to, C3�4
key terms, C12
reasons for learning, C3
relationships, C5�10
terms in, C4�5

Identifier, 158
Identifying connection relationships, C6�7
Identifying relationship

definition of, 165
patterns, 179�182

<identifying> used to label weak entities, D5
IDENTITY(,) property, 249
IDMS, 22
IE Crow�s Foot model, 162, 163�164
IF . . . ELSE keywords, 405
Iisstart.htm, 477
Implementation in OLE DB, 465
Implementation step in SDLC, B11�12
Implicit lock, 346
Inbound logistics, B6
Inclusive subtype, 168
Incomplete categorization clusters, C9�10
Inconsistent read problem, 345
Inconsistent values, 147
Indexes

in data structures for database processing, H8�9
definition of, H8
overview of, 391�392
secondary keys represented with, H23�25
in SQL Server 2008 R2, 391�292
tree representation, H17

Index.html, 478�480
creating, 478�480
definition of, 478

Index set, H9
Industry structure, B5
Inetpub folder, 476
Information, 5

vs. data, 5
defined, B4
tables used to determine, 5�6

Information Engineering (IE) model, 162
Information system, B5
Inheritance, G35
Inner join, 80, 277
InsertCommand object, 469
InsertCustomerAndInterests, 408�411
InsertCustomerWithTransaction, 411�416
Insertion anomaly, 112

Installing, 374�375
Instance, 3
Instance of object class, G5
Integrated Definition 1, Extended (IDEF1X), 162
Integrated Development Environment (IDE), 379,

480�481
Integrated tables, 12
Intel, 23
IntelliSense Enabled button, 49
International Organization for Standardization

(ISO), 37
Internet Information Services (IIS), 452, 476
Internet Information Services Manager, 476
Interrelation constraint, 208, 257
Intersection record, H19
Intersection table, 211�212
Intrarelation constraint, 208, 256�257
Inverted list, H8
IS-A attribute, G35
IS-A relationship, 168, C8
Isolated transaction, 351
Isolation levels, 352

J
Java Database Connectivity (JBDC)

components, 473
definition of, 452
driver types, 471�472
JDBC Connection object, 472
JDBC DriverManager, 472
JDBC ResultSetMetaData object, 472
JDBC ResultSet object, 472
JDBC Statement object, 472
using, 472

Java Data Objects (JDO), 452
Java platform, 471�474

Apache Tomcat, 473�474
definition of, 452
Java Server Pages (JSP) and servlets, 473
JDBC, 471�473

Java programming language, 452
JavaServer Page (JSP), 452, 473
Java virtual machine, 471
JDBC Connection object, 472
JDBC DriverManager, 472
JDBC ResultSetMetaData object, 472
JDBC ResultSet object, 472
JDBC Statement object, 472
Joining the two tables, 80�81
Join operation, 80
Joins, 272�277

definition of, 80
equijoin, 80
inner, 277
inner join, 80
outer joins, 274�277
querying multiple tables with, 78�82
SQL JOIN ON syntax, 272�273
SQL JOIN . . . ON syntax used to write, 82
SQL LEFT JOIN syntax, 275
SQL left outer join, 275
SQL outer join, 274�275
SQL RIGHT JOIN syntax, 275�276
SQL right outer join, 275�276
vs. subqueries, 82

Joint Engine Technology (Jet), 14, 16

K
Key, 110�112

alternate (AK), 206
candidate, 206
candidate key, 110
composite key, 110
in database design problem (VRG example),

235�236
definition of, 110
foreign key, 111�112
in Microsoft Access 2010, A15

composite primary, A21
foreign, A5
primary, A5
surrogate, A15

overlapping candidate, 117
primary, H22
primary key, 110�111
secondary, H22
secondary, representing, H22�25

indexes, H23�25
linked lists, H22�23

nonunique, H22, H24�25
unique, H22, H23�24

surrogate, 205
surrogate key, 111

Keyset cursor, 353, 354
Knowledge worker, 19�20

L
LAMP, 452
Language Integrate Query (LINQ), 462
LibreOffice, 14, 23
LibreOffice Base, 14
Lift, 581
Line-item pattern, 179�181
Linked list

definition of, H5�8
simple networks represented by, H17�19
trees represented by, H14�17
two-way, H8

Link field, H5
Lock, 346
Lock granularity, 346
Locking

characteristics, declaring, 349�350
distributed two-phase, 365�366
growing phase in, 347
optimistic vs. pessimistic locking,

348�349
resource locking, 346�347
shrinking phase in, 347
in SQL Server 2008 R2, 432�433
two-phase, 346�347

Log, 360
Logical unit of work (LUW), 342
Logistic regression, 580
Lost update problem, 342, 345

M
Mandatory-to-mandatory (M-M) relationship

definition of, 161
in minimum cardinality design, 230�231
parent mandatory and child mandatory,

225�226
Mandatory-to-optional (M-O) relationship

definition of, 162
in minimum cardinality design, 228�229
parent mandatory and child optional, 225�226

Manufacturing operations, B6, B7
Many-to-many (N:M) relationship

definition of, 160�161
identifying, in MySQL E-R (EER) diagram tables,

E15�16, E21
nonidentifying, in Microsoft Visio 2010,

F19, F20, F22
recursive, created in database design, 221
in recursive relationships, 184�185
strong entity, created in database design,

210�212
in strong entity patterns, 171�173

Market basket analysis
in data mining, 580�582
definition of, 580
SQL used for, 582

Markup language, XML as, 511�516
document type declaration (DTD), 511�512
materializing XML documents with XSLT,

512�516
MAX function, 63, 64
Maximum cardinalities, 160�161, 328

changing
1:1 relationship to 1:N relationship, 328
1:N relationship to N:M relationship,

328�330
in semantic objects attributes, G7

*.mdb file, A7
Measure, 558
Metadata, 12�13
Methods, 366, 464
Microcomputer DBMS products, 21, 23
Microsoft Access, 11

application generator in, 13, 47
components of, 14
connecting to SQL Server 2008 R2, 440
database creation, 28�30
DBMS engine in, 14, 38, 43

replacing with SQL Server, 14
hiding database technology from users, 14
overview of, 13�14
as personal database system, 13

608 Index

Microsoft Access 2010, A1�41
asterisk (*) wildcard character

after COUNT function, 64
multiple characters represented with, 61, 62
for trailing spaces in Access, 62

closing database and exiting, A10�11, A36
creating database, A5�8
data types, A14
dates enclosed with # symbol, 43
forms and reports, A35
introduction to, A1�5
key terms, A37
Microsoft Office Fluent user interface, A8�10
opening existing database, A12�13
processing SQL statements in, 45�48

opening SQL query window and running
SQL query, 47�48

opening SQL query window in design view, 45�47
saving SQL query, 48

queries, A30�35
relationships, A5
submitting SQL statements to DBMS, 43�48

limitations of, 43�45
Microsoft Access 2010 tables

column characteristics, A22
creating, A13�22
inserting data (Datasheet view), A22�25
key, A5
modifying and deleting data (Datasheet view), A25
relationships created between, A26�30

Microsoft Access question mark (?) wildcard
character, 62

Microsoft Fox Pro, 23
Microsoft Jet SQL. See SQL-89
Microsoft Joint Engine Technology (Jet), 14, 16
Microsoft Office Fluent user interface, A8�10

command tabs, A8
contextual command tabs, A9
Navigation Pane, A9�10, A11
objects, A9
Quick Access Toolbar, modifying, A9, A10
Ribbon, A8, A9

Microsoft SQL CLR, 379
Microsoft SQL Server, defined, 11, 374
Microsoft SQL Server 2008 Download Trial

Software, 375
Microsoft SQL Server 2008 R2, 437�440

Access, connecting to, 440
application logic, 404�431
backup and recovery, 437�440
concurrency control, 431�433
database, creating, 376�378
database diagram, 389�390
databases managed with, 373�445
Database with Advanced Services options, 375
editions, 374�375
Feature Pack, 375
indexes, 391�392
installing, 374�375
Microsoft SQL Server Management Studio, 376, 377
processing database views in XML form, 440
relationship properties, viewing, 391
replication in, 440
security, 433�437
utilities, 378�383
View Ridge database tables, creating and

populating, 383�404
views, 396�404

Microsoft SQL Server 2008 R2 Management Studio, 375
Microsoft SQL Server Developer Edition, 374
Microsoft SQL Server Enterprise Edition, 374
Microsoft SQL Server Express Advanced, 375
Microsoft SQL Server Express Edition, 374
Microsoft SQL Server Management Studio, 376, 377
Microsoft SQL Server Standard Edition, 374
Microsoft Transaction Manager (MTS), 465
Microsoft Visio 2010, F1�37

Backstage View, F4, F5
BPMN used to create diagrams, F33�34
Categories Miscellaneous Page, F27
Categories Referential Action Page, F28
Category object, F8
Category to child connector object, F8
Database Model Diagram, F4�33
Database Model Diagram template, F5�7
Data Type drop-down list, F14
data types, F13
Dynamic connector, F8, F16, F17�F22
File command tab, F4
introduction to, F3�4
key terms, F35

Line Dialog Box, F21
Line Ends-Begin End, F21
New tab, F4
Parent to child category connector object, F8
primary key column, F13
Quick Access Toolbar, F8
Shapes window, F6�7, F9
Short-Cut menu, F20
starting, 4
stencil object, F6�8
table column characteristics, F10
View object, F8
Zoom controls, F8

Microsoft Visio 2010 table relationships, F16�33
Cardinality radio button, F27�28
Cascade radio button, F28
Child has parent [] Optional check box, F27
columns, F25�26
Crow�s feet, F32�33
Database command group, F31
Database command tab, F31
database document options, changing, F31�33
Database Document Options dialog box, F32
E-R database design with Association table, F30
E-R database design with Intersection table, F30
many-to-many (N:M) relationship, nonidentifying,

F19, F20, F22
one-to-many (1:N) relationship, ID-dependent

identifying, F19
one-to-many (1:N) relationship, identifying, F16
one-to-many (1:N) relationship, non-identifying,

F16�33
one-to-one (1:1) relationship, identifying, F16
Referential Action category page, F27�28
Relationship connector, F16, F23�31

Microsoft Visual FoxPro, 23
Microsoft Windows PowerShell, 379, 380
Microsoft Windows PowerShell utility, 379
MIN function, 63, 64
Minimum cardinalities, 161�162, 327�328

changing
on child side, 327�328
on parent side, 327

in semantic objects attributes, G7
Minimum cardinality design, 225�233

actions when child is required, 226, 228
actions when parent is required, 226, 227�228
complication in, 233
documenting, 231�232
mandatory-to-mandatory (M-M) relationship,

230�231
mandatory-to-optional (M-O) relationship, 228�229
optional-to-mandatory (O-M) relationship, 229�230
summary of, 233

Minimum cardinality enforcement action. See Action
Missing values (null value), 148
Mixed entities, 217�218
Mixed identifying patterns, 179�181
Mixed patterns, 181
Modification anomalies in normal forms,

112�113
Moore, Gordon, 23
M score, 563
Multiple fact tables, 560�561
Multiuser database applications, 6�7
Multiuser databases, managing, 338�372

concurrency control, 341�354
database administration, 339�341
database backup and recovery, 359�362
database security, 354�359
DBMS, managing, 362�364
distributed database processing, 364�366
object-relational databases, 366

Multivalue, multicolumn problem, 145�147
Multivalued attribute pattern, 173, 175�177
Multivalued attributes, 215
Multivalued dependencies, 102, 126�130

anomalies eliminated from, 114, 126�130
definition of, 126
examples of, 128
in updatable database design, 142

MUST constraint, 222
MUST COVER constraint, 222�223
MUST NOT constraint, 222�223
Mutually exclusive categorization clusters, C8
MySQL, 11
MySQL AB, 24
MySQL Community Server, 24, E3
MySQL Connector/ODBC, E3�5
MySQL E-R (EER) diagrams, creating, E6�16

blank, E9

completed, E22
new, E7

MySQL E-R (EER) diagrams, tables in, E11�15
columns in

characteristics of, E8
connecting with relationships using existing,

E15�16
creating, E12�15

connecting with relationships, E15�21
many-to-many (N:M) relationship, identifying,

E15�16, E21
one-to-many (1:N) relationship, identifying,

E15�16
one-to-many (1:N) relationship, non-identifying,

E15�16, E17�21
one-to-one (1:1) relationship, identifying, E15�16
one-to-one (1:1) relationship, non-identifying,

E15�16
using existing columns, E15�16

creating, E10�11
MySQL Installer for Windows, E4�5
MySQL Workbench database design tools, E1�23

database designs created in, E6�22
installing, E4�5
introduction to, E3�4
key terms, E22
starting, E5�6
workspace created in, E6

MySQL Workbench graphical user interface
(GUI) utility, E3

N
Navigation Pane in Microsoft Access 2010, A9�10, A11
Nested subtypes, G37
.NET Framework, 462�470

ADO, 466�467
ADO.NET, 466�467
ADO.NET object model, 467�470
definition of, 462
OLE DB, 463�466

Networks, 22
Neural network, 580
New Connection button, 52
New Query button, 49
New systems development for database

design, 17�18
Nonclustered index, 391�392
Non-ID-dependent entity

relationships created in database design, 217
weak, 165�167

Nonidentifying connection relationships, C5�6
Nonidentifying patterns, 179�181
Nonidentifying relationship, 165

vs. non-identifying relationship in Microsoft
Visio 2010, F16

<nonidentifying> used to label weak entities, D5
Nonintegrated data, 553
Non-prime attribute, 117
Nonrepeatable reads, 352
Nonspecific relationships, C7
Normal forms, 17, 112�131

Boyce-Codd normal form (BCNF), 113, 114, 116�130
definition of, 112
domain/key normal form (DK/NF), 113, 114,

130�131
fifth (5NF), 113, 114, 130
first (1NF), 113, 114
fourth (4NF), 113, 114, 130
history of, 113
modification anomalies and, 112�113
second (2NF), 113, 114�116
third (3NF), 113, 114, 115�116

Normalization, 17
advantages/disadvantages of, 139
categories of, 113�114
design problems, common, 145�149
read-only databases, designing, 142�145
Step-by-Step method, 118, 119�121
Straight-to-BNCF method, 121
table structure, assessing, 138�139
updatable databases, designing, 139�142
verifying in database design, 208�209

NoSQL movement, 24, 545
NOT NULL constraint, 249
Not-type-valid XML document, 512
NULL constraint, 249
Null status, 206
Null value, 148
Number, in Microsoft Access 2010, A14
Numeric, in Microsoft Access 2010, A14

Index 609

O
Object, 464
Object attributes. See Semantic object attributes
Object Browser, 54
Object class, 464, G5
Object class name, G5
Object Designers button, 44
Object diagram, G6
Object identifiers, G10
Object Linking and Embedding (OLE), 463
Object links. See Semantic object attributes
Object-oriented DBMS (OODBMS or ODBMS), 23, 366
Object-oriented programming (OOP), 23, 366
Object persistence, 366
Object-relational databases, 23, 366
Objects, 366

grouped into object classes, G5
in Microsoft Access 2010, A9
in semantic object model, G5, G11�39

Objects views, G10�11
ODBC. See Open Database Connectivity (ODBC)
OK button, 44, 48
OLAP. See OnLine Analytical Processing (OLAP)
OLE DB, 463�466

definition of, 452
goals of, 464�465
interface in, 465
terminology, 465�466

One-to-many (1:N) relationship
definition of, 160
ID-dependent identifying, in Microsoft

Visio 2010, F19
identifying, in Microsoft Visio 2010, F16
identifying, in MySQL E-R (EER) diagram tables,

E15�16
nonidentifying, in Microsoft Visio 2010, F16�33
non-identifying, in MySQL E-R (EER) diagram

tables, E15�16, E17�21
recursive, created in database design, 220
in recursive relationships, 184
strong entity, created in database design, 210
in strong entity patterns, 171
WORK table and 1:N ARTIST-to_WORK

relationship, 254�255
One-to-one (1:1) relationship

definition of, 160
identifying, in Microsoft Visio 2010, F16
identifying, in MySQL E-R (EER) diagram tables,

E15�16
non-identifying, in MySQL E-R (EER) diagram

tables, E15�16
in recursive relationships, 183
in SQL DDL used for managing table structure, 256
strong entity, created in database design, 209�210
in strong entity patterns, 169�171

OnLine Analytical Processing (OLAP), 572�577
cube, 572
definition of, 550
report, 572
server, 577

Online transaction processing (OLTP) system, 550
OPEN CURSOR keywords, 406
Open Database Connectivity (ODBC), 453�462

architecture, 453�454
conformance levels, 454�456
data source, 453�454
Data Source Administrator, 457
data source name, 456�462
definition of, 452
driver, 454, E3
driver manager, 454
multiple-tier driver, 454
ODBC Data Source Administrator, 457
ODBC SQL conformance levels, 456
single-tier driver, 454
SQL conformance levels, 456

Open Data-base Connectivity (ODBC) drivers, E3
Open File button, 51, 53
OpenOffice.org Base, 14, 23
Open source DBMS products, 21, 24
Operational activities, B6
Operational system

vs. business intelligence system, 550
definition of, 550

OPP constructs, D6�7
Optimistic locking, 348�349
Optional-to-mandatory (O-M) relationship

definition of, 161
in minimum cardinality design, 229�230
parent optional and child mandatory, 225�226

Optional-to-optional (O-O) relationship
definition of, 161
parent optional and child optional, 225�226

Oracle Corporation
Database, 11, 24
MySQL, 11, 24

Oracle Database, 11
Oracle Database 11g, 51�54, 10A-1-10A-73
Oracle MySQL 5.5, 54�56, 10B-1-10B-72
Original values, 468
Outbound logistics, B6
Outer joins, 274�277
Output statements in SQL Server 2008 R2, 407
Overlapping candidate key, 117

P
Paired attributes, G8�9
Paradox, 21, 23
Parallel LINQ (PLINQ), 463
Parameter, 405
Parent, defined, 160
Parent in minimum cardinality design

actions on child row, 227�228
actions when parent is required, 226, 227�228
in database design problem (VRG example), 236�238
documenting, 231
parent mandatory and child mandatory

(M-M), 225�226
parent mandatory and child optional

(M-O), 225�226
parent optional and child mandatory

(O-M), 225�226
parent optional and child optional (O-O), 225�226

Parent object, G35
Parent rows, implementing required, 255
Parent/subtype objects, G34�37
Parse button, 49
Partially dependent, 115, 117
Partitioning, 364
Passive repository, 364
Passwords, 357
Patterns in forms, reports, and E-R models, 168�185

for-use-by-pattern, 182�183
ID-dependent entity, 173�179

archetype/instance, 173, 177�179
association, 173�175
multivalued attribute, 173, 175�177

identifying relationship, 179�182
line-item, 179�181
mixed, 181

mixed identifying and nonidentifying
patterns, 179�181

recursive relationships, 183�185
many-to-many (N:M) relationship, 184�185
one-to-many (1:N) relationship, 184
one-to-one (1:1) relationship, 183

strong entity, 169�173
many-to-many (N:M) relationships, 171�173
one-to-many (1:N) relationships, 171
one-to-one (1:1) relationship, 169�171

<<Per-sistent>> used to label entities, D6
Personal database system, 13
Personal database system DBMS products, 13�14
Personal database systems

vs. enterprise-class, 13�16
Microsoft Access, 13�14

Pessimistic locking, 348�349
Phantom reads, 352
PHP

Web database processing with, 474�501
connecting to database, 484�485
disconnecting from database, 487
Eclipse, 475�477
Hypertext Markup Language (HTML)

pages, 477�478
index.html Web page, 478�480
integrated development environment

(IDE), 480�481
ReadArtist.php file, 481�485
RecordSet, creating, 485
results, displaying, 486
scripting language, 480
using PHP, 480

Web page examples with, 487
invoking stored procedure, 495�500
PHP Data Objects (PDO), using, 493�494
updating tables, 489�492

PHP concatenation operator (.=), 490
PHP Data Objects (PDO), 488, 492�494

PHP: Hypertext Processor, 475
See also PHP

Physical data types, F13
Physical existence represented by objects, G5
Physical records, H5
PivotTable, 572, 575
Pointer fields, H7
Portable data types, F13
POST method, 489�490
PowerShell sqlps utility, 379
Prepared Statement objects, 472
Primary activities, B6
Primary key, 5, 110�111, A5, H22
PRIMARY KEY constraint, 249
PrimaryKey property, 468
Private attributes, D7
Procedural language extensions, 383
Procedural Language/SQL (PL/SQL), 250
Procedural programming language, 250
Processing database views in XML form, 440
Processing rights and responsibilities, 355
Procurement, B6
Programmer, 19�20
Project-Join Normal Form (PJ/NF), 130
Project plan, B9
Project scope, B14
Properties, 366, 464
Proposed values, 468
Proprietary DBMS products, 24
Protected attributes, D7
Pseudofile, 288
Public attributes, D7
Pull report, 569
Push report, 569

Q
Queries section of the Navigation Pane, 48
Query by Example (QBE), 32, A30
Query Design button, 45
Query report, 568
Query statements, in SQL, 9�10
Query Tools tab, 46
Query Type command group, 46
Quick Access Toolbar, in Microsoft Access 2010,

A9, A10

R
Range constraint, 208
Ratliff, Wayne, 22
Raw materials, B6
Raw materials inventory, B6
R:base, 21, 23
ReadArtist.php file in PHP, 481�485
Read-only database design, 142�145

customized duplicated tables, 144�145
denormalization used in, 142�143

Reads, in transaction isolation level, 352
Record, 3
Record addressing, H5
Record relationships, H12�13
Recordset, 464
RecordSet in PHP, 485�486
Recovering database data, 11�12, 13
Recovery data, 13
Recovery via reprocessing, 360
Recovery via rollback/rollforward, 360
Recursive patterns, 183�185
Recursive relationships, 183�185

created in database design, 219�221
many-to-many (N:M) relationship, 221
one-to-many (1:N) relationship, 220

many-to-many (N:M) relationship, 184�185
one-to-many (1:N) relationship, 184
one-to-one (1:1) relationship, 183

Referential integrity (RI) action, 231
Referential integrity constraint

definition of, 11, 112
in eliminating anomalies

from functional dependencies, 119�122,
124, 126

from multivalued dependencies, 129
in updatable database design, 138�139, 141

Regression analysis, 580
Regular subquery vs. correlated subquery, 316�317
Relation, 103�106

alternative terminology, 105�106
characteristics of, 103
definition of, 103

610 Index

Relation (continued)
nonrelational tables, 104�105
sample EMPLOYEE relation, 104
with variable-length column values, 105

Relational database, 3
Relational model, 22�23, 102�112

DBMS products, 21, 22�23
determinant, 106, 107, 110
early objections to, 22
functional dependency, 106�110
keys, 110�112
multivalued dependency, 126�130
referential integrity constraint, 112, 119�122,

124, 126, 129
relation, 103�106
terminology, listed, 102

Relational structures
in compound semantic objects, G19�24

many-to-many (N:M) relationship, G22�24
many-to-one (N:1) relationship, G21�22
one-to-many (1:N) relationship, G21�22
one-to-one (1:1), G19�21

in hybrid semantic objects, G27�30
Relationship class, 158�159
Relationship instance, 158
Relationships

adding and deleting, 331
cardinalities and properties, changing, 326�330

maximum cardinalities, 328
minimum cardinalities, 327�328
reducing cardinalities (with data loss), 330

creating in database design, 209�225
example relational database design, 224�225
ID-dependent entities, 212�216
mixed entities, 217�218
non-ID-dependent entities, 217
recursive, 219�221
strong entities, 209�212
supertype and subtype, 219
ternary and higher-order, 221�223

definition of, 5
in IDEF1X, C5�10

categorization, C7�10
definition of, C5
identifying connection relationships, C6�7
nonidentifying connection relationships, C5�6
nonspecific relationships, C7
terms, C5

overview of, 158�160
properties of, 391
UML representation of, D4�D6

Relationship terms in IDEF1X, C5
Relationship window, in Microsoft Access 2010, A26
Relative record number (RRN), H5
Remarks, in Microsoft Access 2010, A15
Replication, 364, 440
Report, in Microsoft Access 2010, A35
Report alert, 569
Report authoring, 569�570
Report delivery, 572
Reporting system, 563�577

components of, 567�568
definition of, 550
functions, 569�572

report authoring, 569�570
report delivery, 572
report management, 570�572

OLAP, 572�577
report media, 568�569
report modes, 569
report types, 568
RFM analysis, 563�567

Report management, 570�572
Report media, 568�569
Report modes, 569
Report types, 568
Report Wizard, in Microsoft Access 2010, A35
Request for system modification using the SDLC, B12
Required, in Microsoft Access 2010, A15
Requirement analysis step in SDLC, B10�11
Reserved word, 385
Resource locking, 346�347

deadlock, 347
definition of, 345
lock terminology, 346
serializable transactions, 346�347

Results tabbed window, 47, 49�50, 52, 54�55
RETURN keyword, 405
Reverse engineered (RE) data model, 321
Reverse engineering (RE), 320�322

RFM analysis, 563�567
RFM report, 564�567
Ribbon, in Microsoft Access 2010, A8, A9
Rights and responsibilities, processing, 354�355
Ring, H8
Role, 355
Rollback, 360�362
Rollforward, 360�362
Rows

definition of, 3
duplicated, eliminating, 40, 77
reading, from single table, 41
with same title found with correlated subquery, 316
searching for multiple with given title in

correlated subquery, 315�316
Rowset, 464
R score, 563
Run button, 47

S
Sales and marketing, B6
SAP, 7
Save As dialog box, 48
Save button, 48, 50, 51, 53, 56
Save dialog box, 53
Save File As dialog box, 51
Schema, 36�37, 434, A4
Scripting language in PHP, 480
Scrollable cursor, 353
SCROLL_LOCK, 432
Second normal form (2NF), 113, 114�116
Security data, 13
Security in SQL Server 2008 R2, 433�437

logins and roles, 434�436
model, 434
new user, creating, 437
settings, 436�437

SelectCommand object, 469
Select Query Type button, 46
Self-describing database, 12
Semantically complete objects, G40
Semantically self-contained objects, G40
Semantic object attributes

cardinality, G7
collection of, G5
definition of, G6
domains, G10
group, G6
instances, G8
paired, G8�9
simple, G6

Semantic object diagram, G6
Semantic object model, G1�46

vs. E-R models, G39�42
introduction to, G3�4
key terms, G43

Semantic objects
archetype/version, G37�39
association, G30�34
attributes, G6�9
composite, G13�16
compound, G16�21

in relational structures, G19�24
definition of, G4�5
distinct entities represented by, G5
grouped into object classes, G5
hybrid, G24�30
identifiers, G10
parent/subtype, G34�37
physical existence represented by, G5
semantically complete, G40
semantically self-contained, G40
in semantic object model, G5, G11�39
simple, G12�13
views, G10�11

Sequence set, H9
Serializable transactions, 346�347
Server principals, 434
Service provider, 466
Servlet, 472�473
Set, H22
Set as Default Schema command, 54
Shared lock, 346
Shorthand notation for querying columns

of tables, 40
Show Table dialog box, 45, 46
Shrinking phase, 347
Simple attributes, G6
Simple networks, H12, H17�19

Simple Object Access Protocol, 510
Simple objects, G12�13
Single quotation marks (� �) used in SQL WHERE

clause, 41�42, 43
Single-user database applications, 6
Slowly changing dimension, 555
SNAPSHOT transaction isolation level, 432
SOAP, 510
Spreadsheets vs. tables, 3
SQL (Structured Query Language)

background of, 37�38
built-in functions, 63�66

Count function, 64
error messages in, 66, 69
in Having clause, 71�72
limitations to, 65�66
mixing and matching, 64
in Select clause, 69
standard, using, 63�66

database applications and, 9�11
for database construction and application

processing, 246�312
joins, 272�277
SQL DDL used for managing table structure,

248�263
SQL DML statements, 263�272
SQL embedded in program code, 287�298
SQL views, 277�287

definition of, 8, 32
embedded in program code, 287�298

SQL/persistent stored modules
(SQL/PSM), 288�289

SQL triggers, using, 289�295
stored procedures, using, 295�298

expressions
definition of, 66
in SQL SELECT statements, 66�68
string manipulation performed in, 67

importance of, 8
introduction to, 31�98
for market basket analysis, 582
metadata queries and, 13
in Microsoft Access 2010, A30
to normalize updatable database design,

140�141
queries, 37

calculations performed in, 63�68
column order in, specifying from single table,

39�41
in Microsoft SQL Server 2008 R2, SQL statements

submitted to DBMS using, 48�51
power of (NASDAQ trading problem), 72�75
shorthand notation for querying columns of

tables, 40
single tables, SQL enhancements for, 56�63
SQL DISTINCT keywords used in, 40
SQL SELECT statements, grouping in, 68�72
subqueries, 75�82
two or more tables, 75�82

statements
categories of, 37
for checking functional dependencies, 314�320
data definition language (DDL), 37, 38
data manipulation language (DML), 37, 38
Execute Current SQL Statement in Connected

Server button, 54, 55, 56
; (semicolon) for terminating, in SQL-92, 39
processing in Microsoft Access 2010, 45�48
processing SQL queries in Microsoft

Access 2010, 45�48
query, 9�10
SQL queries in Microsoft SQL Server 2008 R2

submitted to DBMS using, 49�51
SQL queries in Oracle Database 11g submitted

to DBMS using, 52�53
SQL queries in Oracle MySQL 5.5 submitted

to DBMS using, 54�56
in SQL Server 2008 R2, 381�383
submitting to DBMS, in Microsoft Access

2010, 43�48
submitting to DBMS in Microsoft SQL Server

2008 R2, 48�51
submitting to DBMS in Oracle Database 11g,

51�54
submitting to DBMS in Oracle MySQL 5.5,

54�56
subqueries, 75�82

correlated, 315�320
definition of, 76
vs. joins, 82

Index 611

limitations of, 78
tables processed with, 75�78

view, 277�287
built-in functions, layering, 284�285
columns, computed results displayed by, 281�282
columns hidden by, 280�281
rows hidden by, 280�281
SQL ALTER VIEWstatement, 279
SQL CREATE VIEWstatement, 277
SQL syntax hidden by, 282�283
tables, processing permissions given to, 286
tables isolated by, 285�286
triggers, definition of multiple sets of, 286
updating, 286�287

XML support and, 37
SQL:1999 (SQL3), 37
SQL:2003, 37
SQL:2006, 37
SQL:2008, 37
SQL ADD clause, 261
SQL ADD CONSTRAINT clause, 262
SQL ALTER PROCEDURE statement, 408
SQL ALTER statement, 261�262

columns, adding and dropping, 261
constraints, adding and dropping, 262

SQL ALTER VIEWstatement, 279
SQL AND operator, 58
SQL AS keyword, 63�64, 273
SQL BEGIN TRANSACTION statement, 349
SQL BETWEEN keyword, 60
SQL CMD utility, 379
SQL comment, 39
SQL COMMIT TRANSACTION statement, 349
SQL Common Language Runtime (CLR), 379
SQL COUNT(*) function, 138
SQL CREATE PROCEDURE statement, 408
SQL CREATE TABLE statement, 248, 249
SQL CREATE VIEWstatement, 277
SQL data control language (DCL), 356
SQL data types, variations in, 250�252
SQL DDL used for managing table structure,

248�263
ARTIST table, creating, 252�254
causal relationships, 256
data constraints with SQL, creating,

256�258
default values with SQL, creating, 256�258
one-to-one (1:1) relationships, implementing, 256
parent rows, implementing required, 255
SQL data types, variations in, 250�252
View Ridge database, creating, 248
View Ridge database tables, creating, 258�260
WORK table and 1:N ARTIST-to_WORK

relationship, 254�255
SQL DELETE statement, 272
SQL DESC keyword, 57�58
SQL DISTINCT keyword, 40, 65, 77
SQL DML statements, 263�272

SQL DELETE statement, 272
SQL INSERT statement, 263�264
SQL MERGE statement, 271�272
SQL UPDATE statement, 270�271
View Ridge database tables, populating,

264�269
SQL DROP COLUMN clause, 261
SQL DROP CONSTRAINT clause, 262
SQL DROP statement, 141
SQL DROP TABLE statement, 262�263
SQL Editor tab, 54
SQL-89, 43, 44
SQL EXISTS keyword

correlated subquery, 318
definition of, 318

SQL FROM clause, 38
SQL GRANT statement, 356
SQL GROUP BY clause, 68
SQL injection attack, 359
SQL IN operator, 59
SQL INSERT statement, 140�141,

263�264
bulk insert, 264
column names used in, 263�264
definition of, 263

SQL JOIN . . . ON syntax, 82, 272�273
SQL join operator, 78

See also Joins
SQL LEFT JOIN syntax, 275
SQL left outer join, 275
SQL LIKE keyword, 60
SQL MERGE statement, 271�272

SQL-92, 37, 39, 43�45, 61
vs. SQL-89, 43, 44

SQL NOT EXISTS keyword
correlated subquery, 318

in double negative, 319
definition of, 318
in double negative, 319
double NOT EXISTS query, 319�320

SQL NOT IN operator, 59
SQL ON DELETE clause, 254
SQL ON UPDATE clause, 254
SQL ORDER BY clause, 56�57
SQL OR operator, 59
SQL outer join, 274�275
SQL percent sign (%) wildcard character, 60, 62
SQL/Persistent Stored Modules (SQL/PSM), 37, 38, 247,

288�289, 404
SQL REVOKE statement, 356
SQL RIGHT JOIN syntax, 275�276
SQL right outer join, 275�276
SQL ROLLBACK TRANSACTION statement, 349
SQL script

definition of, 381�382
saving, in Oracle SQL Developer, 53�54
saving SQL query as, in SQL Server Management

Studio, 50�51
SQL script comment, 382
SQL script file, 50�53, 55�56
SQL scripts in SQL Server 2008 R2, 381�383

creating and saving, 382�383
overview of, 381�383
running single command in, 403�404
saving SQL query as, 50�51

SQL SELECT clause, 38
SQL SELECT command, 47, 49, 52, 55
SQL SELECT . . . FOR XML statement, 525�529
SQL SELECT/FROM/WHERE framework, 38�43

definition of, 38
reading specified columns from single table,

38�39, 42�43
reading specified rows from single table, 41, 42�43
specifying column order in SQL queries from single

table, 39�41
SQL SELECT* statement, 45, 138

grouping in, 68�72
SQL expressions in, 66�68
string manipulation in, 67

SQL Server 2008 R2, 373�441
concatenation operator (+) in, 67
replacing Microsoft Access DBMS engine

with, 14
submitting SQL statements to DBMS, 48�51

SQL Server 2008 R2 Express, 374
SQL Server 2008 R2 Express Advanced, 375
SQL Server bit data type, 420
SQL Server Compatible Syntax (ANSI 92), 44
SQL Server function @@Identity, 408�410
SQL Server PowerShell, 379
SQL Server principals, 434
SQL Server schema, 434
SQL Server securable objects, 434
SQL START TRANSACTION statement, 349
SQL syntax hidden by SQL views, 282�283
SQL-Syntax Information dialog box, 44
SQL TOP keyword, 138
SQL TOP NumberOfRows syntax, 273
SQL Top . . . Percent option, 566
SQL TRUNCATE TABLE statement, 263
SQL underscore (_) wildcard character, 62
SQL UPDATE statement, 270�271

bulk updates, 270
updating, using values from other tables,

270�271
SQL View button, 37, 47
SQL WHERE clause, 38

compound, 58�60
options, 58�62
ranges in, 60
single quotation marks (� �) used in, 41�42, 43
SQL ORDER BY clause and, combining, 63
wildcards in, 60�62

SQL WORK keyword, 349
SQL Worksheet, 52
Standard Generalized Markup Language

(SGML), 512
Star schema, 555�560
Statement Editor window in SQL Server 2008 R2,

381�382
Statement-level consistency, 351�352
Statement of work (SOW), B11, B26�27

Static cursor, 353, 354
Static report, 568
Step-by-Step method, 118, 119�121
Stock-keeping unit (SKU), 34�35
Stored procedures

advantages of, 296
definition of, 295
definition of, 13
in PHP, invoking, 494�501
in SQL Server 2008 R2, 408�416

InsertCustomerAndInterests, 408�411
InsertCustomerWithTransaction, 411�416
SQL ALTER PROCEDURE statement, 408
SQL CREATE PROCEDURE statement, 408

vs. triggers, 296
using, 295�298
WORK_addWorkTransaction stored procedure,

296�298
Straight-to-BNCF method, 121
String manipulation, 67
Strong entity

definition of, 164
patterns, 169�173

Strong entity relationships created in database
design, 209�212

many-to-many (N:M) relationship, 210�212
one-to-many (1:N) relationship, 210
one-to-one (1:1) relationship, 209�210

Strong password, 357
Structured schemas, 519�521
Structured storage, 545
Student acceptance letter, 189�191
Stylesheet, 513�516
Subtype entity, 167�168
Subtype object, G35
Sufficient description, G5
SUM function, 63, 64
Sun Microsystems, 24
Supertype entity, 167�168
Supertype object, G35
Supervised data mining, 580
Support, 581
Surrogate key, 111, 205, A15
System data source, 457
System definition, B9
System definition step in SDLC, B9�10
System design, B11
System maintenance step in SDLC, B12
System requirements information, B14�24

examples of (highline University database),
B15�24

college report, B17�18
department/major report, B21�22
department report, B19�21
student acceptance letter, B22�24

gathering, B14
use cases in, B14�15

Systems analysis and design, B1�29
business process, B6
business process modeling notation (BPMN),

B13�14
business rules, B24�25
competitive strategy, B5�6
definition of, B8
information, defined, B4
information system, B5
introduction to, B3�4
key terms, B27
project scope, B14
statement of work (SOW), B26�27
system requirements information, B14�24
systems development life cycle (SDLC) in, B8�13
user requirements document (URD), B25�26

Systems development life cycle (SDLC) in, B8�13
definition of, B8
details needed for, B12�13
steps in, B9�12

component design step, B11
implementation step, B11�12
requirement analysis step, B10�11
system definition step, B9�10
system maintenance step, B12

T
TableName.ColumnName syntax, 79�80
Tables, 3

adding and deleting, 331
created for entities in database design,

204�209

612 Index

Tables (continued)
customized duplicated, 144�145
foreign keys in, 5
information determined by using, 5�6
integrated, 12
isolated by SQL views, 285�286
metadata stored in, 12�13
in Microsoft Access 2010, A13�30

relationships created between, A26�30
Microsoft Visio 2010 table relationships, F16�33
in MySQL E-R (EER) diagrams, E11�15
names, changing, 323�325
naming, 3
populating, in View Ridge database, 264�269
primary keys in, 5
processing permissions given to, in SQL views, 286
relationships in, 4�5
vs. spreadsheets, 3
updating, in PHP, 489�492
updating SQL UPDATE statement using values

from, 270�271
Table structure

assessing, 138�139
SQL DDL used for managing, 248�263
in SQL Server 2008 R2, 383�396

Table Tools in Microsoft Access 2010, A15
Tabular data providers, 465�466
Task Parallel Library (TPL), 463
Technology management, B6
Terms in IDEF1X, C4�5

vs. extended E-R model, C4
relationship, C5

Ternary relationship, 159
MUST constraint, 222
MUST COVER constraint, 222�223
MUST NOT constraint, 222�223

Test databases, 322�323
Text data, in Microsoft Access 2010, A14
Third normal form (3NF), 113, 114, 115�116
This database check box, 44
Three-tier architecture, 452
Time dimension, 555
Tools �Relationships command, in Microsoft Access

2010, A26
Transactional system, 550
Transaction isolation level

in SQL Server 2008 R2, 432
Transaction-level consistency, 352
Transaction log backup, 438
Transactions

ACID, 351
atomic, need for, 342�345
in concurrency control

consistent, 351�352
implicit and explicit commit transaction, 350�351
transaction isolation level, 352

concurrent, 342
consistent, 351
definition of, 342
durable, 351
isolated, 351
lost update problem, 342, 345
serializable, 346�347

Transact-SQL (T-SQL), 250, 405�407
control-of-flow language, 405�406
cursor statements, 406�407
definition of, 250, 383
output statements, 407
variables, 405

Transact-SQL BEGIN TRANSACTION command, 413
Transact-SQL COMMIT TRANSACTION

command, 414
Transact-SQL control-of-flow language, 405�406
Transact-SQL CONVERT function, 407
Transact-SQL cursor, 406
Transact-SQL @@FETCH_STATUS function, 407
Transact-SQL GETDATE() function, 414
Transact-SQL IDENTITY_INSERT property,

393�396
Transact-SQL IDENTITY property, 385

Transact-SQL PRINT command, 407
Transact-SQL ROLLBACK TRANSACTION

command, 413
Transact-SQL SET ANSI_NULLS ON command, 415
Transact-SQL SET NOCOUNT ON command, 420
Transact-SQL SET QUOTED_IDENTIFIER ON

command, 415
Transact-SQL USE [] command, 415
Trees, H14�17

B-trees, H9�11
definition of, H12
index representation, H17
linked-list representations, H14�17

Triggers, 229�230
data constraints enforced with, 291�292
default values provided by, 290�291
definition of, 13, 289
definition of multiple sets of, 286
referential integrity actions, implemented with, 293�295
in SQL Server 2008 R2, 416�431

for enforcing data constraint, 420�422
for enforcing required child constraint, 425�431
for setting default values, 417�420
for updating a view, 422�425

vs. stored procedures, 296
using, 289�295
views updated with, 292�293

Tuple, 105
Twitter, 24
Two-phase locking, 346�347
Two-tier architecture, 452
Two-way linked list, H8
Type, in Microsoft Access 2010, A14
Type domains in IDEF1X, C11
Type-valid XML document, 512

U
UML Model Diagram template, B15
UML-style entity-relationship diagrams, D1�9

in database processing, role of, D7
entities represented by, D4�5
introduction to, D3
key terms, D8
OPP constructs introduced by, D6�7
relationships represented by, D4�D6

Unified Modeling Language (UML), 162, D3
See also UML-style entity-relationship diagrams

UNIQUE constraint, 249
UniqueConstraint, 468
Unsupervised data mining, 578�579
Updatable database design, 139�142

advantages/disadvantages of normalization, 139
BCNF not used in, 141�142
functional dependencies, 139
multivalued dependencies in, 142
referential integrity constraints in, 138�139, 141
SQL used to normalize, 140�141

Update anomaly, 112
UpdateCommand object, 469
Use cases, B14�15
User data source, 457
User group, 355
User requirements document (URD), B11, B25�26
Users, 8
Utilities in SQL Server 2008 R2, 378�383

to measure database activity and performance,
440

Microsoft SQL CLR, 379
Microsoft Windows PowerShell, 379, 380
SQL CMD utility, 379
SQL scripts, 381�383
SQL statements, 381�383
Statement Editor window, 381�382

V
Variables in SQL Server 2008 R2, 405
Version/instance pattern, 173, 177�179
View gallery drop-down arrow button, 46

View Ridge database
creating, 248
design problem, 233�240

column properties for tables, 238�240
database design with data keys, 235�236
final database design, 247
minimum cardinality enforcement for required

child, 238
minimum cardinality enforcement for required

parents, 236�238
SQL for database construction and application

processing, 246�312
summary of requirements, 233�234
View Ridge database, 234�235

tables
column properties for, 238�240
creating, 258�260, 383�404
populating, 264�269, 383�404

Views in SQL Server 2008 R2
creating, 396�404
of existing view, 402�403
new view, 397�402
processing in XML form, 440
triggers for updating, 422�425

W
WAMP, 452
Weak entity, 164, D5
Web database processing environment, 451�452

architecture in, 452
data types in, 451�452
options in, 452
standard interfaces, 452

Web database processing with PHP, 474�501
challenges of, 487
connecting to database, 485
disconnecting from database, 487
Eclipse, 475�477
Hypertext Markup Language (HTML) pages,

477�478
index.html Web page, 478�480
integrated development environment (IDE),

480�481
ReadArtist.php file, 481�485
RecordSet, creating, 485�486
results, displaying, 486
scripting language, 480
using PHP, 480
Web page examples, 487

Web portal, 568, 569
Web server environment, 450�508

Java platform, 471�474
.Net Framework, 462�470
ODBC standard, 453�462
Web database processing environment,

451�452
Web database processing with PHP,

474�501
WHILE keyword, 405, 406
Windows PowerShell, 379
Work-breakdown schedule (WBS), B9
Worksheets, 3
WORK table and 1:N ARTIST-to_WORK

relationship, 254�255
World Wide Web Consortium (W3C), 477�478
Wwwroot folder, 476

X
XHTML, 478
XML (Extensible Markup Language). See

Extensible Markup Language (XML)
XSLT, 512�516
x..y cardinality format, D4

Y
Yes button, 48

