

Edition 12

Database
Processing

Fundamentals, Design, and Implementation

David M. Kroenke
David J. Auer

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Sally Yagan Operations Specialist: Cathleen Petersen

Editor in Chief: Eric Svendsen Creative Director: Blair Brown
Executive Editor: Bob Horan Sr. Art Director/Supervisor: Janet Slowik
Editorial Project Manager: Kelly Loftus Interior and Cover Designer: Karen Quigley
Editorial Assistant: Ashlee Bradbury Cover Photo: VolsKinvois/Shutterstock
VP, Director of Marketing: Patrice Media Project Manager: Lisa Rinaldi

Lumumba Jones Media Project Manager, Editorial: Allison Longley
Senior Marketing Manager: Anne Fahlgren Full-Service Project Management: Jennifer Welsch/BookMasters, Inc.
Senior Managing Editor: Judy Leale Composition: Integra Software Services
Production Project Manager: Printer/Binder: R.R. Donnelley/Willard

Jacqueline A. Martin Cover Printer: Lehigh-Phoenix Color/Hagerstown
Senior Operations Supervisor: Arnold Vila Text Font: 10/12 Kepler MM

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in
this textbook appear on the appropriate page within text.

Microsoftfiand Windowsfi are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation.
This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

MySQLfi, the MySQL GUI Toolsfi (MySQL Query Browerfiand MySQL Administratorfi), the MySQL
Command Line Clientfi, and MySQL Workbenchfi are registered trademarks of Sun Microsystems,
Inc. in the U.S.A and other countries. Screenshots and icons reprinted with permission of Sun
Microsystems, Inc. This book is not sponsored or endorsed by or affiliated with Sun Microsystems.

Eclipsefiand The Eclipse PHP Development Tools (PDT) Projectfi are trademarks of the Eclipse Foun-
dation, Inc. The Eclipse platform is copyright Eclipse copyright holders and others, 2000, 2007. Screen-
shots reprinted under the terms of the Eclipse Public License v1.0 available at www.eclipse.org/legal/
epl-v10.html. This book is not sponsored or endorsed by or affiliated with the Eclipse Foundation, Inc.

PHP is copyright The PHP Group 1999 2008, and is used under the terms of the PHP Public License
v3.01 available at http://www.php.net/license/3_01.txt. This book is not sponsored or endorsed by or
affiliated with The PHP Group.

Copyright = 2012, 2010, 2006, 2004, 2000 by Pearson Education, Inc., publishing as Prentice Hall.

All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduc-
tion, storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Kroenke, David.
Database processing : fundamentals, design, and implementation. Ed. 12. / David M. Kroenke,
David J. Auer.
p.cm.
Includes bibliographical references and index.
ISBN 978-0-13-214537-4 (hardcover : alk. paper)
1. Database management. I. Auer, DavidJ. II. Title.

QA76.9.D3K76 2012
005.74 dc22
2011011004

10987654321

PEARSON ISBN 10: 0-13-214537-5
ISBN 13: 978-0-13-214537-4

rief Contents

Preface xv

PART1 GETTING STARTED 1

Chapter 1 Introduction 2
Chapter 2 Introduction to Structured Query Language 31

PART 2 DATABASE DESIGN 99

Chapter 3 The Relational Model and Normalization 100
Chapter 4 Database Design Using Normalization 137

Chapter 5 Data Modeling with the Entity-Relationship Model 155
Chapter 6 Transforming Data Models into Database Designs 203

PART 3 DATABASE IMPLEMENTATION 245

Chapter 7 SQL for Database Construction and Application Processing 246
Chapter 8 Database Redesign 313

PART 4 MULTIUSER DATABASE PROCESSING 337

Chapter 9 Managing Multiuser Databases 338
Chapter 10 Managing Databases with SQL Server 2008 R2 373

ONLINE CHAPTER: SEE PAGE 447 FOR INSTRUCTIONS
Chapter 10A Managing Databases with Oracle Database 11g 10A-1

ONLINE CHAPTER : SEE PAGE 448 FOR INSTRUCTIONS
Chapter 10B Managing Databases with MySQL 5.1 10B-1

PART 5 DATABASE ACCESS STANDARDS 449

Chapter 11 The Web Server Environment 449
Chapter 12 Database Processing with XML 509
Chapter 13 Database Processing for Business Intelligence Systems 549

ONLINE APPENDICES: SEE PAGE 590 FOR INSTRUCTIONS

Appendix A Getting Started with Microsoft Access 2010 A-1
Appendix B Getting Started with Systems Analysis and Design B-1
Appendix C E-R Diagrams and the IDEF1X Standard C-1
Appendix D E-R Diagrams and the UML Standard D-1
Appendix E Getting Started with the MySQL Workbench Database Design Tools E-1
Appendix F Getting Started with the Microsoft Visio 2010 F-1
Appendix G The Semantic Object Model G-1
Appendix H Data Structures for Database Processing H-1
Appendix | Getting Started with Web Servers, PHP and the Eclipse PDT I-1
iii

Preface xv

PART 1 GETTING STARTED 1

Chapter 1: Introduction 2

Chapter Objectives 2

The Characteristics of Databases 3
A Note on Naming Conventions 3 A Database Has Data and Relationships 4
Databases Create Information 5

Database Examples 6
Single-User Database Applications 6 Multiuser Database Applications 6
E-Commerce Database Applications 7 Reporting and Data Mining Database
Applications 7

The Components of a Database System 8

Database Applicationsand SQL 9 The DBMS 11 The Database 12
Personal Versus Enterprise-Class Database Systems 13

What Is Microsoft Access? 13 What Is an Enterprise-Class Database System? 15
Database Design 16

Database Design from Existing Data 17 Database Design for New Systems

Development 17 Database Redesign 18

What You Need to Learn 19
A Brief History of Database Processing 20

The Early Years 20 The Emergence and Dominance of the Relational
Model 22 Post-Relational Developments 23
Summary 25 Key Terms 26 Review Questions 26 Project

Questions 28

Chapter 2: Introduction to Structured Query Language 31

Chapter Objectives 31

Components of a Data Warehouse 32

Cape Codd Outdoor Sports 33
The Extracted Retail Sales Data 33 RETAIL_ORDERData 35 ORDER_ITEM
Data 35 SKU_DATATable 36 The Complete Cape Codd Data Extract
Schema 36 Data Extracts Are Common 37

SQL Background 37

The SQL SELECT/FROM/WHERE Framework 38
Reading Specified Columns from a Single Table 38 Specifying Column Order in
SQL Queries from a Single Table 39 Reading Specified Rows from a Single
Table 41 Reading Specified Columns and Rows from a Single Table 42

Submitting SQL Statements to the DBMS 43
Using SQL in Microsoft Access 2010 43 Using SQL in Microsoft SQL Server
2008 R2 48 Using SQL in Oracle Database 11g 51 Using SQL in Oracle
MySQL 55 54

Vi

PART 2

Contents

SQL Enhancements for Querying a Single Table 56
Sorting the SQL Query Results 56 SQL WHERE Clause Options 58
Combining the SQL WHERE Clause and the SQL ORDER BY Clause 63
Performing Calculations in SQL Queries 63
Using SQL Built-in Functions 63 SQL Expressions in SQL SELECT
Statements 66
Grouping in SQL SELECT Statements 68
Looking for Patterns in NASDAQ Trading 72
Investigating the Characteristics of the Data 72 Searching for Patterns in
Trading by Day of Week 73
Querying Two or More Tables with SQL 75

Querying Multiple Tables with Subqueries 75 Querying Multiple Tables
with Joins 78 Comparing Subqueries and Joins 82
Summary 82 Key Terms 82 Review Questions 83 Project
Questions 88 Marcias Dry Cleaning 92 Morgan Importing 94

DATABASE DESIGN

Chapter 3: The Relational Model and Normalization 100

Chapter Objectives 99

Relational Model Terminology 102
Relations 103 Characteristics of Relations 103 Alternative
Terminology 105 Functional Dependencies 106 Finding Functional
Dependencies 107 Keys 110

Normal Forms 112
Modification Anomalies 112 A Short History of Normal Forms 113

Normalization Categories 113 From First Normal Form to Boyce-Codd

Normal Form Step-By-Step 114 Eliminating Anomalies from Functional
Dependencies with BCNF 118 Eliminating Anomalies from Multivalued
Dependencies 126 Fifth Normal Form 130 Domain/Key Normal
Form 130

Summary 131 Key Terms 131 Review Questions 132 Project
Questions 134 Marcias Dry Cleaning 135 Morgan Importing 136

Chapter 4: Database Design Using Normalization 137

Chapter Objectives 137
Assess Table Structure 138
Designing Updatable Databases 139

Advantages and Disadvantages of Normalization 139 Functional
Dependencies 139 Normalizing with SQL 140 Choosing Not to Use
BCNF 141 Multivalued Dependencies 142
Designing Read-Only Databases 142
Denormalization 142 Customized Duplicated Tables 144
Common Design Problems 145
The Multivalue, Multicolumn Problem 145 Inconsistent Values 147
Missing Values 148 The General-Purpose Remarks Column 148
Summary 149 Key Terms 150 Review Questions 150 Project
Questions 152 Marcias Dry Cleaning 152 Morgan Importing 153

Chapter 5: Data Modeling with the Entity-Relationship Model 155

Chapter Objectives 155
The Purpose of a Data Model 156

99

Contents Vil

The Entity-Relationship Model 156

Entities 156 Attributes 157 Identifiers 158 Relationships 158
Maximum Cardinality 160 Minimum Cardinality 161 Entity-

Relationship Diagrams and Their Versions 162 Variations of the E-R Model 162
E-R Diagrams Using the IE Crows Foot Model 163 Strong Entities and Weak

Entities 164 ID-Dependent Entities 164 Non-1D-Dependent Weak

Entities 165 The Ambiguity of the Weak Entity 166 Subtype Entities 167

Patterns in Forms, Reports, and E-R Models 168
Strong Entity Patterns 169 ID-Dependent Relationships 173 Mixed
Identifying and Nonidentifying Patterns 179 The For-Use-By Pattern 182

Recursive Patterns 183
The Data Modeling Process 185
The College Report 186 The Department Report 187 The
Department/Major Report 189 The Student Acceptance Letter 189

Summary 191 Key Terms 192 Review Questions 193 Project
Questions 195 Marcias Dry Cleaning 201 Morgan Importing 202

Chapter 6: Transforming Data Models into Database Designs 203

Chapter Objectives 203

Create a Table for Each Entity 204
Selecting the Primary Key 204 Specifying Candidate (Alternate) Keys 206
Specify Column Properties 206 Verify Normalization 208

Create Relationships 209
Relationships Between Strong Entities 209 Relationships Using ID-Dependent
Entities 212 Relationships with a Weak Non-ID-Dependent Entity 217
Relationships in Mixed Entity Designs 217 Relationships Between Supertype and
Subtype Entities 219 Recursive Relationships 219 Representing Ternary
and Higher-Order Relationships 221 Relational Representation of the Highline
University Data Model 224

Design for Minimum Cardinality 225
Actions When the Parent Is Required 227 Actions When the Child Is Required 228

Implementing Actions for M-O Relationships 228 Implementing Actions for O-M

Relationships 228 Implementing Actions for O-M Relationships 229
Implementing Actions for M-M Relationships 230 Designing Special Case M-M
Relationships 230 Documenting the Minimum Cardinality Design 231 An
Additional Complication 233 Summary of Minimum Cardinality Design 233

The View Ridge Gallery Database 233
Summary of Requirements 233 The View Ridge Data Model 234 Database
Design with Data Keys 235 Minimum Cardinality Enforcement for Required
Parents 236 Minimum Cardinality Enforcement for the Required Child 238

Column Properties for the View Ridge Database Design Tables 238

Summary 240 Key Terms 241 Review Questions 242 Project
Questions 243 Marcias Dry Cleaning 244 Morgan Importing 244

PART 3 DATABASE IMPLEMENTATION 245

Chapter 7: SQL for Database Construction and Application
Processing 246

Chapter Objectives 246

The View Ridge Gallery Database 247

SQL DDL, DML, and a New Type of Join 247

Managing Table Structure with SQL DDL 248
Creating the View Ridge Database 248 Using the SQL CREATE TABLE
Statement 249 Variations in SQL Data Types 250 Creating the ARTIST

viii

PART 4

Contents

Table 252 Creating the WORK Table and the 1:N ARTIST-to-WORK
Relationship 254 Implementing Required Parent Rows 255 Implementing
1:1 Relationships 256 Casual Relationships 256 Creating Default Values
and Data Constraints with SQL 256 Creating the View Ridge Database
Tables 258 The SQL ALTER TABLE Statement 261 The SQL DROP TABLE
Statement 262 The SQL TRUNCATE TABLE Statement 263

SQL DML Statements 263
The SQL INSERT Statement 263 Populating the View Ridge Database Tables 264

The SQL UPDATE Statement 270 The SQL MERGE Statement 271

The SQL DELETE Statement 272

New Forms of Join 272

The SQL JOIN ON Syntax 272 Outer Joins 274

Using SQL Views 277
Using SQL Views to Hide Columns and Rows 280 Using SQL Views to Display
Results of Computed Columns 281 Using SQL Views to Hide Complicated SQL
Syntax 282 Layering Built-in Functions 284 Using SQL Views for

Isolation, Multiple Permissions, and Multiple Triggers 285 Updating SQL Views 286
Embedding SQL in Program Code 287

SQL/Persistent Stored Modules (SQL/PSM) 288 Using SQL Triggers 289
Using Stored Procedures 295
Summary 298 Key Terms 299 Review Questions 299 Project
Questions 303 Marcias Dry Cleaning 306 Morgan Importing 309

Chapter 8: Database Redesign 313

Chapter Objectives 313
The Need for Database Redesign 314
SQL Statements for Checking Functional Dependencies 314
What Is a Correlated Subquery? 315
How Do | Analyze an Existing Database? 320
Reverse Engineering 320 Dependency Graphs 322 Database Backup and
Test Databases 322
Changing Table Names and Table Columns 323
Changing Table Names 323 Adding and Dropping Columns 325 Changing
a Column Data Type or Column Constraints 326 Adding and Dropping
Constraints 326
Changing Relationship Cardinalities and Properties 326
Changing Minimum Cardinalities 327 Changing Maximum Cardinalities 328
Adding and Deleting Tables and Relationships 331
Forward Engineering(?) 331

Summary 331 Key Terms 333 Review Questions 333 Project
Questions 335 Marcias Dry Cleaning 335 Morgan Importing 336
MULTIUSER DATABASE PROCESSING 337

Chapter 9: Managing Multiuser Databases 338

Chapter Objectives 338
Database Administration 339

Managing the Database Structure 340
Concurrency Control 341

The Need for Atomic Transactions 342 Resource Locking 346 Optimistic
Versus Pessimistic Locking 348 Declaring Lock Characteristics 349 Implicit and
Explicit Commit Transaction 350 Consistent Transactions 351 Transaction

Isolation Level 352 Cursor Type 353

Contents iX

Database Security 354

Processing Rights and Responsibilities 354 DBMS Security 355 DBMS Security

Guidelines 356 Application Security 358 The SQL Injection Attack 359
Database Backup and Recovery 359

Recovery via Reprocessing 360 Recovery via Rollback/Rollforward 360
Managing the DMBS 362

Maintaining the Data Repository 363
Distributed Database Processing 364

Types of Distributed Databases 364 Challenges of Distributed Databases 365
Object-Relational Databases 366

Summary 367 Key Terms 368 Review Questions 369 Project
Questions 371 Marcias Dry Cleaning 371 Morgan Importing 372

Chapter 10: Managing Databases with SQL Server 2008 R2 373

Chapter Objectives 373

Installing SQL Server 2008 R2 374

The Microsoft SQL Server 2008 R2 Management Studio 376

Creating an SQL Server 2008 R2 Database 376

SQL Server 2008 R2 Utilities 378
SQL CMD and Microsoft PowerShell 379 Microsoft SQL CLR 379 SQL Server
2008 R2 GUI Displays 380 SQL Server 2008 R2 SQL Statements and SQL Scripts 381

Creating and Populating the View Ridge Database Tables 383

Creating the View Ridge Database Table Structure 383 Reviewing Database
Structures in the SQL Server GUI Display 387 Indexes 391 Populating the
VRG Tables with Data 393 Creating Views 396

SQL Server Application Logic 404
Transact-SQL 405 Transact-SQL Cursor Statements 406 Stored
Procedures 408 Triggers 416

Concurrency Control 431
Transaction Isolation Level 432 Cursor Concurrency 432 Locking Hints 432

SQL Server 2008 R2 Security 433
SQL Server Database Security Settings 436
SQL Server 2008 R2 Backup and Recovery 437

Backing Up a Database 438 SQL Server Recovery Models 439 Restoring
a Database 439 Database Maintenance Plans 440
Topics Not Discussed in This Chapter 440
Summary 440 Key Terms 441 Review Questions 441 Project
Questions 443 Marcias Dry Cleaning 445 Morgan Importing 445

ONLINE CHAPTER: SEE PAGE 447 FOR INSTRUCTIONS
Chapter 10A: Managing Databases with Oracle Database 11g 10A-1

Chapter Objectives 10A-1
Installing Oracle Database 11g 10A-2
Installing a Loopback Adapter 10A-3 Oracle and Java 10A-4 Oracle
Database 11g Documentation 10A-4 The Oracle Universal Installer (OUI) 10A-5
Oracle Database 11g Administration and Development Tools 10A-7
The Oracle Database 11g Configuration Assistant 10A-7 The Oracle Enterprise
Manager 11g Database Control 10A-8
Oracle Tablespaces 10A-10
Oracle Security 10A-13
User Privileges 10A-14 Creating a User Account 10A-14 CreatingaRole 10A-17
Oracle Application Development Tools 10A-19
Oracle SQL*Plus 10A-19 Oracle SQL Developer 10A-20 Oracle
Schemas 10A-22
Oracle Database 11g SQL Statements and SQL Scripts 10A-22

Contents

Creating and Populating the View Ridge Database Tables 10A-24
Creating the View Ridge Database Table Structure 10A-24 Transaction COMMIT in
Oracle Database 10A-27 Reviewing Database Structures in the SQL Developer GUI
Display 10A-28 Indexes 10A-31 Populating the VRG Tables 10A-32
Creating Views 10A-38
Application Logic 10A-44
Oracle PL/SQL 10A-45 Stored Procedures 10A-47 Triggers 10A-54
Concurrency Control 10A-68
Read-Committed Transaction Isolation Level 10A-69 Serializable Transaction
Isolation Level 10A-69 Read-Only Transaction Isolation 10A-70
Additional Locking Comments 10A-70
Oracle Backup and Recovery 10A-70

Oracle Recovery Facilities 10A-70 Types of Failure 10A-71
Topics Not Discussed in This Chapter 10A-72
Summary 10A-72 Key Terms 10A-73 Review Questions 10A-73 Project
Questions 10A-75 Marcias Dry Cleaning 10A-76 Morgan Importing 10A-76

ONLINE CHAPTER: SEE PAGE 448 FOR INSTRUCTIONS
Chapter 10B: Managing Databases with MySQL 5.5 10B-1

Chapter Objectives 10B-1
The MySQL 55 DBMS 10B-2
Installing and Updating MySQL 10B-3
Configuring MySQL 10B-4 MySQL Storage Engines 10B-6
The MySQL GUI Utilities 10B-6
Creating a Workspace for the MySQL Workbench Files 10B-8
Creating and Using a MySQL Database 10B-8
Creating a Database in MySQL 10B-8 Setting the Active Database in MySQL 10B-12
MySQL Utilities 10B-13
MySQL Command-Line Client 10B-13 MySQL GUI Displays 10B-14
MySQL SQL Statements and SQL Scripts 10B-14
Creating and Populating the View Ridge Database Tables 10B-17
Creating the View Ridge Database Table Structure 10B-17 Reviewing Database
Structures in the MySQL GUI Display 10B-20 Indexes 10B-21 Populating
the VRG Tables with Data 10B-26 Transaction COMMIT in MySQL 10B-27
Creating Views 10B-27
MySQL Application Logic 10B-38
MySQL Procedural Statements 10B-38 Stored Procedures 10B-41
Triggers 10B-47 A Last Word on MySQL Stored Procedures and Triggers 10B-61
Concurrency Control 10B-61
MySQL 5.5 Security 10B-62
MySQL Database Security Settings 10B-64
MySQL 5.5 DBMS Backup and Recovery 10B-68

Backing Up a MySQL Database 10B-68 Restoring a MySQL Database 10B-71
Topics Not Discussed in This Chapter 10B-72
Summary 10B-71 Key Terms 10B-72 Review Questions 10B-73 Project
Questions 10B-74 Marcias Dry Cleaning 10B-75 Morgan Importing 10B-76
DATABASE ACCESS STANDARDS 449

Chapter 11: The Web Server Environment 449

Chapter Objectives 450

The Web Database Processing Environment 451

The ODBC Standard 453
ODBC Architecture 453 Conformance Levels 454 Creating an ODBC Data
Source Name 456

Contents Xi

The Microsoft NET Framework and ADO.NET 462
OLEDB 463 ADO and ADO.NET 466 The ADO.NET Object
Model 467
The JAVA Platform 471
JDBC 471 JavaServer Pages (JSP) and Servlets 473 Apache Tomcat 473
Web Database Processing with PHP 474
Web Database Processing with PHP and Eclipse 475 Getting Started with
HTML Web Pages 477 The index.html Web Page 478 Creating the
index.html Web Page 478 Using PHP 480 Challenges for Web Database
Processing 487
Web Page Examples with PHP 487
Example 1. Updating a Table 489 Example 2: Using PHP Data Objects (PDO) 493
Example 3: Invoking a Stored Procedure 495

Summary 500 Key Terms 501 Review Questions 502 Project
Questions 505 Marcias Dry Cleaning 507 Morgan Importing 508

Chapter 12: Database Processing with XML 509

Chapter Objectives 509
The Importance of XML 510
XML as a Markup Language 511

XML Document Type Declarations 511 Materializing XML Documents with
XSLT 512

XML Schema 516
XML Schema Validation 517 Elements and Attributes 517 Flat Versus
Structured Schemas 519 Global Elements 521

Creating XML Documents from Database Data 525
Using the SQL SELECT ... FOR XML Statement 525 Multitable SELECT with
FOR XML 530 An XML Schema for All CUSTOMER Purchases 534
A Schema with Two Multivalued Paths 537

Why Is XML Important? 537

Additional XML Standards 543

The NoSQL Movement 545

Summary 545 Key Terms 546 Review Questions 547 Project
Questions 548 Marcias Dry Cleaning 548 Morgan Importing 548

Chapter 13: Database Processing for Business Intelligence
Systems 549

Chapter Objectives 549

Business Intelligence Systems 549

The Relationship Between Operational and Bl Systems 550
Reporting Systems and Data Mining Applications 550

Reporting Systems 550 Data Mining Applications 550
Data Warehouses and Data Marts 551
Components of a Data Warehouse 551 Data Warehouses Versus Data Marts 554

Dimensional Databases 555
Reporting Systems 563

RFM Analysis 563 Producing the RFM Report 564 Reporting System
Components 567 Report Types 568 Report Media 568 Report
Modes 569 Report System Functions 569 OLAP 572

Data Mining 577
Unsupervised Data Mining 578 Supervised Data Mining 580 Three
Popular Data Mining Techniques 580 Market Basket Analysis 580 Using
SQL for Market Basket Analysis 582

Summary 582 Key Terms 583 Review Questions 584 Project

Questions 586 Marcias Dry Cleaning 588 Morgan Importing 589

Xii

APPENDICES

Contents

ONLINE APPENDICES: SEE PAGE 590 FOR INSTRUCTIONS
Appendix A: Getting Started with Microsoft Access 2010 A-1

Chapter Objectives A-3

What Is the Purpose of This Appendix? A-3

Why Should I Learn to Use Microsoft Access 2010? A-3
What Will This Appendix Teach Me? A-4

What Is a Table Key? A-5

What Are Relationships? A-5

Creating a Microsoft Access Database A-5

The Microsoft Office Fluent User Interface A-8

The Ribbon and Command Tabs A-8 Contextual Command Tabs A-9
Modifying the Quick Access Toolbar A-9 Database Objects and the Navigation
Pane A-9

Closing a Database and Exiting Microsoft Access A-10
Opening an Existing Microsoft Access Database A-11
Creating Microsoft Access Database Tables A-13
Inserting Data into Tables The Datasheet View A-22
Modifying and Deleting Data in Tables in the Datasheet View A-25
Creating Relationships Between Tables A-26
Working with Microsoft Access Queries A-30
Microsoft Access Forms and Reports A-35
Closing a Database and Exiting Microsoft Access 2010 A-36

Key Terms A-37 Review Questions A-38

Appendix B: Getting Started with Systems Analysis and Design B-1

Chapter Objectives B-3

What Is the Purpose of This Appendix? B-3

What Is Information? B-4

What Is an Information System? B-5

What Is a Competitive Strategy? B-5

How Does a Company Organize Itself Based on Its Competitive Strategy? B-5
What Is a Business Process? B-6

How Do Information Systems Support Business Processes? B-7

Do Information Systems Include Processes? B-7

Do We Have to Understand Business Processes in Order to Create Information Systems? B-8
What Is Systems Analysis and Design? B-8

What Are the Steps in the SDLC? B-9

The System Definition Step B-9 The Requirements Analysis
Step B-10 The Component Design Step B-11 The Implementation
Step B-11 The System Maintenance Step B-12

What SDLC Details Do We Need to Know? B-12
What Is Business Process Modeling Notation? B-13
What Is Project Scope? B-14
How Do | Gather Data and Information About System Requirements? B-14
How Do Use Cases Provide Data and Information About System Requirements? B-14
The Highline University Database B-15
The College Report B-17 The Department Report B-19 The
Department/Major Report B-21 The Student Acceptance Letter B-22
What Are Business Rules? B-24
What Is a User Requirements Document (URD)? B-25
What Is a Statement of Work (SOW)? B-26

Key Terms B-27 Review Questions B-28 Project Questions B-29

Contents Xiii

Appendix C: E-R Diagrams and the IDEF1X Standard C-1

Chapter Objectives C-3

What Is the Purpose of This Appendix? C-3

Why Should | Learn to Use IDEF1X? C-3

What Will This Appendix Teach Me? C-4

What Are IDEF1X Entities? C-4

What Are IDEF1X Relationships? C-5
Nonidentifying Connection Relationships C-5 Identifying Connection
Relationships C-6 Nonspecific Relationships C-7

What Are Categorization Relationships? C-7

What Are Domains? C-10

Domains Reduce Ambiguity C-10 Domains Are Useful C-11 Base
Domains and Typed Domains C-11
Key Terms C-12 Review Questions C-13

Appendix D: E-R Diagrams and the UML Standard D-1

Chapter Objectives D-3
What Is the Purpose of This Appendix? D-3
Why Should I Learn to Use UML? D-3
What Will This Appendix Teach Me? D-3
How Does UML Represent Entities and Relationships? D-4
UML Entities and Relationships D-5
Representation of Weak Entities D-5 Representation of Subtypes D-5
What OOP Constructs Are Introduced by UML? D-6
What Is the Role of UML in Database Processing Today? D-7

Key Terms D-8 Review Questions D-8

Appendix E: Getting Started with the MySQL Workbench Database
Design Tools E-1

Chapter Objectives E-3
What Is the Purpose of This Appendix? E-3
Why Should I Learn to Use the MySQL Workbench for Database Design? E-4
What Will This Appendix Teach Me? E-4
What Wont This Appendix Teach Me? E-4
How Do I Install the MySQL Workbench and the MySQL Connector/OBDC? E-4
How Do | Start the MySQL Workbench? E-5
How Do | Create a Workspace for the MySQL Workbench Files? E-6
How Do | Create Database Designs in the MySQL Workbench? E-6
How Do | Create a Database Model and E-R Diagram in the MySQL Workbench? E-7

Key Terms E-22 Review Questions E-22 Exercises E-22
Appendix F: Getting Started with Microsoft Visio 2010 F-1

Chapter Objectives F-3

What Is the Purpose of This Appendix? F-3

Why Should I Learn to Use Microsoft Visio 2010? F-3

What Will This Appendix Teach Me? F-4

What Won t This Appendix Teach Me? F-4

How Do | Start the Microsoft Visio 2010? F-4

How Do | Create a Database Model Diagram in Microsoft Visio 2010? F-4

How Do | Name and Save a Database Model Diagram in Microsoft Visio 2010? F-9

How Do | Create Entities/Tables in a Database Model Diagram in Microsoft Visio 2010? F-11
How Do | Create Relationships Between Tables in a Database Model Diagram in Microsoft
Visio 2010? F-16

How Do | Create Diagrams Using Business Process Modeling Notation (BPMN) in Microsoft
Visio 2010? F-33

Key Terms F-35 Review Questions F-35 Exercises F-36

Xiv

Contents

Appendix G: The Semantic Object Model G-1

Chapter Objectives G-3

What Is the Purpose of This Appendix? G-3

Why Should I Learn to Use the Semantic Object Model? G-4

What Will This Appendix Teach Me? G-4

What Are Semantic Objects? G-4

What Semantic Objects Are Used in the Semantic Object Model? G-5
What Are Semantic Object Attributes? G-6 What Are Object Identifiers? G-9
What Are Attribute Domains? G-10 What Are Semantic Object Views? G-10

What Types of Objects Are Used in the Semantic Object Model? G-11
What Are Simple Objects? G-12 What Are Composite Objects? G-13

What Are Compound Objects? G-16 How Do We Represent One-to-One

Compound Objects as Relational Structures? G-19 How Do We Represent One-to-
Many and Many-to-One Relationships as Relational Structures? G-21 How Do We
Represent Many-to-Many Relationships as Relational Structures? G-22 What Are
Hybrid Objects? G-24 How Do We Represent Hybrid Relationships in Relational
Structures? G-27 What Are Association Objects? G-30 What Are
Parent/Subtype Objects? G-34 What Are Archetype/Version Objects? G-37

Comparing the Semantic Object and the E-R Models G-39

Key Terms G-42 Review Questions G-43

Appendix H: Data Structures for Database Processing H-1

Chapter Objectives H-3

What Is the Purpose of This Appendix? H-3

What Will This Appendix Teach Me? H-3

What Is a Flat File? H-3
Processing Flat Files in Multiple Orders H-4 A Note on Record Addressing H-5

How Can Linked Lists Be Used to Maintain Logical Record Order? H-5 How

Are Indexes Used to Maintain a Logical Record Order? H-8 B-Trees H-9
Summary of Data Structures H-11

How Can We Represent Binary Relationships? H-12

A Review of Record Relationships H-12 How Can We Represent Trees? H-14
How Can We Represent Simple Networks? H-17 How Can We Represent Complex
Networks? H-19 Summary of Relationship Representations H-20

How Can We Represent Secondary Keys? H-22
How Can We Represent Secondary Keys with Linked Lists? H-22 How Can We
Represent Secondary Keys with Indexes? H-23

Key Terms H-26 Review Questions H-27

Appendix |: Getting Started with Web Servers, PHP, and the Eclipse PDT |-1

Chapter Objectives 1-3

What Is the Purpose of This Appendix? 1-3

Which Operating Systems Are We Discussing? -3

How Do | Install a Web Server? 1-4

How Do | Set Up 1S in Windows 7? 1-4

How Do | Manage I1S in Windows 7? I-7

How Is a Web Site Structured? 1-11

How Do | View a Web Page from the 1S Web Server? [-12
How Is Web Site Security Managed? [-13

What Is the Eclipse PDT? 1-19

How Do I Install the Eclipse PDT? 1-22

What Is PHP? [-32

How Do | Install PHP? 1-32

How Do | Create a \Web Page Using the Eclipse PDT? -39
How Do | Manage the PHP Configuration? 1-50

Key Terms 1-59 Review Questions 1-59 Review Exercises 1-60
Bibliography 591
Glossary 592
Index 604

reface

The 12th edition of Database Processing: Fundamentals, Design, and Implementation refines
the organization and content of this classic textbook to reflect a new teaching and profes-
sional workplace environment. Students and other readers of this book will benefit from new
content and features in this edition.

New to This Edition

Content and features new to the 12th edition of Database Processing: Fundamentals, Design,
and Implementation include:

The use of Microsoft Access 2010 to demonstrate and reinforce basic principles of
database creation and use. This book has been revised to update all references to
Microsoft Access and other Microsoft Office products (e.g., Microsoft Excel) to the
recently released Microsoft Office 2010 versions.

The updating of book to reflect the use of Microsoft SQL Server 2008 R2, the current
version of Microsoft SQL Server. Although most of the topics covered are backward
compatible with Microsoft SQL Server 2008 and Microsoft SQL Server 2008 Express
edition, all material in the book now uses SQL Server 2008 R2 in conjunction with
Office 2010, exclusively. In addition, although we cannot present screenshots, we have
tested the SQL Server SQL statements against a Microsoft Community Technology
Preview (CTP) version of the forthcoming SQL Server 2011 (code name Denali), so
our text material should be compatible when that version is released in the near
future.

The updating of the book to use Oracle MySQL 5.5, which is the current generally
available (GA) release of MySQL. Further, we also now use the MySQL Workbench
GUI as the main database development tool for MySQL 5.5. The MySQL GUI Tools
utilities used in Database Processing: Fundamentals, Design, and Implementation,
11th edition, were declared end of life by MySQL on December 18, 2009. The MySQL
Workbench 5.2.x now integrates the functionality of the MySQL GUI Tools bundle
and is, with a few exceptions, used throughout Database Processing: Fundamentals,
Design, and Implementation, 12th edition.

The use of the Microsoft Windows Server 2008 R2 as the server operating system
and Windows 7 as the workstation operating system discussed and illustrated

in text. These are the current Microsoft server and workstation operating
systems.

More material in Chapter 3 on normalization is presented in the traditional step-by-step
approach (INF ~ 2NF 3NF BCNF) in response to comments and requests from
professors and instructors who prefer to teach normalization using that approach.
Additional SQL topics in Chapter 7 including the SQL TRUCATE TABLE statement,
the SQL MERGE statement, and a discussion of SQL Persistent Stored Modules
(SQL/PSM) as the context for SQL triggers and stored procedures.

Datasets for example databases such as Marcias Dry Cleaning and Morgan Importing
have been clearly defined in all chapters for consistency in student responses to

XV

XVi

Preface

Review Questions, Review Projects, and the Marcias Dry Cleaning and Morgan
Importing projects.

The addition of online Appendix B, Getting Started with Systems Analysis and
Design. This new material provides an introduction to systems analysis and design
concepts for students or readers who have not had a course on this material. It
presents basic methods used to gather the input material needed for data modeling,
which is discussed in Chapter 5. This material can also be used as a review for
students or readers who are familiar with systems analysis and design concepts and
helps put data modeling, database design and database implementation in the
context of systems development life cycle (SDLC).

The addition of online Appendix F, Getting Started with Microsoft Visio 2010. This
new material provides an introduction to the use of Microsoft Visio 2010 for data
modeling, which is discussed in Chapter 5, and database design, which is discussed
in Chapter 5.

The addition of online Appendix E, Getting Started with MySQL Workbench
Database Design Tools. Although the use of MySQL 5.5 as a DBMS is covered in
Chapter 10B and referenced throughout the text, this new appendix provides the
introduction needed to use the MySQL Workbench data modeling tools for database
design, which is discussed in Chapter 6.

The addition of online Appendix I, Getting Started with Web Servers, PHP, and the
Eclipse PDT. This new material provides a detailed introduction to the installation
and use of the Microsoft 11S Web server, PHP and the Eclipse IDE used for Web
database application development as discussed in Chapter 11.

Although Oracle Database 11g remains the version of Oracle Database discussed in
the book, the current release is Oracle Database 11g Release 2, and all Oracle
Database 11g material has been updated to reflect use of Release 2 and the current
version of the Oracle SQL Developer GUI tool.

Fundamentals, Design, and Implementation

With today s technology, it is impossible to utilize a DBMS successfully without first learning
fundamental concepts. After years of developing databases with business users, we have
developed what we believe to be a set of essential database concepts. These are augmented
by the concepts necessitated by the increasing use of the Internet, the World Wide Web,
and commonly available analysis tools. Thus, the organization and topic selection of the
12th edition is designed to:

Present an early introduction to SQL queries.

Use a spiral approach (as discussed below) to database design.

Use a consistent, generic Information Engineering (IE) Crow s Foot E-R diagram
notation for data modeling and database design.

Provide a detailed discussion of specific normal forms within a discussion of
normalization that focuses on pragmatic normalization techniques.

Use current DBMS technology: Microsoft Access 2010, Microsoft SQL Server 2008 R2,
Oracle Database 11g Release 2, and MySQL 5.5.

Create Web database applications based on widely used Web development
technology.

Provide an introduction to business intelligence (BI) systems.

Discuss the dimensional database concepts used in database designs for data
warehouses and OnLine Analytical Processing (OLAP).

These changes have been made because it has become obvious that the basic structure of
the earlier editions (up to and including the 9th edition the 10th edition introduced many of
the changes we used in the 11th edition and retain in the 12th edition) was designed for a

Preface XVil

teaching environment that no longer existed. The structural changes to the book were made
for several reasons:

Unlike the early years of database processing, today s students have ready access to
data modeling and DBMS products.

Today s students are too impatient to start a class with lengthy conceptual discus-
sions on data modeling and database design. They want to do something, see a
result, and obtain feedback.

In the current economy, students need to reassure themselves that they are learning
marketable skills.

Early Introduction of SQL DML

Given these changes in the classroom environment, this book provides an early introduction to
SQL data manipulation language (DML) SELECT statements. The discussion of SQL data
definition language (DDL) and additional DML statements occurs in Chapters 7 and 8. By
presenting SQL SELECT statements in Chapter 2, students learn early in the class how to
query data and obtain results, seeing firsthand some of the ways that database technology will
be useful to them.

The text assumes that students will work through the SQL statements and examples with
a DBMS product. This is practical today, because nearly every student has access to Microsoft
Access. Therefore, Chapters 1 and 2 and Appendix A, Getting Started with Microsoft Access
2010, are written to support an early introduction of Microsoft Access 2010 and the use of
Microsoft Access 2010 for SQL queries (Microsoft Access 2010 QBE query techniques are also
covered).

If a non Microsoft Access-based approach is desired, versions of SQL Server 2008 R2,
Oracle Database 11g, and MySQL 5.5 are readily available for use. Free versions of the three
major DBMS products covered in this book (SQL Server 2008 R2 Express, Oracle Express 10g,
and MySQL 5.5 Community Edition) are available for download. Further, the text can be pur-
chased with a licensed educational version of Oracle Database 11g Release 1 Personal Edition
(this is a developer license) as well. Alternatively, a trial copy of MySQL 5.5 Enterprise Edition
also is available as a download. Thus, students can actively use a DBMS product by the end of
the first week of class.

THE WAY The presentation and discussion of SQL is spread over three chapters so
that students can learn about this important topic in small bites. SQL
SELECT statements are taught in Chapter 2. SQL DDL and SQL DML statements are
presented in Chapter 7. Correlated subqueries and EXISTS/NOT EXISTS statements
are described in Chapter 8. Each topic appears in the context of accomplishing
practical tasks. Correlated subqueries, for example, are used to verify functional
dependency assumptions, a necessary task for database redesign.
This box illustrates another feature used in this book: BTW boxes are used to
separate comments from the text discussion. Sometimes they present ancillary material;
other times they reinforce important concepts.

A Spiral Approach to Database Design

Today, databases arise from three sources: (1) from the integration of existing data from
spreadsheets, data files, and database extracts; (2) from the development of new information
systems projects; and (3) from the need to redesign an existing database to adapt to changing
requirements. We believe that the fact that these three sources exist present instructors with a
significant pedagogical opportunity. Rather than teach database design just once from data

XViii

Preface

models, why not teach database design three times, once for each of these sources? In practice,
this idea has turned out to be even more successful than expected.

Design Iteration 1: Databases from Existing Data

Considering the design of databases from existing data, if someone were to e-mail us a set of
tables and say, Create a database from them, how would we proceed? We would examine the
tables in light of normalization criteria and then determine whether the new database was for
query only or whether it was for query and update. Depending on the answer, we would denor-
malize the data, joining them together, or we would normalize the data, pulling them apart. All
of which is important for students to know and understand.

Therefore, the first iteration of database design gives instructors a rich opportunity to
teach normalization, not as a set of theoretical concepts, but rather as a useful toolkit for mak-
ing design decisions for databases created from existing data. Additionally, the construction of
databases from existing data is an increasingly common task that is often assigned to junior
staff members. Learning how to apply normalization to the design of databases from existing
data not only provides an interesting way of teaching normalization, it is also common and
useful!

We prefer to teach and use a pragmatic approach to normalization, and present this
approach in Chapter 3. However, we are aware that many instructors like to teach normal-
ization in the context of a step-by-step normal form presentation (LNF, 2NF, 3NF, then
BCNF), and Chapter 3 now includes additional material to provide more support this
approach as well.

In today s workplace, large organizations are increasingly licensing standardized software
from vendors such as SAP, Oracle, and Siebel. Such software already has a database design. But
with every organization running the same software, many are learning that they can only gain
a competitive advantage if they make better use of the data in those predesigned databases.
Hence, students who know how to extract data and create read-only databases for reporting
and data mining have obtained marketable skills in the world of ERP and other packaged
software solutions.

Design Iteration 2: Data Modeling and Database Design

The second source of databases is from new systems development. Although not as common
as in the past, many databases are still created from scratch. Thus, students still need to learn
data modeling, and they still need to learn how to transform data models into database
designs.

The IE Crow s Foot Model as a Design Standard

This edition uses a generic, standard IE Crow s Foot notation. Your students should have no
trouble understanding the symbols and using the data modeling or database design tool of
your choice.

IDEF1X (which was used as the preferred E-R diagram notation in the 9th edition of this
text) is explained in Appendix C, The IDEF1X Standard, in case your students graduate into
an environment where it is used, or if you prefer to use it in your classes. UML is explained in
Appendix D, UML-Style Entity-Relationship Diagrams, in case you prefer to use UML in your
classes.

THE WAY The choice of a data modeling tool is somewhat problematic. The two
most readily available tools, Microsoft Visio and Sun Microsystems
MySQL Workbench, are database design tools, not data modeling tools. Neither can
produce an N:M relationship as such (as a data model requires), but have to immediately
break it into two 1:N relationships (as database design does). Therefore, the intersection
table must be constructed and modeled. This confounds data modeling with database
design in just the way that we are attempting to teach students to avoid.
To be fair to Visio, it is true that data models with N:M relationships can be drawn
using either the standard Visio drawing tools or the Entity Relationship shapes dynamic

Preface XiX

connector. For a full discussion of these tools, see Appendix E, Getting Started with
the MySQL Workbench Database Design Tools, and Appendix F, Getting Started with
Microsoft Visio 2010.

Good data modeling tools are available, but they tend to be more complex and
expensive. Two examples are Visible Systems Visible Analyst and Computer Associates
ERwin Data Modeler. Visible Analyst is available in a student edition (at a modest price).
A 1-year time-limited CA ERwin Data Modeler Community Edition suitable for class use
can be downloaded from http://erwin.com/products/detail/ca_erwin_data_modeler_
community_edition/. This version has limited the number of objects that can be created by
this edition to 25 entities per model, and disabled some other features (see http://
erwin.com/uploads/erwin-data-modeler-r8-community-edition-matrix.pdf), but there is
still enough functionality to make this product a possible choice for class use.

Database Design from E-R Data Models

As we discuss in Chapter 6, designing a database from data models consists of three tasks:
representing entities and attributes with tables and columns; representing maximum
cardinality by creating and placing foreign keys; and representing minimum cardinality via
constraints, triggers, and application logic.

The first two tasks are straightforward. However, designs for minimum cardinality are
more difficult. Required parents are easily enforced using NOT NULL foreign keys and refer-
ential integrity constraints. Required children are more problematic. In this book, however,
we simplify the discussion of this topic by limiting the use of referential integrity actions
and by supplementing those actions with design documentation. See the discussion around
Figure 6-28.

Although the design for required children is complicated, it is important for students to
learn. It also provides a reason for students to learn about triggers as well. In any case, the dis-
cussion of these topics is much simpler than it was in prior editions because of the use of the
IE Crow s Foot model and the use of ancillary design documentation.

THE WAy David Kroenke is the creator of the semantic object model (SOM). The
SOM is presented in Appendix G, The Semantic Object Model. The E-R
data model is used everywhere else in the text.

Design Iteration 3: Database Redesign

Database redesign, the third iteration of database design, is both common and difficult. As
stated in Chapter 8, information systems cause organizational change. New information
systems give users new behaviors, and as users behave in new ways, they require changes in
their information systems.

Database redesign is by nature complex. Depending on your students, you may wish to skip
it, and you can do so without loss of continuity. Database redesign is presented after the dis-
cussion of SQL DDL and DML in Chapter 7, because it requires the use of advanced SQL. It also
provides a practical reason to teach correlated subqueries and EXISTS/NOT EXISTS statements.

Active Use of a DBMS Product

We assume that the students will actively use a DBMS product. The only real question
becomes which one? Realistically, most of us have four alternatives to consider: Microsoft
Access, Microsoft SQL Server, Oracle Database, or MySQL. You can use any of those products
with this text, and tutorials for each of them are presented for Microsoft Access 2010
(Appendix A), SQL Server 2008 R2 (Chapter 10), Oracle Database 11g (Chapter 10A), and

XX

Preface

MySQL 5.5 (Chapter 10B). Given the limitations of class time, it is probably necessary to pick
and use just one of these products. You can often devote a portion of a lecture to discussing
the characteristics of each, but it is usually best to limit student work to one of them. The pos-
sible exception to this is starting the course with Microsoft Access, and then switching to a
more robust DBMS product later in the course.

Using Microsoft Access 2010
The primary advantage of Microsoft Access is accessibility. Most students already have a copy, and,
if not, copies are easily obtained. Many students will have used Microsoft Access in their introduc-
tory or other classes. Appendix A, Getting Started with Microsoft Access 2010, is a tutorial on
Microsoft Access 2010 for students who have not used it but who wish to use it with this book.
However, Microsoft Access has several disadvantages. First, as explained in Chapter 1,
Microsoft Access is a combination application generator and DBMS. Microsoft Access con-
fuses students because it confounds database processing with application development. Also,
Microsoft Access 2010 hides SQL behind its query processor and makes SQL appear as an
afterthought rather than a foundation. Furthermore, as discussed in Chapter 2, Microsoft
Access 2010 does not correctly process some of the basic SQL-92 standard statements in its
default setup. Finally, Microsoft Access 2010 does not support triggers. You can simulate trig-
gers by trapping Windows events, but that technique is nonstandard and does not effectively
communicate the nature of trigger processing.

Using SQL Server, Oracle Database, or MySQL

Choosing which of these products to use depends on your local situation. Oracle Database 11g,
a superb enterprise-class DBMS product, is difficult to install and administer. However, if you
have local staff to support your students, it can be an excellent choice. As shown in Chapter 10A,
Oracles SQL Developer GUI tool (or SQL*Plus if you are dedicated to this beloved command-
line tool) is a handy tool for learning SQL, triggers, and stored procedures. In our experience,
students require considerable support to install Oracle on their own computers, and you may
be better off to use Oracle from a central server.

SQL Server 2008 R2, although probably not as robust as Oracle Database 11g, is easy to
install on Windows machines, and it provides the capabilities of an enterprise-class DBMS
product. The standard database administrator tool is the Microsoft SQL Server Management
Studio GUI tool. As shown in Chapter 10, SQL Server 2008 R2 can be used to learn SQL,
triggers, and stored procedures.

MySQL 5.5, discussed in Chapter 10B, is an open-source DBMS product that is receiving
increased attention and market share. The capabilities of MySQL are continually being upgraded,
and MySQL 5.5 supports stored procedures and triggers. MySQL also has an excellent GUI tool
(the MySQL Workbench) and an excellent command-line tool (the MySQL Command Line
Client). It is the easiest of the three products for students to install on their own computers. It
also works with the Linux operating system, and is popular as part of the AMP
(Apache MySQL PHP) package (known as WAMP on Windows and LAMP on Linux).

THE WAy |Tthe DBMS you use is not driven by local circumstances and you do have

a choice, we recommend using SQL Server 2008 R2. It has all of the
features of an enterprise-class DBMS product, and it is easy to install and use. Another
option is to start with Microsoft Access 2010 if it is available, and switch to SQL Server
2008 R2 at Chapter 7. Chapters 1 and 2 and Appendix A are written specifically to
support this approach. A variant is to use Microsoft Access 2010 as the development
tool for forms and reports running against an SQL Server 2008 R2 database.

If you prefer a different DBMS product, you can still start with Microsoft Access
2010 and switch later in the course. You can order the text with a shrink-wrapped
version of Oracle Database 11g Release 1, while a trial version of SQL Server 2008 R2
can be downloaded from Microsoft, and MySQL 5.5 is so easy to download (and
updated often enough) that it makes no sense to package a copy with the book.

Preface XXi

Focus on Database Application Processing

In this edition, we clearly draw the line between application development per se and database
application processing. Specifically, we have:

Focused on specific database-dependent applications:

Web-based, database-driven applications

XML-based data processing

Business intelligence (BI) systems applications
Emphasized the use of commonly available, multiple OS-compatible application
development languages.
Limited the use of specialized vendor-specific tools and programming languages as
much as possible.

There is simply not enough room in this book to provide even a basic introduction to, for
example, Visual Basic .NET and Java. Therefore, rather than attempting to introduce these
languages, we leave them for other classes where they can be covered at an appropriate depth.
Instead, we focus on basic tools that are relatively straightforward to learn and immediately
applicable to database-driven applications. We use PHP as our Web development language,
and we use the readily available Eclipse integrate development environment (IDE) as our
development tool. The result is a very focused final section of the book, where we deal
specifically with the interface between databases and the applications that use them.

THE WAY Although we try to use widely available software as much as possible,

there are, of course, exceptions where we must use vendor-specific tools.
For BI applications, for example, we draw on Microsoft Excel s PivotTable capabilities,
the Microsoft PowerPivot for Microsoft Excel 2010 add-in, and on the Microsoft SQL
Server 2008 Data Mining Add-ins for Microsoft Office 2007 (which also work in
Microsoft Office 2010). However, either alternatives to these tools are available
(OpenOffice.org DataPilot capabilities, the Palo OLAP Server) or the tools are generally
available for download.

Chapter 13 in this edition maintains the extended coverage of business intelligence (BI)
systems introduced in the previous edition. The chapter features a discussion of dimensional
databases, which are the underlying structure for data warehouses, data marts, and OLAP
servers. The chapter then covers data management for data warehouses and data marts, and
also describes reporting and data mining applications, including OLAP.

Chapter 13 includes coverage of two applications that should be particularly interesting to
students. The first is RFM analysis, a reporting application frequently used by mail order and
e-commerce companies. The complete RFM analysis is accomplished in Chapter 13 through
the use of standard SQL statements. Additionally, this chapter includes a market basket
analysis that is also performed using SQL correlated subqueries. This chapter can be assigned
at any point after Chapter 8 and could be used as a motivator to illustrate the practical
applications of SQL midcourse.

Overview of the Chapters in the 12th Edition

Chapter 1 sets the stage by introducing database processing, describing basic components of
database systems, and summarizing the history of database processing. If the students are
using Microsoft Access 2010 for the first time (or need a good review), they will also need to
study Appendix A, Getting Started with Microsoft Access 2010, at this point. Chapter 2

XXii

Preface

presents SQL SELECT statements. It also includes sections on how to submit SQL statements
to Microsoft Access 2010, SQL Server 2008 R2, Oracle Database 11g, and MySQL 5.5.

The next four chapters, Chapters 3 through 6, present the first two iterations of database
design. Chapter 3 presents the principles of normalization to Boyce-Codd normal form
(BNCF). It describes the problems of multivalued dependencies and explains how to eliminate
them. This foundation in normalization is applied in Chapter 4 to the design of databases from
existing data.

Chapters 5 and 6 describe the design of new databases. Chapter 5 presents the E-R data
model. Traditional E-R symbols are explained, but the majority of the chapter uses IE Crows
Foot notation. Chapter 5 provides a taxonomy of entity types, including strong, ID-dependent,
weak but not ID-dependent, supertype/subtype, and recursive. The chapter concludes with a
simple modeling example for a university database.

Chapter 6 describes the transformation of data models into database designs by convert-
ing entities and attributes to tables and columns, by representing maximum cardinality by cre-
ating and placing foreign keys, and by representing minimum cardinality via carefully
designed DBMS constraints, triggers, and application code. The primary section of this chap-
ter parallels the entity taxonomy in Chapter 5.

Chapter 7 presents SQL DDL, DML, and SQL/Persistent Stored Modules (SQL/PSM). SQL
DDL is used to implement the database design of an example database introduced in Chapter 6.
INSERT, UPDATE, MERGE, and DELETE statements are discussed, as are SQL views. Addition-
ally, the principles of embedding SQL in program code are presented, SQL/PSM is discussed,
and triggers and stored procedures are explained.

Database redesign, the third iteration of database design, is described in Chapter 8. This
chapter presents SQL correlated subqueries and EXISTS/NOT EXISTS statements and uses
those statements in the redesign process. Reverse engineering is described, and basic redesign
patterns are illustrated and discussed.

Chapters 9, 10, 10A, and 10B consider the management of multiuser organizational data-
bases. Chapter 9 describes database administration tasks, including concurrency, security, and
backup and recovery. Chapters 10, 10A, and 10B then describe SQL Server 2008 R2, Oracle
Database 11g, and MySQL 5.5, respectively. These chapters show how to use these products to
create database structures and process SQL statements. They also explain concurrency, secu-
rity, and backup and recovery with each product. The discussion in Chapters 10, 10A, and 10B
parallels the order of discussion in Chapter 9 as much as possible, although rearrangements of
some topics are made, as needed, to support the discussion of a specific DBMS product.

THE WAY We have maintained our extended coverage of Microsoft Access, SQL
Server, Oracle Database, and MySQL (introduced in Database
Processing: Fundamentals, Design, and Implementation, 11th edition) in this book. In
order to keep the bound book to a reasonable length, and to keep the cost of the book
down, we have chosen to provide some materials by download from our Web site at
www.pearsonhighered.com/kroenke. There you will find:

Chapter 10A Managing Databases with Oracle Database 11g

Chapter 10B Managing Databases with MySQL 5.5

Appendix A Getting Started with Microsoft Access 2010

Appendix B Getting Started with Systems Analysis and Design
Appendix C The IDEF1X Standard

Appendix D UML-Style Entity-Relationship Diagrams

Appendix E Getting Started with the MySQL Workbench Database Design Tools
Appendix F Getting Started with Microsoft Visio 2010

Appendix G The Semantic Object Model

Appendix H Data Structures for Database Processing

Appendix | Getting Started with Web Servers, PHP, and the Eclipse PDT

Supplements

Acknowledgments

Preface XXiii

Chapters 11, 12, and 13 address standards for accessing databases. Chapter 11 presents
ODBC, OLE DB, ADO.NET, ASPNET, JDBC, and JavaServer Pages (JSP). It then introduces PHP
(and the Eclipse IDE) and illustrates the use of PHP for the publication of databases via Web
pages. Chapter 12 describes the integration of XML and database technology. The chapter
begins with a primer on XML and then shows how to use the FOR XML SQL statement in
SQL Server.

Chapter 13 concludes the text with a discussion of Bl systems, dimensional data models,
data warehouses, and data marts. It illustrates the use of SQL for RFM reporting analysis and
for market basket analysis.

This text is accompanied by a wide variety of supplements. Please visit the texts Web site at
www.pearsonhighered.com/kroenke to access the instructor and student supplements
described below. Please contact your Pearson sales representative for more details. All supple-
ments were written by David Auer.

For Students

Many of the sample databases used in this text are available online in Microsoft
Access, Oracle Database 11g, SQL Server 2008 R2, and MySQL 5.5 format.

For Instructors

The Instructors Resource Manual provides sample course syllabi, teaching
suggestions, and answers to end-of-chapter review, project, and case questions.

The Test Item File and TestGen include an extensive set of test questions in
multiple-choice, true/false, fill-in-the-blank, short-answer, and essay format. The
difficulty level and where the topic is covered in the text are noted for each question.
The Test Item File is available in Microsoft Word and in TestGen. The TestGen
software is PC/MAC compatible and preloaded with all of the Test Item File
questions. You can manually or randomly view test questions and drag and drop to
create a test. You can add or modify test-bank questions as needed. Our TestGens are
converted for use in BlackBoard and WebCT. These conversions can be found on the
Instructors Resource Center. Conversions to D2L or Angel can be requested through
your local Pearson Sales Representative.

PowerPoint Presentation Slides feature lecture notes that highlight key terms and
concepts. Instructors can customize the presentation by adding their own slides or
editing the existing ones.

The Image Library is a collection of the text art organized by chapter. This includes
all figures, tables, and screenshots (as permission allows) to enhance class lectures
and PowerPoint presentations.

We are grateful for the support of many people in the development of this 12th edition and
previous editions. Thanks to Rick Mathieu at James Madison University for interesting and
insightful discussions on the database course. Professor Doug MacLachlan from the Market-
ing Department at the University of Washington was most helpful in understanding the
goals, objectives, and technology of data mining, particularly as it pertains to marketing. Don
Nilson of the Microsoft Corporation helped us understand the importance of XML to data-
base processing.

XXIV

Preface

In addition, we wish to thank the reviewers of this edition:

Ann Aksut, Central Piedmont Community College

Allen Badgett, Oklahoma City University

Rich Beck, Washington University

Jeffrey J. Blessing, Milwaukee School of Engineering
Alan Brandyberry, Kent State University

Jason Deane, Virginia Polytechnic Institute and State University
Barry Flaschbart, Missouri University of Science and Technology
Andy Green, Kennesaw State University

Dianne Hall, Auburn University

Jeff Hassett, University of Utah

Barbara Hewitt, Texas A&M, Kingsville

William Hochstettler, Franklin University

Margaret Hvatum, St. Louis Community College

Nitin Kale, University of Southern California, Los Angeles
Darrel Karbginsky, Chemeketa Community College
Johnny Li, South University

Mike Morris, Southeastern Oklahoma State University
Jane Perschbach, Texas A&M University Central Texas
Catherine Ricardo, lona College

Kevin Roberts, DeVry University

loulia Rytikova, George Mason University

Christelle Scharff, Pace University

Julian M. Scher, New Jersey Institute of Technology

K. David Smith, Cameron University

Marcia Williams, Bellevue Community College

Finally, we would like to thank Bob Horan, our editor, Kelly Loftus and Ashlee Bradbury,
our assistant editors during this project, Jacqueline Martin, our production editor, and Jennifer
Welsch, our project manager, for their professionalism, insight, support, and assistance in the
development of this project. We would also like to thank Russ Fish for his detailed comments
on the final manuscript. Finally, David Kroenke would like to thank his wife, Lynda, and David
Auer would like to thank his wife, Donna, for their love, encouragement, and patience while
this project was being completed.

David Kroenke
Seattle, Washington

David Auer
Bellingham, Washington

David M. Kroenke

bout the Authors

Work Experience

David M. Kroenke has more than 40 years experience in the computer industry. He began as a
computer programmer for the U.S. Air Force, working both in Los Angeles and at the Pentagon,
where he developed one of the worlds first DBMS products while part of a team that created a
computer simulation of World War IlI. That simulation served a key role for strategic weapons
studies during a 10-year period of the Cold War.

From 1973 to 1978, Kroenke taught in the College of Business at Colorado State
University. In 1977, he published the first edition of Database Processing, a significant and
successful textbook that, over 30 years later, you now are reading in its 12th edition. In 1978,
he left Colorado State and joined Boeing Computer Services, where he managed the team
that designed database management components of the IPAD project. After that, he joined
with Steve Mitchell to form Mitchell Publishing and worked as an editor and author, devel-
oping texts, videos, and other educational products and seminars. Mitchell Publishing was
acquired by Random House in 1986. During these years he also worked as an independent
consultant, primarily as a database disaster repairman helping companies recover from
failed database projects.

In 1982, Kroenke was one of the founding directors of the Microrim Corporation. From
1984 to 1987, he served as the Vice President of Product Marketing and Development and
managed the team that created and marketed the DBMS product R:base 5000 as well as other
related products.

For the next 5 years, Kroenke worked independently while he developed a new data mod-
eling language called the semantic object model. He licensed this technology to the Wall Data
Corporation in 1992 and then served as the Chief Technologist for Wall Datas SALSA line of
products. He was awarded three software patents on this technology.

Since 1998, Kroenke has continued consulting and writing. His current interests concern
the practical applications of data mining techniques on large organizational databases. An
avid sailor, he wrote Know Your Boat: The Guide to Everything That Makes Your Boat Work,
which was published by McGraw-Hill in 2002.

Consulting

Kroenke has consulted with numerous organizations during his career. In 1978, he worked for
Fred Brooks, consulting with IBM on a project that became the DBMS product DB2. In 1989,
he consulted for the Microsoft Corporation on a project that became Microsoft Access. In the
1990s, he worked with Computer Sciences Corporation and with General Research Corpora-
tion for the development of technology and products that were used to model all of the U.S.
Army s logistical data as part of the CALS project. Additionally, he has consulted for Boeing
Computer Services, the U.S. Air Force Academy, Logicon Corporation, and other smaller
organizations.

XXV

XXVi

David J. Auer

About the Authors

Publications

Database Processing, Pearson Prentice Hall, 12 editions, 1977 present (coauthor with
David Auer, 11th and 12th editions)

Database Concepts, Pearson Prentice Hall, five editions, 2004 present (coauthor with
David Auer, 3rd, 4th, and 5th editions)

Using MIS, Pearson Prentice Hall, four editions, 2006 present

Experiencing MIS, Pearson Prentice Hall, three editions, 2007 present

MIS Essentials, Pearson Prentice Hall, two editions, 2009 present

SharePoint for Students, Pearson Prentice Hall, 2012 (coauthor with Carey Cole and
Steve Fox)

Know Your Boat: The Guide to Everything That Makes Your Boat Work,

McGraw-Hill, 2002

Management Information Systems, Mitchell Publishing/Random House, three
editions, 1987 1992

Business Computer Systems, Mitchell Publishing/Random House, five editions,

1981 1990

Managing Information for Microcomputers, Microrim Corporation, 1984 (coauthor
with Donald Nilson)

Database Processing for Microcomputers, Science Research Associates, 1985
(coauthor with Donald Nilson)

Database: A Professional s Primer, Science Research Associates, 1978

Teaching

Kroenke taught in the College of Business at Colorado State University from 1973 to 1978. He
also has taught part-time in the Software Engineering program at Seattle University. From
1990 to 1991, he served as the Hanson Professor of Management Science at the University of
Washington. Most recently, he taught at the University of Washington from 2002 to 2008.
During his career, he has been a frequent speaker at conferences and seminars for computer
educators. In 1991, the International Association of Information Systems named him Computer
Educator of the Year.

Education

B.S., Economics, U.S. Air Force Academy, 1968
M.S., Quantitative Business Analysis, University of Southern California, 1971
Ph.D., Engineering, Colorado State University, 1977

Personal

Kroenke is married, lives in Seattle, and has two grown children and three grandchildren. He
enjoys skiing, sailing, and building small boats. His wife tells him he enjoys gardening as well.

Work Experience

David J. Auer has more than 30 years experience teaching college-level business and infor-
mation systems courses and for the last 17 years has worked professionally in the field of
information technology. He served as a commissioned officer in the U.S. Air Force, with
assignments to NORAD and the Alaskan Air Command in air defense operations. He later
taught both business administration and music classes at Whatcom Community College
and business courses for the Chapman College Residence Education Center at Whidbey
Island Naval Air Station. He was a founder of the Puget Sound Guitar Workshop (now in its
37th year of operations). He worked as a psychotherapist and organizational development

About the Authors XXVii

consultant for the Whatcom Counseling and Psychiatric Clinics Employee Assistance
Program, and provided training for the Washington State Department of Social and Health
Services. He has taught for Western Washington University s College of Business and
Economics since 1981 and has been the colleges Director of Information Systems and
Technology Services since 1994.

Publications

Database Processing, Pearson Prentice Hall, two editions, 2009 present (coauthor
with David Kroenke)

Database Concepts, Pearson Prentice Hall, three editions, 2007 present (coauthor
with David Kroenke)

Network Administrator: NetWare 4.1, Course Technology, 1997 (coauthor with Ted
Simpson and Mark Ciampa)

New Perspectives on Corel Quattro Pro 7.0 for Windows 95, Course Technology, 1997
(coauthor with June Jamrich Parsons, Dan Oja, and John Leschke)

New Perspectives on Microsoft Excel 7 for Windows 95 Comprehensive, Course
Technology, 1996 (coauthor with June Jamrich Parsons and Dan Oja)

New Perspectives on Microsoft Office Professional for Windows 95 Intermediate,
Course Technology, 1996 (coauthor with June Jamrich Parsons, Dan Oja, Beverly
Zimmerman, Scott Zimmerman, and Joseph Adamski)

The Students Companion for Use with Practical Business Statistics, Irwin, two editions
1991 and 1993

Microsoft Excel 5 for Windows New Perspectives Comprehensive, Course Technology,
1995 (coauthor with June Jamrich Parsons and Dan Oja)

Introductory Quattro Pro 6.0 for Windows, Course Technology, 1995 (coauthor with
June Jamrich Parsons and Dan Oja)

Introductory Quattro Pro 5.0 for Windows, Course Technology, 1994 (coauthor with
June Jamrich Parsons and Dan Oja)

Teaching

Auer has taught in the College of Business and Economics at Western Washington University
from 1981 to the present. From 1975 to 1981, he taught part time for community colleges, and
from 1981 to 1984 he taught part time for the Chapman College Residence Education Center
System. During his career, he has taught a wide range of courses in Quantitative Methods,
Production and Operations Management, Statistics, Finance, and Management Information
Systems. In MIS, he has taught Principles of Management Information Systems, Business
Database Development, Computer Hardware and Operating Systems, and Telecommuni-
cations and Network Administration.

Education

B.A., English Literature, University of Washington, 1969

B.S., Mathematics and Economics, Western Washington University, 1978
M.A., Economics, Western Washington University, 1980

M.S., Counseling Psychology, Western Washington University, 1991

Personal

Auer is married, lives in Bellingham, Washington, and has two grown children and five
grandchildren. He is active in his community, where he has been president of his neighbor-
hood association and served on the City of Bellingham Planning and Development
Commission. He enjoys music, playing acoustic and electric guitar, five-string banjo, and a
bit of mandolin.

G etting Started

The two chapters in Part 1 provide an introduction to database pro-
cessing. In Chapter 1, we consider the characteristics of databases and
describe important database applications. Chapter 1 also describes
the various database components and provides a survey of the knowl-
edge you need to learn from this text. The chapter also summarizes the
history of database processing.

You will start working with a database in Chapter 2 and use that
database to learn how to use Structured Query Language (SQL), a
database-processing language, to query database data. You will learn
how to query both single and multiple tables, and you will use SQL to
investigate a practical example looking for patterns in stock market
data. Together, these two chapters will give you a sense of what data-
bases are and how they are processed.

Introduction

Chapter Objectives

To understand the nature and characteristics of To define the term database and describe what is
databases contained within the database

To survey some important and interesting database To define the term metadata and provide examples of
applications metadata

To gain a general understanding of tables and To define and understand database design from existing
relationships data

To describe the components of a Microsoft Access To define and understand database design as new
database system and explain the functions they systems development

perform To define and understand database design in database
To describe the components of an enterprise-class redesign

database system and explain the functions they To understand the history and development of database
perform processing

To define the term database management system
(DBMS) and describe the functions of a DBMS

This chapter introduces database processing. We will first consider the
nature and characteristics of databases and then survey a number of
important and interesting database applications. Next, we will describe the
components of a database system and then, in general terms, describe how
databases are designed. After that, we will survey the knowledge that you
need to work with databases as an application developer or as a database

Chapter 1 Introduction 3

administrator. Finally, we conclude this introduction with a brief history of
database processing.

This chapter assumes a minimal knowledge of database use. It assumes
that you have used a product such as Microsoft Access to enter data into a
form, to produce a report, and possibly to execute a query. If you have not
done these things, you should obtain a copy of Microsoft Access 2010 and
work through the tutorial in Appendix A.

The Characteristics of Databases

The purpose of a database is to help people keep track of things, and the most commonly used
type of database is the relational database. We will discuss the relational database model in
depth in Chapter 3, so for now we just need to understand a few basic facts about how a rela-
tional database helps people track things of interest to them.

A relational database stores data in tables. Data are recorded facts and numbers. A table
has rows and columns, like those in a spreadsheet. A database usually has multiple tables, and
each table contains data about a different type of thing. For example, Figure 1-1 shows a
database with two tables: the STUDENT table holds data about students, and the CLASS table
holds data about classes.

Each row of a table has data about a particular occurrence or instance of the thing of
interest. For example, each row of the STUDENT table has data about one of four students:
Cooke, Lau, Harris, and Greene. Similarly, each row of the CLASS table has data about a parti-
cular class. Because each row records the data for a specific instance, rows are also known as
records. Each column of a table stores a characteristic common to all rows. For example, the
first column of STUDENT stores StudentNumber, the second column stores LastName, and
so forth.

THE WAY A table and a spreadsheet (also known as a worksheet) are very similar in

that you can think of both as having rows, columns, and cells. The details
that define a table as something different from a spreadsheet are discussed in Chapter 3.
For now, the main differences you will see are that tables have column names instead
of identifying letters (for example, Name instead of A) and that the rows are not neces-
sarily numbered.

Although, in theory, you could switch the rows and columns by putting instances in
the columns and characteristics in the rows, this is never done. Every database in this
text, and 99.999999 percent of all databases throughout the world, store instances in
rows and characteristics in columns.

A Note on Naming Conventions

In this text, table names appear in capital letters. This convention will help you to distinguish
table names in explanations. However, you are not required to set table names in capital let-
ters. Microsoft Access and similar programs will allow you to write a table name as STUDENT,
student, Student, stuDent, or in some other way.

Additionally, in this text column names begin with a capital letter. Again, this is just a con-
vention. You could write the column name Term as term, teRm, TERM, or in any other way. To
ease readability, we will sometimes create compound column names in which the first letter of
each element of the compound word is capitalized. Thus, in Figure 1-1 the STUDENT table has
columns StudentNumber, LastName, FirstName, and EmailAddress. Again, this capitalization
is just a convenient convention. However, following these or other consistent conventions will
make interpretation of database structures easier. For example, you will always know that
STUDENT is the name of a table and that Student is the name of a column of a table.

Part 1 Getting Started

The STUDENT table —Emﬁ
| StudentMumber - | LastName - | FirstName - EmailAddress -
This row stores the 1 Cooke Sam Sam.Cooke@CurU.edu
data for Sam Cooke | 2 Lau Marcia Marcia.Lau@OurlU.edu
3 Harris Lou Lou.Harris@OurU.edu
The CLASS table \: 4 Greene Grace Grace.Green@Ourl.edu
e (New)
This column stores the RecorNﬂ » M b | Wk Mo Filter | [search EI_TI [r]
ClassName for CLASS.
each class | ClassNumber v | ClassName - Term - | Section -
| 10|CHEM 101 2010-Fall a1
I 20|CHEM 101 2010-Fall 2
30|CHEM 101 2011-Spring 1
. A40|ACCT 101 2010-Fall 1
Figure: 1-1 = -
50|ACCT 101 2011-Spring 1
The STUDENT and CLASS * e
Tables Record: 14 4 1of5 kbR | “f% Mo Filter | Search 'II_I@J ’I
A Database Has Data and Relationships
Figure 1-1 illustrates how database tables are structured to store data, but a database is not
complete unless it also shows the relationships among the rows of data. To see why this is
important, examine Figure 1-2. In this figure, the database contains all of the basic data shown
in Figure 1-1 together with a GRADE table. Unfortunately, the relationships among the data
are missing. In this format, the GRADE data are useless. It is like the joke about the sports
commentator who announced: Now for tonights baseball scores: 2 3,7 2,1 0,and4 5. The
scores are useless without knowing the teams that earned them. Thus, a database contains
both data and the relationships among the data.
Figure 1-3 shows the complete database that contains not only the data about students,
classes, and grades, but also the relationships among the rows in those tables. For example,
StudentNumber 1, who is Sam Cooke, earned a Grade of 3.7 in ClassNumber 10, which is
Chem101. He also earned a Grade of 3.5 in ClassNumber 40, which is Acct101.
The STUDENT table —?ﬁmﬁ
| StudentMumber - | LastName - | FirstMame - EmailAddress -
The CLASS table 1 Cooke Sam Sam.Cooke@QurU.edu
2 Lau Marcia Marcia.Lau@OurU.edu
The GRADE table 3 Harris Lou Lou.Harris@OurU.edu
but who do these 4 Greene Grace Grace.Green@Ourl.edu
grades belong to? (New) I
Record: 14 ¢ 1 of4 bbb | WK Mo Filter | Search [« _wm | [»]
| ClassNumber - | ClassName -~ Term | Section -
10 CHEM 101 2010-Fall 1
1 20 CHEM 101 2010-Fall P
30 CHEM 101 2011-Spring 1
40 ACCT 101 2010-Fall 1
= 50 ACCT 101 2011-5pring 1
*
Record: 4« 1of5 | b M b [W NoFilter [[Search] [
GRADE
Grade -
3.7
3.5
@ 3.7
3.1
il 3.0

Figure: 1-2

The STUDENT, CLASS,
and GRADE Tables

(] 3.5
* 0.0

Record: M4 4 1 ofe L

Figure

1-3

Chapter 1 Introduction 5
The STUDENT table ’—*33 STUDENT \{ S
StudentNumber - | LastMame - FirstMame -~ EmailAddress -
The CLASS table [+ 1 Cooke Sam Sam.Cooke@OurU.edu
H 4\ 2 Lau Marcia Marcia.lau@OurU.edu
The GRADE table with TR 3 Harris Lou Lou.Harris@Curl.edu
foreign keys now | 4 Greene Grace Grace.Green@0OurU.edu
each grade is linked 5 lew) .
back to the STUDENT Record: W 1of4 L TR i< Mo Filter | Search 4 11} »
and CLASS tables rg cuass | =
ClassNumber -~ | ClassName -~ Term - Section -
[+ 10 CHEM 101 2010-Fall 1
[+ 20 CHEM 101 2010-Fall 2
[+ 30 CHEM 101 2011-Spring 1
E3] 40 ACCT 101 2010-Fall il
1] 50 ACCT101 2011-5pring 1
*
Record: M 1of5 y oMo % No Filter | Search 4| m »
|
27 GRADE \ x
StudentNumber | - ClassNumber l - Grade -
1 10 AT
1! 40 3.5
2 20 3.7
3 30 3.1
4 40 3.0
4 50 2.5
* 0.0
Record: M 10of6 | K Mo Filter | 'search 4 lm »

The Key Database
Characteristic: Related

Tables

Figure 1-3 illustrates an important characteristic of database processing. Each row in a
table is uniquely identified by a primary key, and the values of these keys are used to create the
relationships between the tables. For example, in the STUDENT table StudentNumber serves as
the primary key. Each value of StudentNumber is unique and identifies a particular student.
Thus, StudentNumber 1 identifies Sam Cooke. Similarly, ClassNumber in the CLASS table
identifies each class. If the numbers used in primary key columns such as StudentNumber and
ClassNumber are automatically generated and assigned in the database itself, then the key is
also called a surrogate key.

By comparing Figures 1-2 and 1-3, we can see how the primary keys of STUDENT
and CLASS were added to the GRADE table to provide GRADE with a primary key of
(Student-Number, ClassNumber) to uniquely identify each row. More important, in GRADE
StudentNumber and ClassNumber each now serves as a foreign key. A foreign key provides the
link between two tables. By adding a foreign key, we create a relationship between the two tables.

Figure 1-4 shows a Microsoft Access 2010 view of the tables and relationships shown in
Figure 1-3. In Figure 1-4, primary keys in each table are marked with key symbols, and
connecting lines representing the relationships are drawn from the foreign keys (in GRADE) to
the corresponding primary keys (in STUDENT and CLASS). The symbols on the relationship
line (the number 1 and the infinity symbol) mean that, for example, one student in STUDENT
can be linked to many grades in GRADE.

Databases Create Information

In order to make decisions, we need information upon which to base those decisions. Because we
have already defined data as recorded facts and numbers, we can now define! information as:

Knowledge derived from data

Data presented in a meaningful context

Data processed by summing, ordering, averaging, grouping, comparing, or other
similar operations

1 These definitions are from David M. Kroenkes books Using MIS, 4th ed. (Upper Saddle River, NJ: Prentice-Hall,
2012) and Experiencing MIS, 3rd ed. (Upper Saddle River, NJ: Prentice-Hall, 2012). See these books for a full dis-
cussion of these definitions, as well as a discussion of a fourth definition, a difference that makes a difference.

Part 1 Getting Started

The STUDENT table
the key symbol shows
the primary key

STUDENT

CLASS

% ClassMumber
ClassName
Term

W studentMumber
LastName
FirstName

EmailAddress

Section

The relationship
between STUDENT
and GRADE the
number 1 and the
infinity symbol indicate
that one student may
be linked to many
grades by
StudentNumber

GRADE
% StudentMumber
% ClassNumber

Grade

Figure

1-4

Microsoft Access 2010 View
of Tables and Relationships

Data

base Examples

Databases record facts and figures, so they record data. They do so, however, in a way that
enables them to produce information. The data in Figure 1-3 can be manipulated to produce a
students GPA, the average GPA for a class, the average number of students in a class, and so
forth. In Chapter 2, you will be introduced to a language called Structured Query Language
(SQL) that you can use to produce information from database data.

To summarize, relational databases store data in tables, and they represent the relation-
ships among the rows of those tables. They do so in a way that facilitates the production of
information. We will discuss the relational database model in depth in Part 2 of this book.

Today, database technology is part of almost every information system. This fact is not surpris-
ing when we consider that every information system needs to store data and the relationships
among those data. Still, the vast array of applications that use this technology is staggering.
Consider, for example, the applications listed in Figure 1-5.

Single-User Database Applications

In Figure 1-5, the first application is used by a single salesperson to keep track of the customers
she has called and the contacts that shes had with them. Most salespeople do not build their
own contact manager applications; instead, they license products such as GoldMine (see
www.frontrange.com/goldmine) or ACT! (see www.act.com).

Multiuser Database Applications

The next applications in Figure 1-5 are those that involve more than one user. The patient-
scheduling application, for example, may have 15 to 50 users. These users will be appointment
clerks, office administrators, nurses, dentists, doctors, and so forth. A database like this one
may have as many as 100,000 rows of data in perhaps 5 or 10 different tables.

When more than one user employs a database application, there is always the chance that
one users work may interfere with anothers. Two appointment clerks, for example, might
assign the same appointment to two different patients. Special concurrency-control mecha-
nisms are used to coordinate activity against the database to prevent such conflict. You will
learn about these mechanisms in Chapter 9.

The third row of Figure 1-5 shows an even larger database application. A customer
relationship management (CRM) system is an information system that manages customer
contacts from initial solicitation through acceptance, purchase, continuing purchase, support,
and so forth. CRM systems are used by salespeople, sales managers, customer service and sup-
port staff, and other personnel. A CRM database in a larger company might have 500 users and
10 million or more rows in perhaps 50 or more tables. According to Microsoft, in 2004 Verizon
had an SQL Server customer database that contained more than 15 terabytes of data. If that
data were published in books, a bookshelf 450 miles long would be required to hold them.

Enterprise resource planning (ERP) is an information system that touches every depart-
ment in a manufacturing company. It includes sales, inventory, production planning,

Chapter 1 Introduction 7

Application Example Number Typical Size Remarks

Users of Users

Sales contact Salesperson 1 2,000 rows Products such as GoldMine and

manager Act! are database centric.

Patient appointment | Medical office 15to 50 100,000 rows Vertical market software vendors

(doctor, dentist) incorporate databases into their
software products.

Customer Sales, marketing, 500 10 million rows | Major vendors such as Microsoft

relationship or customer and Oracle PeopleSoft

management (CRM) | service Enterprise build applications
departments around the database.

Enterprise resource An entire 5,000 10 million+ SAP uses a database as a

planning (ERP) organization rows central repository for
ERP data.

E-commerce site Internet users Possibly 1 billion+ Drugstore.com has a database

millions rows that grows at the rate of
20 million rows per day!

Digital dashboard Senior managers 500 100,000 rows Extractions, summaries, and
consolidations of operational
databases.

Data mining Business analysts | 25 100,000 to Data are extracted, reformatted,

millions+ cleaned, and filtered for use
by statistical data mining tools.
1-5 purchasing, and other business functions. SAP is the leading vendor of ERP applications, and

Example Database Uses

a key element of its product is a database that integrates data from these various business
functions. An ERP system may have 5,000 or more users and perhaps 100 million rows in
several hundred tables.

E-Commerce Database Applications

E-commerce is another important database application. Databases are a key component of
e-commerce order entry, billing, shipping, and customer support. Surprisingly, however,
the largest databases at an e-commerce site are not order-processing databases. The largest
databases are those that track customer browser behavior. Most of the prominent e-commerce
companies, such as Amazon.com (www.amazon.com) and Drugstore.com (www.drugstore.com)
keep track of the Web pages and the Web page components that they send to their customers.
They also track customer clicks, additions to shopping carts, order purchases, abandoned
shopping carts, and so forth.

E-commerce companies use Web activity databases to determine which items on a Web page
are popular and successful and which are not. They also can conduct experiments to determine if
a purple background generates more orders than a blue one, and so forth. Such Web usage data-
bases are huge. For example, Drugstore.com adds 20 million rows to its Web log database each day!

Reporting and Data Mining Database Applications

Two other example applications in Figure 1-5 are digital dashboards and data mining applica-
tions. These applications use the data generated by order processing and other operational
systems to produce information to help manage the enterprise. Such applications do not
generate new data, but instead summarize existing data to provide insights to management.

Part 1 Getting Started

Digital dashboards and other reporting systems assess past and current performance. Data min-
ing applications predict future performance. We will consider such applications in Chapter 15.
The bottom line is that database technology is used in almost every information system and
involves databases ranging in size from a few thousand rows to many millions of rows.

THE WAy Do not assume that just because a database is small that its structure is

simple. For example, consider parts distribution for a company that sells
$1 million in parts per year and parts distribution for a company that sells $100 million in
parts per year. Despite the difference in sales, the companies have similar databases. Both
have the same kinds of data, about the same number of tables of data, and the same level
of complexity in data relationships. Only the amount of data varies from one to the other.
Thus, although a database for a small business may be small, it is not necessarily simple.

The Components of a Database System

Figure: 1-6

The Components of a
Database System

Figure : 1-7

The Components of a
Database Systems with SQL

As shown in Figure 1-6, a database system is typically defined to consist of four components:
users, the database application, the database management system (DBMS), and the database.
However, given the importance of Structured Query Language (SQL), an internationally
recognized standard language that is understood by all commercial DBMS products, in database
processing and the fact that database applications typically send SQL statements to the DBMS for
processing, we can refine our illustration of a database system to appear as shown in Figure 1-7.

Starting from the right of Figure 1-7, the database is a collection of related tables and other
structures. The database management system (DBMS) is a computer program used to create,
process, and administer the database. The DBMS receives requests encoded in SQL and trans-
lates those requests into actions on the database. The DBMS is a large, complicated program that
is licensed from a software vendor; companies almost never write their own DBMS programs.

A database application is a set of one or more computer programs that serves as an
intermediary between the user and the DBMS. Application programs read or modify database
data by sending SQL statements to the DBMS. Application programs also present data to users
in the format of forms and reports. Application programs can be acquired from software
vendors, and they are also frequently written in-house. The knowledge you gain from this text
will help you write database applications.

Users, the fourth component of a database system, employ a database application to keep
track of things. They use forms to read, enter, and query data, and they produce reports to con-
vey information.

— 5
Database
Application DBMS Database
Create
Process
Administer
R
— 3
S
Database Q
Application L DBMS Database
Create
Process

_/ Administer

Figure: 1-8

Basic Functions of
Application Programs

Chapter 1 Introduction 9

Create and process forms
Process user queries
Create and process reports
Execute application logic
Control application

Database Applications and SQL

Figure 1-7 shows the database applications that users interact with directly. Figure 1-8 lists the
basic functions of database applications.

First, an application program creates and processes forms. Figure 1-9 shows a typical form
for entering and processing student enrollment data for the Student-Class-Grade database
shown in Figures 1-3 and 1-4. Notice that this form hides the structure of the underlying tables
from the user. By comparing the tables and data in Figures 1-3 and 1-4 to the form in Figure 1-9,
we can see that data from the CLASS table appears at the top of the form, while data from the
STUDENT table is presented in a tabular section labeled Class Enroliment Data.

The goal of this form, like that for all data entry forms, is to present the data in a format
that is useful for the users, regardless of the underlying table structure. Behind the form, the
application processes the database in accordance with the users actions. The application
generates an SQL statement to insert, update, or delete data for any of the tables that under-
lie this form.

The second function of application programs is to process user queries. The application
program first generates a query request and sends it to the DBMS. Results are then formatted
and returned to the user. Applications use SQL statements and pass them to the DBMS for
processing. To give you a taste of SQL, here is a sample SQL statement for processing the
STUDENT table in Figure 1-1:

SELECT LastName, FirstName, EmailAddress
FROM STUDENT
Figure: 1-9 WHERE StudentNumber > 2;
An Example Data Entry Form
=3 cmss\‘ x
CLASS
b
Class Number | ﬁ
Class Name [accT 101 '
Term :2010-Fa|| |
Section ' 1|

CLASS ENROLLMENT
DATA

Record; M 4 4 of 5 LI ¢

StudentNumber - | LastName = FirstMame > EmailAddress v
1 Cooke Sam Sam.Cooke@CurU.edu
| 4 Greene Grace Grace.Green@OurU.edu
* (New)
:Record: L] oMK & Mo Filter Search

& Mo Filter

lof2

Search

10

Figure - 1-10

Example SQL Query Results

Figure - 1-11

Example Report

Part 1 Getting Started

== Queryl X
LastMame =~ | FirstName - EmailAddress -
Lou Lou.Harris@Curl.edu
Greene Grace Grace.Green@Ourl.edu
)
Record: 4 4 10f2 | b M ¥ | “f NoFilter | Search

This SQL statement is a query statement, which asks the DBMS to obtain specific data
from a database. In this case, the query asks for the last name, first name, and e-mail address
of all students having a StudentNumber greater than 2. The results of this SQL statement are
shown (as displayed in Microsoft Access 2010) in Figure 1-10. As shown in Figure 1-10, running
this SQL statement will produce the LastName, FirstName, and EmailAddress for students
Harris and Greene.

The third function of an application is to create and process reports. This function is
somewhat similar to the second because the application program first queries the DBMS
for data (again using SQL). The application then formats the query results as a report.
Figure 1-11 shows a report that displays all the Student-Class-Grade data shown
in Figure 1-3 sorted by ClassNumber and LastName. Notice that the report, like the form in
Figure 1-9, is structured according to the users needs, not according to the underlying
table structure.

In addition to generating forms, queries, and reports, the application program takes other
actions to update the database in accordance with application-specific logic. For example,
suppose a user using an order entry application requests 10 units of a particular item. Suppose
further that when the application program queries the database (via the DBMS), it finds that
only 8 units are in stock. What should happen? It depends on the logic of that particular appli-
cation. Perhaps no units should be removed from inventory, and the user should be notified, or
perhaps the 8 units should be removed and 2 more placed on back order. Perhaps some other
action should be taken. Whatever the case, it is the job of the application program to execute
the appropriate logic.

Finally, the last function for application programs listed in Figure 1-8 is to control the
application. This is done in two ways. First, the application needs to be written so that only
logical options are presented to the user. For example, the application may generate a menu
with user choices. In this case, the application needs to ensure that only appropriate choices

Class Grade Report
ClassNumber ClassName Term Section LastName FirstMame Grade

10 CHEM 101 2010-Fall 1

Cooke Sam 37
20 CHEM 101 2010-Fall 2

Lau Marcia 3.7
30 CHEM 101 2011-5pring 1

Harris Lou 31
40 ACCT 101 2010-Fall 1

Cooke Sam 3.5

Greene Grace 3.0
50 ACCT101 2011-5Spring 2

Greene Grace 35

Figure : 1-12

Functions of a DBMS

Chapter 1 Introduction 11

are available. Second, the application needs to control data activities with the DBMS. The
application might direct the DBMS, for example, to make a certain set of data changes as a
unit. The application might tell the DBMS to either make all these changes or none of them.
You will learn about such control topics in Chapter 9.

The DBMS

The DBMS, or database management system, creates, processes, and administers the data-
base. A DBMS is a large, complicated product that is almost always licensed from a software
vendor. One DBMS product is Microsoft Access. Other commercial DBMS products are Oracle
Database and MySQL, both from Oracle Corporation; SQL Server, from Microsoft; and DB2,
from IBM. Dozens of other DBMS products exist, but these five have the lions share of the
market. Figure 1-12 lists the functions of a DBMS.

A DBMS is used to create a database and to create the tables and other supporting struc-
tures inside that database. As an example of the latter, suppose that we have an EMPLOYEE
table with 10,000 rows and that this table includes a column, DepartmentName, that records
the name of the department in which an employee works. Furthermore, suppose that we
frequently need to access employee data by DepartmentName. Because this is a large
database, searching through the table to find, for example, all employees in the accounting
department would take a long time. To improve performance, we can create an index (akin to
the index at the back of a book) for DepartmentName to show which employees are in which
departments. Such an index is an example of a supporting structure that is created and main-
tained by a DBMS.

The next two functions of a DBMS are to read and modify database data. To do this, a
DBMS receives SQL and other requests and transforms those requests into actions on the
database files. Another DBMS function is to maintain all the database structures. For example,
from time to time it might be necessary to change the format of a table or another supporting
structure. Developers use a DBMS to make such changes.

With most DBMS products, it is possible to declare rules about data values and have a
DBMS enforce them. For example, in the Student-Class-Grade database tables in Figure 1-3,
what would happen if a user mistakenly entered a value of 9 for StudentNumber in the GRADE
table? No such student exists, so such a value would cause numerous errors. To prevent this
situation, it is possible to tell the DBMS that any value of StudentNumber in the GRADE
table must already be a value of StudentNumber in the STUDENT table. If no such value exists,
the insert or update request should be disallowed. The DBMS then enforces these rules, which
are called referential integrity constraints.

The last three functions of a DBMS listed in Figure 1-12 have to do with database
administration. A DBMS controls concurrency by ensuring that one users work does not
inappropriately interfere with another users work. This important (and complicated) function
is discussed in Chapter 9. Also, a DBMS contains a security system that ensures that only
authorized users perform authorized actions on the database. For example, users can be
prevented from seeing certain data. Similarly, users actions can be confined to making only
certain types of data changes on specified data.

Finally, a DBMS provides facilities for backing up database data and recovering it from
backups, when necessary. The database, as a centralized repository of data, is a valuable orga-
nizational asset. Consider, for example, the value of a book database to a company such as

Create database

Create tables

Create supporting structures (e.g., indexes)
Read database data

Modify (insert, update, or delete) database data
Maintain database structures

Enforce rules

Control concurrency

Provide security

Perform backup and recovery

12

Figure: 1-13

Typical Metadata Tables

Part 1 Getting Started

Amazon.com. Because the database is so important, steps need to be taken to ensure that no
data will be lost in the event of errors, hardware or software problems, or natural or human
catastrophes.

The Database

The last component in Figure 1-7 is the database. A database is a self-describing collec-
tion of integrated tables. Integrated tables are tables that store both data and the relation-
ships among the data. The tables in Figure 1-3 are integrated because they store not just
student, class, and grade data, but also data about the relationships among the rows
of data.

A database is self-describing because it contains a description of itself. Thus, databases
contain not only tables of user data, but also tables of data that describe that user data. Such
descriptive data is called metadata because it is data about data. The form and format of
metadata varies from DBMS to DBMS. Figure 1-13 shows generic metadata tables that
describe the tables and columns for the database in Figure 1-3.

You can examine metadata to determine if particular tables, columns, indexes, or
other structures exist in a database. For example, the following statement queries the Microsoft

USER_TABLES Table

TableName NumberColumns | PrimaryKey

STUDENT 4 StudentNumber
CLASS 4 ClassNumber
GRADE 3 (StudentNumber, ClassNumber)

USER_COLUMNS Table

ColumnName TableName DataType Length (bytes)
StudentNumber STUDENT Integer 4
LastName STUDENT Text 25
FirstName STUDENT Text 25
EmailAddress STUDENT Text 100
ClassNumber CLASS Integer 4
Name CLASS Text 25
Term CLASS Text 12
Section CLASS Integer 4
StudentNumber | GRADE Integer 4
ClassNumber GRADE Integer 4
Grade GRADE Decimal (2, 1)

Figure - 1-14

Database Contents

Chapter 1 Introduction 13

— T

v
Tables of user data
Metadata Discussed in

Indexes }/_ Chapters 7, 10, 10A, 10B

Stored procedures

Triggers
Security data } Discussed in
X
Backup/recovery data Chapters 9, 10, 10A, 108
v

SQL Server metadata table SYSOBJECTS to determine if a user table (Type = U) named CLASS
exists in the database. If it does, the table is dropped (removed) from the database.

IF EXISTS
(SELECT *
FROM SYSOBJECTS
WHERE [Name]="CLASS”

AND Type="U")
DROP TABLE CLASS;

Do not be concerned with the syntax of this statement. You will learn what it means and
how to write such statements yourself as we proceed. For now, just understand that this is one
way that database administrators use metadata.

THE WAy Because metadata is stored in tables, you can use SQL to query it, as just

illustrated. Thus, by learning how to write SQL to query user tables, you will
also learn how to write SQL to query metadata. To do that, you just apply the SQL state-
ments to metadata tables rather than user tables.

In addition to user tables and metadata, databases contain other elements, as shown in
Figure 1-14. These other components will be described in detail in subsequent chapters. For now,
however, understand that indexes are structures that speed the sorting and searching of database
data. Triggers and stored procedures are programs that are stored within the database. Triggers
are used to maintain database accuracy and consistency and to enforce data constraints. Stored
procedures are used for database administration tasks and are sometimes part of database appli-
cations. You will learn more about these different elements in Chapters 7, 10, 10A, and 10B.

Security data define users, groups, and allowed permissions for users and groups. The par-
ticulars depend on the DBMS product in use. Finally, backup and recovery data are used to
save database data to backup devices as well as to recover the database data when needed. You
will learn more about security and backup and recovery data in Chapters 9, 10, 10A, and 10B.

Personal Versus Enterprise-Class Database Systems

We can divide database systems and DBMS products into two classes: personal database sys-
tems and enterprise-class database systems.

What Is Microsoft Access?

We need to clear up a common misconception: Microsoft Access is not just a DBMS. Rather, it
is a personal database system: a DBMS plus an application generator. Although Microsoft
Access contains a DBMS engine that creates, processes, and administers the database, it
also contains form, report, and query components that are the Microsoft Access application
generator. The components of Microsoft Access are shown in Figure 1-15, which illustrates
that the Microsoft Access form, report, and query applications create SQL statements and
then pass them to the DBMS for processing.

14

Part 1 Getting Started

Microsoft Access

)
Form-Processing
Application A
/ Data Entry Forms \
— 3
Report-Generator S
-Gen DBMS Database
Reports |<— Application ?
Queries
Query-Processing /
Application

Figure : 1-15

Components of a Microsoft
Access Database System

/

The DBMS can be the
native Microsoft Access
Access Database Engine
(ADE) or Microsoft SQL Server.

Microsoft Access is a low-end product intended for individuals and small workgroups.
As such, Microsoft has done all that it can to hide the underlying database technology from
the user. Users interact with the application through data entry forms like the one shown in
Figure 1-9. They also request reports and perform queries against the database data. Microsoft
Access then processes the forms, produces the reports, and runs the queries. Internally, the
application components hidden under the Microsoft Access cover use SQL to call the DBMS,
which is also hidden under that cover. At Microsoft, the current DBMS engine within
Microsoft Access is called the Access Database Engine (ADE). ADE is a Microsoft Office spe-
cific version of Microsofts Joint Engine Technology (JET or Jet) database engine. Jet was used
as the Microsoft Access database engine until Microsoft Office 2007 was released. Jet itself is
still used in the Microsoft Windows operating system, but you seldom hear about Jet because
Microsoft does not sell Jet as a separate product.

THE WAy Although Microsoft Access is the best-known personal database system, it

is not the only one. OpenOffice.org Base is a personal database system distri-
buted as part of the OpenOffice.org software suite (which is available at www.openoffice.
org), and the personal database system LibreOffice Base is distributed as part of the related
LibreOffice software suite (which is available at www.libreoffice.org/).

Although hiding the technology is an effective strategy for beginners working on small
databases, it will not work for database professionals who work with applications, such as
most of those described in Figure 1-5. For larger, more complex databases, it is necessary to
understand the technology and components that Microsoft hides.

Nonetheless, because Microsoft Access is included in the Microsoft Office suite, it is often
the first DBMS used by students. In fact, you may have already learned to use Microsoft Access
in other classes you have taken, and in this book we will provide some examples using
Microsoft Access 2010. If you are not familiar with Microsoft Access 2010, you should work
through Appendix A, Getting Started with Microsoft Access 2010.

THE WAY With Microsoft Access 2000 and later versions, you can effectively replace

the Micrsoft Access database engine (either Jet or ADE) with Microsofts
enterprise-class DBMS product Microsoft SQL Server. You would do this if you wanted
to process a large database or if you needed the advanced functions and features of
Microsoft SQL Server.

Figure : 1-16

Components of an

Enterprise-Class Database

System

Chapter 1 Introduction 15

Applications Running
over Corporate
Network (Client/Server)

E-Commerce
Applications on
Web Server

DBMS Database

Web Portal with
Reporting
Applications

A1/

Create

Process
/\/ Administer

XML Web Services
Applications

What Is an Enterprise-Class Database System?

Figure 1-16 shows the components of an enterprise-class database system. Here, the appli-
cations and the DBMS are not under the same cover as they are in Microsoft Access. Instead,
the applications are separate from each other and separate from the DBMS.

Database Applications in an Enterprise-Class Database System

Earlier in this chapter, we discussed the basic functions of an application program, and these
functions are summarized in Figure 1-8. However, as exemplified by the list in Figure 1-5,
dozens of different types of database applications are available, and database applications in
an enterprise-class database system introduce functions and features beyond the basics. For
example, Figure 1-16 shows applications that connect to the database over a corporate
network. Such applications are sometimes called client/server applications because the appli-
cation program is a client that connects to a database server. Client/server applications often
are written in programming languages such as VB.NET, C++, or Java.

A second category of applications in Figure 1-16 is e-commerce and other applications
that run on a Web server. Users connect to such applications via Web browsers such as
Microsoft Internet Explorer, Mozilla Firefox, and Google Chrome. Common Web servers
include Microsofts Internet Information Server (11S) and Apache. Common languages for
Web server applications are PHP, Java, and the Microsoft .NET languages, such as C#NET
and VB.NET. We will discuss some of the technology for such applications in Chapter 11.

A third category of applications is reporting applications that publish the results of database
queries on a corporate portal or other Web site. Such reporting applications are often created
using third-party report generation and digital dashboard products from vendors such as IBM
(Cognos) and MicroStrategy (MicroStrategy 9). We will describe these applications in Chapter 13.

The last category of applications is XML Web services. These applications use a combina-
tion of the XML markup language and other standards to enable program-to-program
communication. In this way, the code that comprises an application is distributed over several
different computers. Web services can be written in Java or any of the NET languages. We will
discuss this important new class of applications in Chapter 12.

All of these database applications get and put database data by sending SQL statements
to the DBMS. These applications may create forms and reports, or they may send their results
to other programs. They also may implement application logic that goes beyond simple form
and report processing. For example, an order entry application uses application logic to deal
with out-of-stock items and backorders.

The DBMS in an Enterprise-Class Database System

As stated earlier, the DBMS manages the database. It processes SQL statements and provides
other features and functions for creating, processing, and administering the database.
Figure 1-17 presents the five most prominent DBMS products. The products are shown in
order of increasing power, features, and difficulty of use.

16

Figure : 1-17

Common Professional
View of DBMS Products

Database Design

Figure: 1-18

Three Types of Database
Design

Part 1 Getting Started

Microsoft Oracle Corp. Microsoft IBM Oracle Corp.
Access (ADE) MySQL SQL Server DB2 Oracle Database

¢ | | —

Increasing
power and
features

Increasing
difficulty
of use

Microsoft Access (really the Microsoft ADE) is the easiest to use and the least powerful.
Oracle MySQL is a powerful, open source DBMS frequently chosen for Web applications.
Microsoft SQL Server has far more power than its stablemate Microsoft Access it can
process larger databases, faster, and it includes features for multiuser control, backup and
recovery, and other administrative functions. DB2 is a DBMS product from IBM. Most people
would agree that it has faster performance than SQL Server, that it can handle larger
databases, and that it is also more difficult to use. Finally, the fastest and most capable DBMS
is Oracle Database from Oracle Corporation. Oracle Database can be configured to offer very
high performance on exceedingly large databases that operate 24/7, year after year. Oracle
Database is also far more difficult to use and administer than Microsoft SQL Server.

Database design is both difficult and important. Determining the proper structure of tables,
the proper relationships among tables, the appropriate data constraints, and other structural
components is challenging, and sometimes even daunting. Consequently, the world is full of
poorly designed databases. Such databases do not perform well. They may require application
developers to write overly complex and contrived SQL to get wanted data, they may be diffi-
cult to adapt to new and changing requirements, or they fail in some other way.

Because database design is both difficult and important, we will devote most of the first
half of this text to the topic. As shown in Figure 1-18, there are three types of database design:

Database design from existing data
Database design for new systems development
Database redesign of an existing database

From existing data (Chapters 3 and 4)
Analyze spreadsheets and other data tables
Extract data from other databases
Design using normalization principles
New systems development (Chapters 5 and 6)
Create data model from application requirements
Transform data model into database design
Database redesign (Chapter 8)
Migrate databases to newer databases
Integrate two or more databases
Reverse engineer and design new databases using
normalization principles and data model transformation

Note: Chapter 7 discusses database implementation using SQL. You need that knowledge
before you can understand database redesign.

Figure - 1-19

Databases Originating from
Existing Data

Chapter 1 Introduction 17

N
Cnraoadchant
Spreadsheet
Database
> K
Design
Taovt
Text
File
P’
OR

Database

Operational

Database
(ERP, CRM)

Design

Database extraction

Database Design from Existing Data

The first type of database design involves databases that are constructed from existing data, as
shown in Figure 1-19. In some cases, a development team is given a set of spreadsheets or a set
of text files with tables of data. The team is required to design a database and import the data
from those spreadsheets and tables into a new database.

Alternatively, databases can be created from extracts of other databases. This alternative
is especially common in business intelligence (BI) systems, which include reporting and data
mining applications. For example, data from an operational database, such as a CRM or ERP
database, may be copied into a new database that will be used only for studies and analysis. As
you will learn in Chapter 13, such databases are used in facilities called data warehouses and
data marts. The data warehouse and data mart databases store data specifically organized for
research and reporting purposes, and these data often are exported to other analytical tools,
such as SASs Enterprise Miner, IBM's SPSS Data Modeler, or TIBCO's Spotfire Metrics.

When creating a database from existing data, database developers must determine the
appropriate structure for the new database. A common issue is how the multiple files or tables
in the new database should be related. However, even the import of a single table can pose
design questions. Figure 1-20 shows two different ways of importing a simple table of employ-
ees and their departments. Should this data be stored as one table or two?

Decisions such as this are not arbitrary. Database professionals use a set of principles, col-
lectively called normalization, or normal forms, to guide and assess database designs. You
will learn those principles and their role in database design in Chapter 3.

Database Design for New Systems Development

A second way that databases are designed is for the development of new information systems.
As shown in Figure 1-21, requirements for a new system, such as desired data entry forms and
reports, user requirements statements, use cases, and other requirements, are analyzed to cre-
ate the database design.

In all but the simplest system development projects, the step from user requirements to
database design is too big. Accordingly, the development team proceeds in two steps. First, the
team creates a data model from the requirements statements and then transforms that data
model into a database design. You can think of a data model as a blueprint that is used as a
design aid on the way to a database design, which is the basis for constructing the actual
database in a DBMS.

18 Part 1 Getting Started

EmpNum EmpName DeptNum DeptName DeptNum DeptName
100 Jones 10 Accounting 10 Accounting
150 Lau 20 Marketing 20 Marketing
200 McCauley | 10 Accounting |§Rz|
300 Griffin 10 Accounting
EmpNum EmpName DeptNum
(a) One-Table Design
100 Jones 10
150 Lau 20
200 McCauley 10
Figure : 1-20 300 Griffin 10
Data Import: One or Two
Tables? (b) Two-Table Desian

In Chapter 5, you will learn about the most popular data modeling technique entity-
relationship (ER) data modeling. You also will see how to use the entity-relationship model
to represent a variety of common form and report patterns. Then, in Chapter 6, you will learn
how to transform entity-relationship data models into database designs.

Database Redesign
Database redesign also requires that databases are designed. As shown in Figure 1-22, there are
two common types of database redesign.

In the first, a database is adapted to new or changing requirements. This process some-
times is called database migration. In the migration process, tables may be created, modified,
or removed; relationships may be altered; data constraints may be changed; and so forth.

The second type of database redesign involves the integration of two or more databases.
This type of redesign is common when adapting or removing legacy systems. It is also

Figure - 1-21 A
Databases Originating Forms
from New Systems
Development
Reports
Data Data Model Database
— g Model Transformation Design
User
Requirement
Statements
Use Cases and
Other Systems
Development
Documents

/

Systems Requirements

Figure - 1-22

Databases Originating from
Database Redesign

Chapter 1 Introduction 19

I
Database
Database, Design,
Migration
OR

— N

Database;
—_— Database
L g Designs

— Database Integration
Database,

common for enterprise application integration, when two or more previously separate infor-
mation systems are adapted to work with each other.

Database redesign is complicated. There is no getting around that fact. If this is your first
exposure to database design, your instructor may skip this topic. If this is the case, after you
have gained more experience you should reread this material. In spite of its difficulty, database
redesign is important.

To understand database redesign, you need to know SQL statements for defining database
structures and more advanced SQL statements for querying and updating a database. Conse-
quently, we will not address database redesign until Chapter 8, after we present SQL statements
and techniques for creating and altering the tables that make up a database in Chapter 7.

What You Need to Learn

In your career, you may work with database technology as either a user or as a database admin-
istrator. As a user, you may be a knowledge worker who prepares reports, mines data, and
does other types of data analysis or you may be a programmer who writes applications that
process the database. Alternatively, you might be a database administrator who designs,
constructs, and manages the database itself. Users are primarily concerned with constructing
SQL statements to get and put the data they want. Database administrators are primarily con-
cerned with the management of the database. The domains for each of these roles are shown in
Figure 1-23.

THE WAy The most exciting and interesting jobs in technology are always those on
the leading edge. If you live in the United States and are concerned about
outsourcing, a recent study by the Rand Corporation? indicates that the most secure
jobs in the United States involve the adaptation of new technology to solve business
problems in innovative ways.
Right now, the leading edge involves the integration of XML, Web services, and
database processing. You will need all of the fundamentals presented in this book, espe-
cially the material in Chapter 12, to work in this exciting new area.

2 Lynn A. Karoly and Constantijn W. A. Panis, The 21st Century at Work (Santa Monica, CA: The Rand
Corporation, 2004).

Part 1 Getting Started

Figure : 1-23

Working Domains of
Knowledge Workers,
Programmers, and Database
Administrators

and Programmer

Web Server J\
with PHP or
| 7| Java Applications \
S
Client S \
Applications Q DBMS Database
in C# or VB.NET L /
Access Database Engine (ADE)
Web Portal / SQL Server
with Reporting MySQL
Applications Oracle Database
Knowledge Worker Database Administrator

Topic Chapter Importance to Knowledge | Importance to Database
Worker and Programmer Administrator

Basic SQL Chapter 2 1 1

Design via normalization Chapter 3 2 1

Data modeling Chapter 4 1 1

Data model transformation Chapter 5 2 1

DDL SQL Chapter 6 2 1
Constraint enforcement Chapter 7 3 1

Database redesign Chapter 8 3 2, but 1 for senior DBA
Database administration Chapter 9 2 1
fn?/égfr::éc?frsge Database, Chapters 10, 10A, 108 3 1

Database application technology Chapters 11, 12, 13 1 3

1 = Very important; 2 = Important; 3 = Less important

Figure - 1-24

Priorities of What
You Need to Know

Warning: Opinions vary, ask your instructor for his or hers.

Both users and database administrators need all of the knowledge in this text. However, the
emphasis on each topic differs for the two groups. Figure 1-24 shows our opinion as to the relative
importance of each topic to each group. Discuss this table with your instructor. He or she may
have knowledge about your local job market that affects the relative importance of these topics.

A Brief History of Database Processing

Database processing emerged around 1970 and has been continuously evolving and changing
since then. This continual change has made it a fascinating and thoroughly enjoyable field in
which to work. Figure 1-25 summarizes the major eras of database processing.

The Early Years

Prior to 1970, all data were stored in separate files, most of which were kept on reels of magnetic
tape. Magnetic disks and drums (magnetic cylinders that are no longer used) were exceedingly
expensive and very small. Today s 1.44 megabyte floppy disk (which is now itself a limited use
technology) has more capacity than many disks of that era. Memory was expensive as well. In
1969, we were processing payroll on a computer that had just 32,000 bytes of memory, while the
computer on which this history is being written has 2 gigabytes of memory.

Integrated processing was an important but very difficult problem. An insurance com-
pany, for example, wanted to relate customer account data to customer claim data. Accounts

Figure : 1-25

Database History

Chapter 1 Introduction

21

Era Years Important Remarks
Products
Predatabase Before 1970 | File managers All data were stored in

separate files. Data
integration was very
difficult. File storage
space was expensive
and limited.

Early database

1970 1980

ADABAS, System?2000,

Total, IDMS, IMS

First products to provide
related tables. CODASYL
DBTG and hierarchical
data models (DL/I) were
prevalent.

Emergence of
relational model

1978 1985

DB2, Oracle

Early relational DBMS
products had substantial
inertia to overcome. In
time, the advantages
weighed out.

Microcomputer
DBMS products

1982 1992+

dBase-ll, R:base,
Paradox, Access

Amazing! A database on a
micro. All micro DBMS
products were eliminated
by Microsoft Access in
the early 1990s.

Object-oriented
DBMS

1985 2000

Oracle ODBMS and
others

Never caught on. Required
relational database to be
converted. Too much work
for perceived benefit.

Web databases

1995
present

IIS, Apache, PHP,
ASP.NET, and Java

Stateless characteristic of
HTTP was a problem at
first. Early applications
were simple one-stage
transactions. Later, more
complex logic developed.

Open source
DBMS products

1995
present

MySQL, PostgresQL,
and other products

Open source DBMS
products provide much of
the functionality and
features of commercial
DBMS products at
reduced cost.

XML and Web
services

1998
present

XML, SOAP, WSDL,
UDDI, and other
standards

XML provides tremendous
benefits to Web-based
database applications. Very
important today. May
replace relational databases
during your career. See
Chapter 12.

The NoSQL
movement

2009
present

Apache Cassandra,
dbXML, MonetDB/
XQuery, and other
products

The NoSQL movement is
really a NoRelationalDB
movement that replaces
relational databases with
nonrelational data
structures. The NoSQL
approach, which is used by
Facebook and Twitter, often
is based on XML. See
Chapter 12.

22

Part 1 Getting Started

were stored on one magnetic tape, and claims were stored on another. To process claims, the
data on the two tapes had to be integrated somehow.

The need for data integration drove the development of the first database technology. By
1973, several commercial DBMS products had emerged. These products were in use by the
mid-1970s. The first edition of this text, copyrighted 1977, featured the DBMS products
ADABAS, System2000, Total, IDMS, and IMS. Of those five, only ADABAS and IMS are still in
use, and neither of them has substantial market share today.

Those early DBMS products varied in the way that they structured data relationships. One
method, called Data Language/l (DL/1) used hierarchies or trees (see Appendix G) to repre-
sent relationships. IMS, which was developed and licensed by IBM, was based on this model.
IMS had success at many organizations, particularly among large manufacturers, and is still in
limited use today.

Another technique for structuring data relationships used data structures called networks.
The CODASYL Committee (the group that developed the programming language COBOL) spon-
sored a subcommittee called the Database Task Group (DBTG). This subcommittee developed
a standard data model that came to bear its name the CODASYL DBTG model. It was an
unnecessarily complicated model (everyones favorite idea made it into the committees design),
but several successful DBMS products were developed using it. The most successful was IDMS,
and its vendor, the Cullinane Corporation, was the first software company to be listed on the New
York Stock Exchange. To the best of our knowledge, no IDMS database is in use today.

The Emergence and Dominance of the Relational Model

In 1970, a then little-known IBM engineer named E. F. Codd published a paper in the
Communications of the ACM3 in which he applied the concepts of a branch of mathematics
called relational algebra to the problem of shared data banks, as databases were then known.
The results of this work are now the relational model for databases, and all relational data-
base DBMS products are built on this model.

Codds work was at first viewed as too theoretical for practical implementation. Practi-
tioners argued that it was too slow and required so much storage that it would never be useful
in the commercial world. However, the relational model and relational database DBMS
products became adopted as the best way to create and manage databases.

The 1977 edition of this text featured a chapter on the relational model (which Codd
himself reviewed). Many years later, Wayne Ratliff, the creator of the dBase series of
products for personal computers, stated that he had the idea for dBase while reading that
very chapter.*

THE WAy Today, there are as many opportunities for innovation as there were for

Wayne Ratliff in 1977. Perhaps you can read Chapter 12 and develop an
innovative product that integrates XML and DBMS processing in a new way, or join the
NoSQL movement and help develop an alternative to relational database technology.
Just as in 1977, no product has a lock on the future. Opportunity awaits you!

The relational model, relational algebra, and, later, SQL made sense. They were not need-
lessly complicated; rather, they seemed to boil down the data integration problem to a few
essential ideas. Over time, Codd convinced IBM management to develop relational-model
DBMS products. The result was IBMs DB2 and its variants, which are still very popular today.

3E.F Codd, A Relational Model of Data for Large Shared Databanks, Communications of the ACM, June 1970,
pp. 377 387. A downloadable copy of this paper in PDF format is available at portal.acm.org/citation.cfm?
id=362685

4 C. Wayne Ratliff, dStory: How | Really Developed dBASE, Data Based Advisor, March 1991, p. 94. For more
information of Wayne Ratliff, dBase 11, and also his work with FoxPro (now Microsoft Visual FoxPro), see the
Wikipedia article Wayne Ratliff at en.wikipedia.org/wiki/Wayne_Ratliff. For the history of dBase, see the
Wikipedia article dBase at en.wikipedia.org/wiki/DBASE

Chapter 1 Introduction 23

Meanwhile, other companies were considering the relational model as well, and by 1980
several more relational DBMS products had been released. The most prominent and important
of those was Oracle Corporations Oracle Database (the product was originally just named
Oracle, but was renamed as Oracle Database after Oracle Corporation acquired other products
and needed to distinguish their DBMS product from the others). Oracle Database achieved
success for many reasons, one of which was that it would run on just about any computer and
just about any operating system. (Some users complained, Yes, and equally badly on all of
them. Another, when asked Should we sell it to communist Russia? responded, Only as long
as they have to take the documentation with it.)

However, in addition to being able to run on many different types of machines, Oracle
Database had, and continues to have, an elegant and efficient internal design. You will learn
aspects of that design in the concurrency-control section in Chapter 10A. That excellent
design, together with hard-driving and successful sales and marketing, has pushed Oracle
Database to the top of the DBMS market.

Meanwhile, Gordon Moore and others were hard at work at Intel. By the early 1980s, per-
sonal computers were prevalent, and DBMS products were developed for them. Developers of
microcomputer DBMS products saw the advantages of the relational model and developed
their products around it. dBase was the most successful of the early products, but another
product, R:base, was the first to implement true relational algebra and other operations on the
PC. Later, another relational DBMS product named Paradox was developed for personal com-
puters. Eventually, Paradox was acquired by Borland.

Alas, it all came to an end when Microsoft entered the picture. Microsoft released
Microsoft Access in 1991 and priced it at $99. No other PC DBMS vendor could survive at that
price point. Microsoft Access killed R:base and Paradox, and then Microsoft bought a dBase

work-alike product called FoxPro and used it to eliminate dBase. Microsoft has now stopped
upgrading Microsoft FoxPro, now named Microsoft Visual FoxPro, but Microsoft will continue
to support it until 2014 (see http://en.wikipedia.org/wiki/Visual_FoxPro).

Thus, Microsoft Access is the only major survivor of that bloodbath of PC DBMS prod-
ucts. Today, the main challenge to Microsoft Access actually comes from Oracle Corporation
and the open source software development community, who have taken over development of
OpenOffice.org, a downloadable suite of free software products that includes the personal
database OpenOffice.org Base (see www.openoffice.org), and its sister product LibreOffice (see
www.libreoffice.org). LibreOffice is a related development of OpenOffice that was started when
Oracle Corporation acquired Sun Microsystems in early 2010.

Post-Relational Developments

In the mid-1980s, object-oriented programming (OOP) emerged, and its advantages over
traditional structured programming were quickly recognized. By 1990, some vendors had
developed object-oriented DBMS (OODBMS or ODBMS) products. These products were
designed to make it easy to store the data encapsulated in OOP objects. Several special-
purpose OODBMS products were developed, and Oracle added OOP constructs to Oracle to
enable the creation of a hybrid called an object-relational DBMS.

OODBMS never caught on, and today that category of DBMS products is fading away.
There were two reasons for their lack of acceptance. First, using an OODBMS required that the
relational data be converted from relational format to object-oriented format. By the time
OODBMS emerged, billions upon billions of bytes of data were stored in relational format in
organizational databases. No company was willing to undergo the expensive travail of convert-
ing those databases to be able to use the new OODBMS.

Second, object-oriented databases had no substantial advantage over relational databases
for most commercial database processing. As you will see in the next chapter, SQL is not object
oriented. But it works, and thousands of developers have created programs that use it. Without
a demonstrable advantage over relational databases, no organization was willing to take on the
task of converting their data to OODBMS format.

Meanwhile, the Internet took off. By the mid-1990s, it was clear that the Internet was one
of the most important phenomena in history. It changed, forever, the ways that customers
and businesses relate to each other. Early Web sites were nothing more than online brochures,

24

Part 1 Getting Started

but within a few years dynamic Web sites that involved querying and processing databases
began to appear.

However, one substantial problem existed. HTTP is a stateless protocol; a server receives a
request from a user, processes the request, and then forgets about the user and the request.
Many database interactions are multistage. A customer views products, adds one or more to a
shopping cart, views more products, adds more to the shopping cart, and eventually checks
out. A stateless protocol cannot be used for such applications.

Over time, capabilities emerged to overcome this problem. Web application developers
learned to add SQL statements to their Web applications, and soon thousands of databases
were being processed over the Web. You will learn more about such processing in Chapter 11.
An interesting phenomenon was the emergence of open source DBMS products. Open source
products generally make the source code widely available so that a group of programmers not
bound to a single company can contribute to the program. Further, some forms of these prod-
ucts are usually offered as free downloads, although other forms or product support must be
purchased from the company that owns the product.

A good example of this is the MySQL DBMS (www.mysgl.com). MySQL was originally
released in 1995 by the Swedish company MySQL AB. In February 2008, Sun Microsystems
bought MySQL AB, and in January 2010 Oracle Corporation completed its acquisition of Sun
Microsystems. This means that Oracle Corporation now owns two major DBMS products:
Oracle Database and Oracle MySQL. At present, MySQL continues to be available as an open
source product, and the free MySQL Community Server edition can be downloaded from the
MySQL Web site. MySQL has proven to be especially popular with Web site developers who
need to run Web page queries against an SQL DBMS on a Web server running the Linux oper-
ating system. We will work with MySQL in Chapter 10B.

MySQL is not the only open source DBMS product in fact, as this is being written
there are 72 listed on the Wikipedia category page http://en.wikipedia.org/wiki/Category:
Open_source_database_management_systems.

One interesting outcome of the emergence of open source DBMS products is that compa-
nies that typically sell proprietary (closed source) DBMS products now offer free versions of their
products. For example, Microsoft now offers SQL Server 2008 R2 Express (www.microsoft.
com/express/Database), and Oracle Corporation makes its Oracle Database 10g Express Edition
available for free (www.oracle.com/technetwork/database/express-edition/overview/index.html).
Although neither of these products is as complete or as powerful (for example, in terms of maxi-
mum data storage allowed) as some other versions the companies sell, they are useful for projects
that require a small database. They are also ideal for students learning to use databases and SQL.

In the late 1990s, XML was defined to overcome the problems that occur when HTML is used
to exchange business documents. The design of the XML family of standards not only solved the
problems of HTML, it also meant that XML documents were superior for exchanging views of
database data. In 2002, Bill Gates said that XML is the lingua-franca of the Internet Age. As you
will learn in Chapter 12, however, two key problems that remain are (1) getting data from a database
and putting it into an XML document and (2) taking data from an XML document and putting it
into a database. In fact, this is where future application programmers can enter the picture.

XML database processing was given a further boost with the definition of XML Web service
standards such as SOAP (not an acronym), WSDL (Web Services Description Language), UDDI
(Universal Description, Discovery, and Integration), and others. Using Web services, it is possible
to expose nuggets of database processing to other programs that use the Internet infrastructure.
This means, for example, that in a supply chain management application a vendor can expose
portions of its inventory application to its suppliers. Further, it can do so in a standardized way.

The last row in Figure 1-25 brings us to the present. Built on the development of XML, the
NoSQL movement has emerged in recent years, particularly following a 2009 conference orga-
nized around work on open source distributed databases (discussed in Chapter 9). This movement
should really be called a NoRelational movement, because the work is really on databases that do
not follow the relational model introduced in this chapter and discussed in Chapter 3. As dis-
cussed in Chapter 12, these databases are often based on XML and are finding wide acceptance
in such applications as Facebook and Twitter.

The NoSQL movement brings us to the edge of the IT volcano, where the magma of new
technology is just now oozing from the ground. What happens next will be, in part, up to you.

Chapter 1 Introduction

ummary

The purpose of a database is to help people keep track of
things. Databases store data in tables in which each table has
data about a different type of thing. Instances of the thing are
stored in the rows of tables, and the characteristics of those
instances are stored in columns. In this text, table names are
written in all capital letters; column names are written in ini-
tial capital letters. Databases store data and the relationships
among the data. Databases store data, but they are structured
so that information can be created from that data.

Figure 1-5 lists many important examples of database
applications. Databases can be processed by a single user
or by many users. Those that support many users require
special concurrency-control mechanisms to ensure that one
users work does not conflict with a second users work.

Some databases involve just a few users and thousands
of rows of data in a few tables. At the other end of the spec-
trum, some large databases, such as those that support ERP
applications, support thousands of users and include many
millions of rows in several hundred different tables.

Some database applications support e-commerce activi-
ties. Some of the largest databases are those that track users
responses to Web pages and Web page components. These
databases are used to analyze customers responses to differ-
ent Web-based marketing programs.

Digital dashboards, data mining applications, and other
reporting applications use database data that is generated by
transaction processing systems to help manage the enter-
prise. Digital dashboards and reporting systems assess past
and current performance. Data mining applications predict
future performance. The basic components of a database
system are the database, the database management system
(DBMS), one or more database applications, and users.
Because Structured Query Language (SQL) is an internation-
ally recognized language for processing databases, it can be
considered a fifth component of a database system.

The functions of database applications are to create and
process forms, to process user queries, and to create and
process reports. Application programs also execute specific
application logic and control the application. Users provide
data and data changes and read data in forms, queries, and
reports.

A DBMS is a large, complicated program used to create,
process, and administer a database. DBMS products are
almost always licensed from software vendors. Specific func-
tions of a DBMS are summarized in Figure 1-12.

A database is a self-describing collection of integrated
tables. A relational database is a self-describing collection of
related tables. Tables are integrated because they store data
about the relationships among rows of data. Tables are
related by storing linking values of a common column. A
database is self-describing because it contains a description
of its contents within itself, which is known as metadata.
Most DBMS products carry metadata in the form of tables.

25

As shown in Figure 1-14, databases also contain indexes,
triggers, stored procedures, security features, and backup
and recovery data.

Microsoft Access is not just a DBMS, but rather an
application generator plus a DBMS. The application genera-
tor consists of applications components that create and
process forms, reports, and queries. The default Access
DBMS product is called the Access Data Engine (ADE),
which is not licensed as a separate product. SQL Server can
be substituted for the ADE to support larger databases.

Enterprise database systems do not combine applica-
tions and the DBMS as Access does. Instead, applications are
programs separate from each other and from the DBMS.
Figure 1-16 shows four categories of database applications:
client/server applications, Web applications, reporting appli-
cations, and XML Web services applications.

The five most popular DBMS products, in order of
power, features, and difficulty of use, are Microsoft Access,
MySQL, SQL Server, DB2, and Oracle Database. Microsoft
Access and SQL Server are licensed by Microsoft, DB2 is
licensed by IBM, and Oracle Database and MySQL are
licensed by Oracle Corporation.

Database design is both difficult and important. Most of
the first half of this text concerns database design. New data-
bases arise in three ways: from existing data, from new
systems development, and from database redesign. Normal-
ization is used to guide the design of databases from existing
data. Data models are used to create a blueprint from system
requirements. The blueprint is later transformed into a
database design. Most data models are created using the
entity-relationship model. Database redesign occurs when
an existing database is adapted to support new or changed
requirements or when two or more databases are integrated.

With regards to database processing, you can have one
of two roles: user or database administrator. You may be a
user of a database/DBMS as a knowledge worker or as an
application programmer. Alternatively, you might be a
database administrator who designs, constructs, and man-
ages the database itself. The domains of each role are shown
in Figure 1-23, and the priorities as to what you need to know
for each role are shown in Figure 1-24.

The history of database processing is summarized in
Figure 1-25. In the early years, prior to 1970, database pro-
cessing did not exist, and all data were stored in separated
files. The need for integrated processing drove the develop-
ment of early DBMS products. The CODASYL DBTG and
DL/l data models were prevalent. Of the DBMS products
used at that time, only ADABAS and IMS are still in use.

The relational model rose to prominence in the 1980s.
At first, the relational model was judged to be impractical,
but over time relational products such as DB2 and Oracle
Database achieved success. During this time, DBMS prod-
ucts were developed for personal computers as well. dBase,

26 Part 1 Getting Started

R:base, and Paradox were all PC DBMS products that were
eventually consumed by the success of Microsoft Access.
Object-oriented DBMS products were developed in the
1990s but never achieved commercial success. More recently,
Web-based databases have been developed to support
e-commerce. Open source DBMS products are readily

‘Bey Terms

CODASYL DBTG
column

concurrency

data

Data Language/I (DL/I)
data marts

data model

data warehouses
database

database administrator
database application
database design

database management system (DBMS)

database migration

database system

enterprise-class database system
entity-relationship (ER) data modeling

available, forcing commercial DBMS vendors to offer limited-
capacity free versions of their enterprise products. Features
and functions have been implemented to overcome the
stateless nature of HTTP. XML and XML Web services data-
bases are at the leading edge of database processing, as are
the databases in the NoSQL movement.

metadata

normal forms

normalization

NoSQL movement

object-oriented DBMS (OODBMS or
ODBMS)

object-oriented programming (OOP)

object-relational DBMS

personal database system

primary key

programmer

record

referential integrity constraints

relational database

relational model

relationship

row

foreign key self-describing
information Structured Query Language (SQL)
instance surrogate key
integrated tables table
knowledge worker user
@eview Questions

1.1 What is the purpose of a database?

1.2 What is the most commonly used type of database?

1.3 Give an example of two related tables other than one in this book. Use the STUDENT
and GRADE tables in Figure 1-3 as an example pattern for your tables. Name the tables
and columns using the conventions in this book.

1.4 For the tables you created in Review Question 1.3, what are the primary keys of each
table? Do you think that any of these primary keys be could be surrogate keys?

1.5 Explain how the two tables you provided in Review Question 1.3 are related. Which
table contains the foreign key, and what is the foreign key?

1.6 Show your two tables from Review Question 1.3 without the columns that represent
the relationships. Explain how the value of your two tables is diminished without the
relationships.

1.7 Define the terms data and information. Explain how the two terms differ.

1.8 Give an example of information that could be determined using the two tables you

provided in your answer to Review Question 1.3.

Chapter 1 Introduction 27

1.9

1.10
1.11

1.12

1.13
1.14

1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30

1.31
1.32

1.33
1.34

1.35
1.36

1.37
1.38
1.39
1.40
1.41

Give examples of a single-user database application and a multiuser database applica-
tion other than the ones shown in Figure 1-5.

What problem can occur when a database is processed by more than one user?

Give an example of a database application that has hundreds of users and a very large
and complicated database. Use an example other than one in Figure 1-5.

What is the purpose of the largest databases at e-commerce companies such as
Amazon.com?

How do the e-commerce companies use these databases?

How do digital dashboard and data mining applications differ from transaction
processing applications?

Explain why a small database is not necessarily simpler than a large one.
Explain the components in Figure 1-7.

What are the functions of application programs?

What is Structured Query Language (SQL), and why is it important?
What does DBMS stand for?

What are the functions of the DBMS?

Name three vendors of DBMS products.

Define the term database.

Why is a database considered to be self-describing?

What is metadata? How does this term pertain to a database?

What advantage is there in storing metadata in tables?

List the components of a database other than user tables and metadata.
Is Microsoft Access a DBMS? Why or why not?

Describe the components shown in Figure 1-15.

What is the function of the application generator in Microsoft Access?

What is the name of the DBMS engine within Microsoft Access? Why do we rarely hear
about that engine?

Why does Microsoft Access hide important database technology?

Why would someone choose to replace the native Microsoft Access DBMS engine with
SQL Server?

Name the components of an enterprise-class database system.

Name and describe the four categories of database applications that would use an
enterprise-class database system.

How do database applications get and put database data?

Name the five DBMS products described in this chapter, and compare them in terms of
power, features, and ease of use.

List several consequences of a poorly designed database.

Explain two ways that a database can be designed from existing data.

What is a data warehouse? What is a data mart?

Describe the general process of designing a database for a new information system.

Explain two ways that databases can be redesigned.

28

Part 1 Getting Started

1.42 What does the term database migration mean?

1.43 Summarize the various ways that you might work with database technology.
1.44 What job functions does a knowledge worker perform?

1.45 What job functions does a database administrator perform?

1.46 Explain the meaning of the domains in Figure 1-23.

1.47 What need drove the development of the first database technology?

1.48 What are Data Language/l and CODASYL DBTG?

1.49 Whowas E. F. Codd?

1.50 What were the early objections to the relational model?

1.51 Name two early relational DBMS products.

1.52 What are some of the reasons for the success of Oracle Database?

1.53 Name three early personal computer DBMS products.

1.54 What happened to the products in your answer to Review Question 1.53?

1.55 What was the purpose of OODBMS products? State two reasons that OODBMS
products were not successful.

1.56 What characteristic of HTTP was a problem for database processing applications?

1.57 What is an open source DBMS product? Which of the five DBMS products that you
named in answering Review Question 1.36 is historically an open source DBMS
product?

1.58 What has been the response of companies that sell proprietary DBMS products to the
open source DBMS products? Include two examples in your answer.

1.59 What is XML? What comment did Bill Gates make regarding XML?

1.60 What is the NoSQL movement? Name two applications that rely on NoSQL
databases.

eroject Questions

To perform the following projects, you will need a computer that has Microsoft Access
installed. If you have no experience working with Microsoft Access, read Appendix A
before you proceed.

For this set of project questions, we will create a Microsoft Access database for
the Wedgewood Pacific Corporation (WPC). Founded in 1957 in Seattle, Washington,
WPC has grown into an internationally recognized organization. The company is
located in two buildings. One building houses the Administration, Accounting, Finance,
and Human Resources departments, and the second houses the Production,
Marketing, and Information Systems departments. The company database contains
data about company employees, departments, company projects, company assets
(for example, computer equipment), and other aspects of company operations.

In the following project questions, we will start by creating the WPC.accdb
database with the following two tables:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Figure : 1-26

the DEPARTMENT Table

Figure : 1-27

Chapter 1 Introduction 29
DEPARTMENT
Column Name Type Key Required Remarks
DepartmentName Text (35) Primary Key Yes
BudgetCode Text (30) No Yes
OfficeNumber Text (15) No Yes
Phone Text (12) No Yes

1.61 Create a Microsoft Access database named WPC.accdb.

c - 1.62 Figure 1-26 shows the column characteristics for the WPC DEPARTMENT table. Using
olumn Characteristics for . }
the column characteristics, create the DEPARTMENT table in the WPC.accdb database.

1.63 Figure 1-27 shows the data for the WPC DEPARTMENT table. Using Datasheet view,
enter the data shown in Figure 1-27 into your DEPARTMENT table.

1.64 Figure 1-28 shows the column characteristics for the WPC EMPLOYEE table. Using the
column characteristics, create the EMPLOYEE table in the WPC.accdb database.

1.65 Create the relationship and referential integrity constraint between DEPARTMENT
and EMPLOYEE. Enable enforcing of referential integrity and cascading of data
updates, but do not enable cascading of data from deleted records.

1.66 Figure 1-29 shows the data for the WPC EMPLOYEE table. Using Datasheet view, enter
the first three rows of the data shown in Figure 1-29 into your EMPLOYEE table.

1.67 Using the Microsoft Access form wizard, create a data input form for the EMPLOYEE
table and name it WPC Employee Data Form. Make any adjustments necessary to the
form so that all data display properly. Use this form to enter the rest of the data in the
EMPLOYEE table shown in Figure 1-29 into your EMPLOYEE table.

1.68 Using the Microsoft Access report wizard, create a report named Wedgewood Pacific
Corporation Employee Report that presents the data contained in your EMPLOYEE
table sorted first by employee last name and then by employee first name. Make any
adjustments necessary to the report so that all headings and data display properly.
Print a copy of this report.

DepartmentName BudgetCode OfficeNumber Phone

WPC DEPARTMENT Data

Administration BC-100-10 BLDG01-300 360-285-8100
Legal BC-200-10 BLDGO01-200 360-285-8200
Accounting BC-300-10 BLDGO01-100 360-285-8300
Finance BC-400-10 BLDGO01-140 360-285-8400
Human Resources BC-500-10 BLDGO01-180 360-285-8500
Production BC-600-10 BLDGO02-100 360-287-8600
Marketing BC-700-10 BLDG02-200 360-287-8700
InfoSystems BC-800-10 BLDGO02-270 360-287-8800

30

Part 1

Getting Started

EMPLOYEE
Column Name Type Key Required Remarks
EmployeeNumber AutoNumber Primary Key Yes Surrogate Key
FirstName Text (25) No Yes
LastName Text (25) No Yes
Department Text (35) No Yes
Phone Text (12) No No
Email Text (100) No Yes
Figure : 1-28 1.69 Using the Microsoft Access form wizard, create a form that has all of the data from

Column Characteristics
for the EMPLOYEE Table

both tables. When asked how you want to view your data, select by DEPARTMENT.
Choose the default options for other questions that the wizard asks. Open your form
and page through your departments.

1.70 Using the Microsoft Access report wizard, create a report that has all of the data from both
tables. When asked how you want to view your data, select by DEPARTMENT. For the data
contained in your EMPLOYEE table in the report, specify that it will be sorted first
by employee last name and then by employee first name. Make any adjustments necessary
to the report so that all headings and data display properly. Print a copy of this report.

1.71 Explain, to the level of detail in this chapter, what is going on within Microsoft Access

Figure : 1-29 in Project Questions 1.67, 1.68, 1.69, and 1.70. What subcomponent created the form

and report? Where is the data stored? What role do you think SQL is playing?

WPC EMPLOYEE Data
EmployeeNumber | FirstName | LastName | Department Phone Email
[AutoNumber] Mary Jacobs Administration 360-285-8110 | Mary.Jacobs@WPC.com
[AutoNumber] Rosalie Jackson Administration 360-285-8120 | Rosalie.Jackson@WPC.com
[AutoNumber] Richard Bandalone | Legal 360-285-8210 | Richard.Bandalone@WPC.com
[AutoNumber] Tom Caruthers Accounting 360-285-8310 | Tom.Caruthers@WPC.com
[AutoNumber] Heather Jones Accounting 360-285-8320 | Heather.Jones@WPC.com
[AutoNumber] Mary Abernathy | Finance 360-285-8410 | Mary.Abernathy@WPC.com
[AutoNumber] George Smith Human Resources | 360-285-8510 | George.Smith@WPC.com
[AutoNumber] Tom Jackson Production 360-287-8610 | Tom.Jackson@WPC.com
[AutoNumber] George Jones Production 360-287-8620 | George.Jones@WPC.com
[AutoNumber] Ken Numoto Marketing 360-287-8710 | Ken.Numoto@WPC.com
[AutoNumber] James Nestor InfoSystems James.Nestor@WPC.com
[AutoNumber] Rick Brown InfoSystems 360-287-8820 | Rick.Brown@WPC.com

Chapter Objectives

To understand the use of extracted data sets in
business intelligence (Bl) systems

To understand the use of ad-hoc queries in business
intelligence (BI) systems

To understand the history and significance of Structured
Query Language (SQL)

To understand the SQL SELECT/FROM/WHERE
framework as the basis for database queries

To create SQL queries to retrieve data from a single
table

To create SQL queries that use the SQL SELECT,
FROM, WHERE, ORDER BY, GROUP BY, and HAVING
clauses

Introduction to
Structured Query
Language

To create SQL queries that use the SQL DISTINCT,
AND, OR, NOT, BETWEEN, LIKE, and IN keywords
To create SQL queries that use the SQL built-in
functions of SUM, COUNT, MIN, MAX, and AVG with
and without the SQL GROUP BY clause

To create SQL queries that retrieve data from a single
table while restricting the data based upon data in
another table (subquery)

To create SQL queries that retrieve data from multiple
tables using the SQL JOIN operation

In today s business environment, users typically use data stored in databases
to produce information that can help them make business decisions. In
Chapter 13, we will take an in-depth look at business intelligence (BI) systems,
which are information systems used to support management decisions by

producing information for assessment, analysis, planning, and control. In this

chapter, we will see how Bl systems users use ad-hoc queries, which are

essentially questions that can be answered using database data. For example,

31

32

Part 1 Getting Started

in English an ad-hoc query would be How many customers in Portland,
Oregon, bought our green baseball cap? These queries are called ad-hoc
because they are created by the user as needed, rather than programmed into
an application.

This approach to database querying has become important enough that
some companies produce dedicated applications to help users who are not
familiar with database structures create ad-hoc queries. One example is
Open Texts Open Text Business Intelligence product www.opentext.com/
2/global/sol-products/sol-pro-business-intelligence/pro-llecm-business-
intelligence.htm (formerly known as LiveLink ECM BI Query), which uses a
user-friendly graphical user interface (GUI) to simplify the creation of ad-hoc
queries. Personal databases such as Microsoft Access also have ad-hoc
query tools available. Microsoft Access uses a GUI style called query by
example (QBE) to simplify ad-hoc queries.

However, Structured Query Language (SQL) the universal query language
of relational DBMS products is always behind the user-friendly GUIs. In this
chapter, we will introduce SQL by learning how to write and run SQL queries.
We will then return to SQL in Chapter 7 to learn how to use it for other
purposes, such as how to create and add data to the databases themselves.

Components of a Data Warehouse

Figure: 2-1

Components of a Data
Warehouse

L
f—

Operationi
Databases

—
f—

Other

Bl systems typically store their associated data in data warehouses, which are database
systems that have data, programs, and personnel that specialize in the preparation of data for
Bl processing. Data warehouses will be discussed in detail in Chapter 13, and for now we will
simply note that data warehouses vary in scale and scope. They can be as simple as a sole
employee processing a data extract on a part-time basis or as complex as a department with
dozens of employees maintaining libraries of data and programs.

Figure 2-1 shows the components of a typical company-wide data warehouse. Data are
read from operational databases (the databases that store the company s current day-to-day

Data Data
Warehouse
Metadata

Warehouse
Database

Internal
Data

-

L
—_ 3

Externa,l/

Data

-

ETL System
Data Extraction/ Data Warehouse
Cleaning/ DBMS
Preparation
Programs

‘ g pu
Al 40 HO

Q
{

\ (S
Bl Users

Chapter 2 Introduction to Structured Query Language 33

transaction data), from other internal data, or from external data source by the Extract,
Transform, and Load (ETL) system. The ETL system then cleans and prepares the data
for Bl processing. This can be a complex process, but the data is then stored in the data
warehouse DBMS for use by Bl users who access the data by various Bl tools. As described in
Chapter 1, the DBMS used for the data warehouse stores both databases and the metadata for
those databases.

THE WAY A small, specialized data warehouse is referred to as a data mart. Data
marts and their relationship to data warehouses are discussed in Chapter 13.
Note that the DBMS used for the data warehouse may or may not be the same DBMS
product used for the operational databases. For example, operational databases may be
stored in an Oracle Database 11g DBMS, while the data warehouse uses a Microsoft SQL

Server 2008 R2 DBMS.

Cape Codd Outdoor Sports

Figure: 2-2

The Cape Codd Retail Sales
Data Extraction Process

For our work in this chapter, we will use data from Cape Codd Outdoor Sports (although based
on a real outdoor retail equipment vendor, Cape Codd Outdoor Sports is a fictitious company).
Cape Codd sells recreational outdoor equipment in 15 retail stores across the United States
and Canada. It also sells merchandise over the Internet from a Web storefront application and
via mail order. All retail sales are recorded in a sales database managed by an Oracle Database
11g DBMS, as shown in Figure 2-2.

The Extracted Retail Sales Data

Cape Codds marketing department wants to perform an analysis of in-store sales. Accordingly,
marketing analysts ask the IT department to extract retail sales data from the operational data-
base. To perform the marketing study, they do not need all of the order data. They want just the
tables and columns shown in Figure 2-3. Looking at this figure, it is easy to see that columns

Point-of-Sale
Application

Point-of-Sale
Application

Point-of-Sale
Application

Web Storefront /

Internet Sales

Oracle
Database 119g
Sales
Database

Retail Store Sales
Data Extraction

Sales
Extraction
Database

Mail Order
Sales

Mail Order Customers

34

Part 1 Getting Started

The RETAIL_ORDER
table the key symbol
shows the primary key

RETAIL_ORDER | sku_pata
1

The relationship
between
RETAIL_ORDER

and ORDER_ITEM
the number 1 and the
infinity symbol indicate
that one retail order
may be linked to many
order items by
OrderNumber

Figure : 2-3

Cape Codd Extracted Retail
Sales Data Database Tables
and Relationships

Figure: 2-4

7o
StoreNumber
StoreZip
OrderMonth
Cirder¥ear
OrderTotal

7 sk
SKU_Description
Department
Buyer

ORNDFR_TTFM
- ¥ OrderNumber
7 sk
Quantity
Price
BxtendedPrice

that would be needed in an operational sales database are not included in the extracted
data. For example, the RETAIL_ORDER table does not have CustomerLastName, Customer-
FirstName , and OrderDay columns. The data types for the columns in the tables is shown in
Figure 2-4.

As shown in Figures 2-3 and 2-4, three tables are needed: RETAIL_ORDER,
ORDER_ITEM, and SKU_DATA. The RETAIL_ORDER table has data about each retail sales
order, the ORDER_ITEM table has data about each item in an order, and the SKU_DATA table
has data about each stock-keeping unit (SKU). SKU is a unique identifier for each particular
item that Cape Codd sells. The data stored in the tables is shown in Figure 2-5.

The dataset shown is a small dataset we are using to illustrate the con-
cepts explained in this chapter. A real world data extract would produce
a much larger dataset.

THE WAY

Cape Codd Extracted Retail
Sales Data Format

Table Column Date Type
RETAIL_ORDER OrderNumber Integer
StoreNumber Integer
StoreZip Character (9)
OrderMonth Character (12)
OrderYear Integer
OrderTotal Currency
ORDER_ITEM OrderNumber Integer
SKU Integer
Quantity Integer
Price Currency
ExtendedPrice Currency
SKU_DATA SKU Integer
SKU_Description Character (35)
Department Character (30)
Buyer Character (30)

RETAIL_ORDER

ORDER_ITEM

SKU_DATA

Figure: 2-5

Sample Data in the Cape
Codd Extracted Retail Sales
Database

Chapter 2 Introduction to Structured Query Language 35
=] RETAIL_ORDER x
OrderNumb - | StoreNumber - | StoreZip ~ | OrderMonth - | OrderYear - OrderTotal -
|E 10 98110 December 2010 $445.00
_l'.+:| 20 02335 December 2010 $310.00
] 10 98110 January 2011 $480.00
™y
Record: W M v | W Mo Filter | [Search BE i 4
ORDER ITEM %
OrderNNmber -t SKU - | Quantity - Price - | ExtendedPrice -
201000 al $300.00 $300.00
202000 1 $130.00 $130.00
101100 4 450.00 $200.00
101200 2 $50.00 $100.00
100200 1] $300.00 $300.00
101100 2 $50.00 $100.00
101200 1 $50.00 $50.00
=
Record; M of 7 b ¥ b [No Filter Search I« i 4
/
ﬁ SKU_MTA\ / 53
SKU - SKU_Description - |Department - Buyer -
H Std. Scuba Tank, Yellow Water Sports Pete Hansen
|E 10@200 Std. Scuba Tank, Magenta Water Sports Pete Hansen
H 1100 Dive Mask, Small Clear Water Sports Mancy Meyers
|E 101200 Dive Mask, Med Clear Water Sports Mancy Meyers
E2] 201000 Half-dome Tent Camping Cindy Lo
= 202000 Half-dome Tent Vestibule Camping Cindy Lo
H 301000 Light Fly Climbing Harness Climbing Jerry Martin
H 302000 Locking Carabiner, Oval Climbing Jerry Martin
=]
Record: 4 4 10f8 | » M b | K Mo Filter | Search < »

RETAIL_ORDER Data

As shown in Figures 2-3 and 2-5, the RETAIL_ORDER table has columns for OrderNumber,
StoreNumber, StoreZip (the zip code of the store selling the order), OrderMonth, OrderVYear,
and OrderTotal:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)

Sample data for RETAIL_ORDER is shown in Figure 2-5. This extract only includes data for
retail store sales, and operational data for other types of sales (and returns and other sales-
related transactions) are not copied during the extraction process. Further, the data extraction
process selects only a few columns of the operational data the Point of Sale (POS) and other
sales applications process far more data than that shown here. The operational database also
stores the data in a different format. For example, the order data in the an Oracle Database 11¢
DBMS operational database contains a column named OrderDate that stores the data in the
date format MM/DD/YYYY (e.g., 10/22/2010 for October 22, 2010). The extraction program
used to populate the retail sales extracted data database converts OrderDate into two separate
values of OrderMonth and OrderYear. This is done because this is the data format that marketing
wants. Such filtering and data transformation are typical of a data extraction process.

ORDER_ITEM Data

As shown in Figures 2-3 and 2-4, the ORDER_ITEM table has columns for OrderNumber, SKU,
Quantity, Price, and ExtendedPrice (which equals Quantity Price):

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

Thus, the ORDER_ITEM table stores an extract of the items purchased in each order. There
is one row in the table for each item in an order, and this item is identified by its SKU. To

36

Part 1 Getting Started

understand this table, think about a sales receipt you get from a retail store. That receipt has
data for one order. It includes basic order data such as the date and order total, and it has one
line for each item you purchase. The rows in the ORDER_ITEM table correspond to the lines
on such an order receipt.

The OrderNumber Column in ORDER_ITEM relates each row in ORDER_ITEM to the
corresponding OrderNumber in the RETAIL_ORDER table. SKU identifies the actual item pur-
chased by its stock-keeping unit number. Further, the SKU column in ORDER_ITEM relates
each row in ORDER_ITEM to its corresponding SKU in the SKU_DATA table (discussed in the
next section). Quantity is the number of items of that SKU purchased in that order. Price is the
price of each item, and ExtendedPrice is equal to Quantity Price.

ORDER_ITEM data are shown in the bottom part of Figure 2-5. The first row relates to
order 1000 and to SKU 201000. For SKU 201000, one item was purchased for $300.00, and the
ExtendedPrice was $300.00. The second row shows the second item in order 1000. There, 1 of
item 202000 was purchased for $130.00 and the ExtendedPrice is 1 ~ $130.00, or $130.00.
This table structure of an ORDER table related to an ORDER_ITEM table is typical for sales
system with many items in one order. We will discuss it in detail in Chapters 5 and 6,
where we will create a data model of a complete order and then design the database for that
data model.

THE WAY You would expect the total of ExtendedPrice for all rows for a given order

to equal OrderTotal in the RETAIL_ORDER table. They do not. For order
1000, for example, the sum of ExtendedPrice in the relevant rows of ORDER_ITEM is
$300.00 + $130.00 = $430.00. However, the OrderTotal for order 1000 is $445.00. The
difference occurs because OrderTotal includes tax, shipping, and other charges that do
not appear in the data extract.

SKU_DATA Table

As shown in Figures 2-3 and 2-4, the SKU_DATA table has columns SKU, SKU_Description,
Department, and Buyer:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

SKU is an integer value that identifies a particular product sold by Cape Codd. For example,
SKU 100100 identifies a yellow, standard-size SCUBA tank, whereas SKU 100200 identifies the
magenta version of the same tank. SKU_Description contains a brief text description of each
item. Department and Buyer identify the department and individual who is responsible for
purchasing the product. As with the other tables, these columns are a subset of the SKU data
stored in the operational database.

The Complete Cape Codd Data Extract Schema

A database schema is a complete logical view of the database, containing all the tables, all the
columns in each table, the primary key of each table, and the foreign keys that link the tables
together. The schema for the Cape Codd sales data extract therefore is:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

SKU_DATA (SKU, SKU_Description, Department, Buyer)

Note how the composite primary key for ORDER_ITEM also contains the foreign keys linking
this table to RETAIL_ORDER and SKU_DATA.

SQL Background

Chapter 2 Introduction to Structured Query Language 37

THE WAY In the Review Questions at the end of this chapter, we will extend this

schema to include two additional tables: WAREHOUSE and INVENTORY.
The figures in this chapter include these two tables in the Cape Codd database, but they
are not used in our discussion of SQL in the chapter text.

Data Extracts Are Common

Before we continue, realize that the data extraction process described here is not just an
academic exercise. To the contrary, such extraction processes are realistic, common, and
important Bl system operations. Right now, hundreds of businesses worldwide are using their
Bl systems to create extract databases just like the one created by Cape Codd.

In the next sections of this chapter, you will learn how to write SQL statements to process
the extracted data via ad-hoc SQL queries, which is how SQL is used to ask questions about
the data in the database. This knowledge is exceedingly valuable and practical. Again, right
now, as you read this paragraph, hundreds of people are writing SQL to create information
from extracted data. The SQL you will learn in this chapter will be an essential asset to you as
a knowledge worker, application programmer, or database administrator. Invest the time to
learn SQL the investment will pay great dividends later in your career.

SQL was developed by the IBM Corporation in the late 1970s. It was endorsed as a national
standard by the American National Standards Institute (ANSI) in 1986 and by the
International Organization for Standardization (1SO) (and no, thats not a typo the
acronym is 1SO, not 10S!) in 1987. Subsequent versions of SQL were adopted in 1989 and 1992.
The 1992 version is sometimes referred to as SQL-92, or sometimes as ANSI-92 SQL. In 1999,
SQL:1999 (also referred to as SQL3), which incorporated some object-oriented concepts, was
released. This was followed by the release of SQL:2003 in 2003, SQL:2006 in 2006, and, most
recently, SQL:2008 in 2008. Each of these added new features or extended existing SQL
features, the most important of which for us is SQL support for Extensible Markup
Language (XML). (XML is discussed in Chapter 12.) Our discussion in this chapter and
in Chapter 7 focuses on common language features that have been in SQL since SQL-92,
but does include some features from SQL:2003 and SQL:2008. We discuss the SQL XML
features in Chapter 12.

SQL is not a complete programming language, like Java or C#. Instead, it is called a data
sublanguage, because it has only those statements needed for creating and processing data-
base data and metadata. You can use SQL statements in many different ways. You can submit
them directly to the DBMS for processing. You can embed SQL statements into client/server
application programs. You can embed them into Web pages, and you can use them in report-
ing and data extraction programs. You also can execute SQL statements directly from Visual
Studio.NET and other development tools.

SQL statements are commonly divided into categories, three of which are of interest to
us here:

Data definition language (DDL) statements, which are used for creating tables,
relationships, and other structures

Data manipulation language (DML) statements, which are used for querying,
inserting, modifying, and deleting data

SQL/Persistent stored modules (SQL/PSM) statements, which extend SQL
by adding procedural programming capabilities, such as variables and flow-
of-control statements, that provide some programmability within the SQL
framework.

38

Part 1 Getting Started

This chapter considers only DML statements for querying data. The remaining DML state-
ments for inserting, modifying, and deleting data are discussed in Chapter 7, where we will also
discuss SQL DDL statements. SQL/PSM is introduced in Chapter 7, and the specific variations
of it used with each DBMS are discussed in detail in Chapter 10 for SQL Server 2008 R2,
Chapter 10A for Oracle Database 11g, and Chapter 10B for MySQL.

THE WAY Some authors treat SQL queries as a separate part of SQL rather than as

a part of SQL DML. We note that the SQL/Framework section of the SQL
specification includes queries as part of the SQL-data statements class of statements
along with the rest of the SQL DML statements, and treat them as SQL DML statements.

THE WAY The four actions listed for SQL DML are sometimes referred to as CRUD:
create, read, update, and delete. We do not use this term in this book, but
now you know what it means.

SQL is ubiquitous, and SQL programming is a critical skill. Today, nearly all DBMS
products process SQL, with the only exceptions being some of the emerging NoSQL movement
products. Enterprise-class DBMSs such as Microsoft SQL Server 2008 R2, Oracle Database 11g,
Oracle MySQL 5.5, and IBM DB2 require that you know SQL. With these products, all data
manipulation is expressed using SQL.

As explained in Chapter 1, if you have used Microsoft Access, you have used SQL, even if
you didnt know it. Every time you process a form, create a report, or run a query, Microsoft
Access generates SQL and sends that SQL to Microsoft Access internal ADE DBMS engine. To
do more than elementary database processing, you need to uncover the SQL hidden by
Microsoft Access. Further, once you know SQL, you will find it easier to write a query state-
ment in SQL rather than fight with the graphical forms, buttons, and other paraphernalia that
you must use to create queries with the Microsoft Access query-by-example style GUI.

The SQL SELECT/FROM/WHERE Framework

This section introduces the fundamental statement framework for SQL query statements.
After we discuss this basic structure, you will learn how to submit SQL statements to
Microsoft Access, SQL Server, Oracle Database, and MySQL. If you choose, you can then follow
along with the text and process the SQL statements as they are explained in the rest of this
chapter. The basic form of SQL queries uses the SQL SELECT/FROM/WHERE framework.
In this framework:

The SQL SELECT clause specifies which columns are to be listed in the query
results.

The SQL FROM clause specifies which tables are to be used in the query.

The SQL WHERE clause specifies which rows are to be listed in the query results.

Lets work through some examples so that this framework makes sense to you.

Reading Specified Columns from a Single Table
We begin very simply. Suppose we want to obtain just the values of the Department and Buyer
columns of the SKU_DATA table. An SQL statement to read that data is the following:

SELECT Department, Buyer
FROM SKU_DATA;

Chapter 2 Introduction to Structured Query Language 39

Using the data in Figure 2-4, when the DBMS processes this statement the result will be:

When SQL statements are executed, the statements transform tables. SQL statements
start with a table, process that table in some way, and then place the results in another table
structure. Even if the result of the processing is just a single number, that number is considered
to be a table with one row and one column. As you will learn at the end of this chapter, some
SQL statements process multiple tables. Regardless of the number of input tables, though, the
result of every SQL statement is a single table.

Notice that SQL statements terminate with a semicolon (;) character. The semicolon is
required by the SQL standard. Although some DBMS products will allow you to omit the
semicolon, some will not, so develop the habit of terminating SQL statements with a semicolon.

SQL statements can also include an SQL comment, which is a block of text that is used to
document the SQL statement while not executed as part of the SQL statement. SQL com-
ments are enclosed in the symbols /* and */, and any text between these symbols is ignored
when the SQL statement is executed. For example, here is the previous SQL query with an SQL
comment added to document the query by including a query name:

/* *** SQL-Query-CHO02-01 *** */
SELECT Department, Buyer
FROM SKU_DATA;

Because the SQL comment is ignored when the SQL statement is executed, the output from
this query is identical to the query output shown above. We will use similar comments to label the
SQL statements in this chapter as an easy way to reference a specific SQL statement in the text.

Specifying Column Order in SQL Queries from a Single Table

The order of the column names in the SELECT phrase determines the order of the columns in
the results table. Thus, if we switch Buyer and Department in the SELECT phrase, they will be
switched in the output table as well. Hence, the SQL statement:

/* *** SQL-Query-CH02-02 *** */
SELECT Buyer, Department
FROM SKU_DATA;

produces the following result table:

40

::@'ETHE WAy The reason that SQL does not automatically eliminate duplicate rows is

Part 1 Getting Started

Notice that some rows are duplicated in these results. The data in the first and second
row, for example, are identical. We can eliminate duplicates by using the SQL DISTINCT
keyword, as follows:

/* *** SQL-Query-CH02-03 *** */
SELECT DISTINCT Buyer, Department
FROM SKU_DATA;

The result of this statement, where all of the duplicate rows have been removed, is:

| Buyer
2
[

J

that it can be very time consuming to do so. To determine if any rows are
duplicates, every row must be compared with every other row. If there are 100,000 rows
in a table, that checking will take a long time. Hence, by default duplicates are not
removed. However, it is always possible to force their removal using the DISTINCT
keyword.

Suppose that we want to view all of the columns of the SKU_DATA table. To do so, we can
name each column in the SELECT statement as follows:

/* *** SQL-Query-CH02-04 *** */
SELECT SKU, SKU_Description, Department, Buyer
FROM SKU_DATA;

The result will be a table with all of the rows and all four of the columns in SKU_DATA:

However, SQL provides a shorthand notation for querying all of the columns of a table.
The shorthand is to use the SQL asterisk (*) wildcard character to indicate that we want
all the columns to be displayed:

/* *** SQL-Query-CH02-05 *** */
SELECT *
FROM SKU_DATA;

Chapter 2 Introduction to Structured Query Language 41

The result will again be a table with all rows and all four of the columns in SKU_DATA:

Department _| Buyer
Water Spotts

Reading Specified Rows from a Single Table

Suppose we want all of the columns of the SKU_DATA table, but we want only the rows for the
Water Sports department. We can obtain that result by using the SQL WHERE clause as
follows:

/* *** SQL-Query-CHO02-06 *** */

SELECT *
FROM SKU_DATA
WHERE Department="Water Sports”;

The result of this statement will be:

Inan SQL WHERE clause, if the column contains text or date data, the comparison values
must be enclosed in single quotation marks ('{text or date data}'). If the column contains
numeric data, however, the comparison values need not be in quotes. Thus, to find all of the
SKU rows with a value greater than 200,000, we would use the SQL statement (note that no
comma is included in the numeric value code):

/% %% SQL-Query-CH02-07 *** */

SELECT *
FROM SKU_DATA
WHERE SKU > 200000;

The result is:

Part 1 Getting Started

@ THE WAY SQL is very fussy about single quotes. It wants the plain, nondirectional
quotes found in basic text editors. The fancy directional quotes produced
by many word processors will produce errors. For example, the data value "Water Sports’

is correctly stated, but Water Sports is not. Do you see the difference?

Reading Specified Columns and Rows from a Single Table

So far, we have selected certain columns and all rows and we have selected all columns and
certain rows. We can combine these operations to select certain columns and certain rows by
naming the columns we want and then using the SQL WHERE clause. For example, to obtain
the SKU_Description and Department of all products in the Climbing department, we use the
SQL query:

/* *** SQL-Query-CH02-08 *** */

SELECT SKU_Description, Department
FROM SKU_DATA

WHERE Department="Climbing”;

The result is:

SQL does not require that the column used in the WHERE clause also appear in the
SELECT clause column list. Thus, we can specify:

/* *** SQL-Query-CH02-09 *** */

SELECT SKU_Description, Buyer
FROM SKU_DATA
WHERE Department="Climbing”;

where the qualifying column, Department, does not appear in the SELECT clause column list.
The result is:

| SKL_Description Bunyer

o

@ THE WAY Standard practice is to write SQL statements with the SELECT, FROM, and
WHERE clauses on separate lines. This practice is just a coding conven-
tion, however, and SQL parsers do not require it. You could code SQL-Query-CH02-09

all on one line as:

SELECT SKU_Description, Buyer FROM SKU_DATA WHERE Department=
>Climbing”;

All DBMS products would process the statement written in this fashion. However, the
standard multiline coding convention makes SQL easier to read, and we encourage you
to write your SQL according to it.

Chapter 2 Introduction to Structured Query Language 43

THE WAY When using a date in the WHERE clause, you can usually enclose it in sin-
gle quotes just as you would a character string, However, when using
Microsoft Access you must enclose dates with the # symbol. For example:

SELECT *
FROM PROJECT
WHERE StartDate = #05/10/11#;

Submitting SQL Statements to the DBMS

Before continuing the explanation of SQL, it will be useful for you to learn how to submit SQL
statements to specific DBMS products. That way, you can work along with the text by keying
and running SQL statements as you read the discussion. The particular means by which you
submit SQL statements depends on the DBMS. Here we will describe the process for Microsoft
Access, Microsoft SQL Server, Oracle Database, and Oracle MySQL.

THE WAY You can learn SQL without running the queries in a DBMS, so if for some

reason you do not have Microsoft Access, SQL Server, Oracle Database,
or MySQL readily available, do not despair. You can learn SQL without them. Chances
are your instructor, like a lot of us in practice today, learned SQL without a DBMS. It is
just that SQL statements are easier to understand and remember if you can run the SQL
while you read. Given that there are freely downloadable versions of Microsoft
SQL Server 2008 R2 Express edition, Oracle Database 10g Express Edition, and Oracle
MySQL Server Community Edition, you can have an installed DBMS to run these SQL
examples even if you have not purchased Microsoft Access. See Chapters 10, 10A, and
10B for specific instructions for creating databases using each of these products. The
SQL scripts needed to create the Cape Codd Outdoor Sports database used in this
chapter are available at www.pearsonhighered.com/kroenke.

Using SQL in Microsoft Access 2010

Before you can execute SQL statements, you need a computer that has Microsoft Access
installed, and you need a Microsoft Access database that contains the tables and sample data
in Figure 2-5. Microsoft Access is part of many versions of the Microsoft Office suite, so it
should not be too difficult to find a computer that has it.

Because Microsoft Access is commonly used in classes that use this book as a textbook,
we will look how to use SQL in Microsoft Access in some detail. Before we proceed, however,
we need to discuss a specific peculiarity of Microsoft Access the limitations of the default
version of SQL used in Microsoft Access.

Does Not Work with Microsoft Access ANSI-89 SQL
As mentioned previously, our discussion of SQL is based on SQL features present in SQL
standards since the ANSI SQL-92 standard (which Microsoft refers to as ANSI-92 SQL). Unfor-
tunately, Microsoft Access 2010 still defaults to the earlier SQL-89 version Microsoft calls it
ANSI-89 SQL or Microsoft Jet SQL (after the Microsoft Jet DBMS engine used by Microsoft
Access). ANSI-89 SQL differs significantly from SQL-92, and, therefore, some features of the
SQL-92 language will not work in Microsoft Access.

Microsoft Access 2010 (and the earlier Microsoft Access 2003 and 2007 versions) does
contain a setting that allows you to use SQL-92 instead of the default ANSI-89 SQL. Microsoft
included this option to allow Microsoft Access tools such as forms and reports to be used in
application development for Microsoft SQL Server, which supports newer SQL standards. To
set the option in Microsoft Access 2010, click the File command tab and then click the

44

Part 1 Getting Started

in just the open
database

i |
The Object (= 7)
Designers button ! General ﬂ Change the detault settings tor design ot database objects. Most options are ignored in table
| Coest Saiitinase: == datasheet and layout view.
The SQL Server [Datasheet o
Compatible Syntax K_ Cinjert Designers Detault tield type: Text |T|
(ANSl 92) Option Proofing Detault text I'IFJrI.slﬂl: . % =
t |S the use Of \anguage Delaull pumber field sice: Lung Inleger El
contro Autolndex on Import/Create: |ID;key.code:num
SQL'89 versus Client Seitings [@] show Eroperty Update Dptions buttons
SQL_92 Syntax |n Customize Ribbon -
Query design
ACCGSS quel’les ik Access Toolkar T &|
] Output all fields
; ¥ Enable Autojoin
Use this check box to Gy desinibait
use SQL-92 syntax Font: |Seqoe Ul [=]

\ Se: |8 zl
S0L Server Compatible Syntax (ANSI92)

[~ [7] This database

> Default for new databases

Use this check box to
use SQL-92 syntax
when new databases
are created

Form/Repurl desipn view
Selection behavior
@ Partially englosed
' Fully endosed

Normal

Form template:

Figure : 2-6

The Microsoft Access 2010
Options Object Designers
Page

Figure : 2-7

The Microsoft Access 2010
SQL-Syntax Information
Dialog Box

Bepurl lemplate: | Normal

] Always use gvent procedures
Error checking in form and report design view -

oK [

cancel |

Options command to open the Access Options dialog box. In the Access Options dialog box,
click the Object Designers button to display the Access Options Object Designers page, as
shown in Figure 2-6.

As shown in Figure 2-6, the SQL Server Compatible Syntax (ANSI 92) options control
which version of SQL is used in a Microsoft Access 2010 database. If you check the This data-
base check box, you will use SQL-92 syntax in the current database. Or, you can check the
Default for new databases check box to make SQL-92 syntax the default for all new data-
bases you create. When you click the OK button to save the changed SQL syntax option, the
SQL-Syntax Information dialog box shown in Figure 2-7 will be displayed. Read the informa-
tion, and then click the OK button to close the dialog box.

Unfortunately, very few Microsoft Access users or organizations using Microsoft Access
are likely to set the Microsoft Access SQL version to the SQL-92 option, and, in this chapter, we
assume that Microsoft Access is running in the default ANSI-89 SQL mode. One advantage of
doing so is that it will help you understand the limitations of Microsoft Access ANSI-89 SQL
and how to cope with them.

In the discussion that follows, we use Does Not Work with Microsoft Access ANSI-89
SQL boxes to identify SQL commands and SQL clauses that do not work in Microsoft Access
ANSI-89 SQL. We also identify any workarounds that are available. Remember that the one
permanent workaround is to choose to use the SQL-92 syntax option in the databases you
create!

Nonetheless, two versions of the Microsoft Access 2010 Cape Codd Outdoor Sports data-
base are available at www.pearsonhighered.com/kroenke for your use with this chapter.

‘Microcoft Access

‘Was this informaton helpful !

You have chosen Lo alter Ure mode in which SQL syntax will be interpreted in Lhis dalabase. This will mean:
= Caisting queries may return different results or not run at all.

*The range of data-types and reserved words will change.

= * Different wikdcards will be used.

It is recommended that you make a badwp copy of this database before continuing. If you agree to continue, Access will dosc this database, compact it, and re open in the new mode, Select OK to continue.,

o<] [coned | [telp |

Chapter 2 Introduction to Structured Query Language 45

The Microsoft Access database file named Cape-Codd.accdb is set to use Microsoft Access
ANSI-89, whereas the Microsoft Access database file name Cape-Codd-SQL-92.accdb is set to
use Microsoft Access SQL-92. Choose the one you want to use (or use them both and compare
the results!). Note that these files contain two additional tables (INVENTORY and WARE-
HOUSE) that we will not use in this chapter, but that you will need for the Review Questions at
the end of the chapter.

Alternatively, of course, you can create your own Microsoft Access database and then
add the tables and data in Figures 2-3, 2-4, and 2-5, as described in Appendix A. If you create
your own database, look at the Review Questions at the end of the chapter and create the
INVENTORY and WAREHOUSE tables shown there in addition to the RETAIL_ORDER,
ORDER_ITEM, and SKU tables shown in the chapter discussion. This will make sure that
what you see on your monitor matches the screenshots in this chapter. Whether you down-
load the database file or build it yourself, you will need to do one or the other before you can
proceed.

Processing SQL Statements in Microsoft Access 2010
To process an SQL statement in Microsoft Access 2010, first open the database in Microsoft
Access as described in Appendix A and then create a new tabbed Query window.

Opening a Microsoft Access Query Window in Design View

1. Click the Create command tab to display the Create command groups, as shown in
Figure 2-8.

2. Click the Query Design button.

3. The Queryl tabbed document window is displayed in Design view, along with the
Show Table dialog box, as shown in Figure 2-9.

4. Click the Close button on the Show Table dialog box. The Queryl document window
now looks as shown in Figure 2-10. This window is used for creating and editing
Microsoft Access queries in Design view and is used with Microsoft Access QBE.

Note that in Figure 2-10 the Select button is selected in the Query Type group on the
Design tab. You can tell this is so because active or selected buttons are always shown in color
on the Ribbon. This indicates that we are creating a query that is the equivalent of an SQL
SELECT statement.

DEP-e12-Cape-Codd : Database (Access 2007) - Microsol ft Access =l
The Create - ‘o
command tab == — Rremu je 3| B, Repot wazan
5 iw ol i
=i 7] tavigation = = == 3 labets
Fi Form Blank Revarl R 1 B
Design Form 08 More Forms - Design Pej
Forms R

The Query Design

| &M Access Objects

button —T;gg-‘-—-‘—:—:;*
g

The INVENTORY and B weran_oroes

WAREHOUSE tables = Snaial

will be used in the I

chapter Review

Exercises

Figure: 2-8

The Create Command Tab

46

Part 1 Getting Started

The Queryl tabbed
document window

)

H->-§@ils

Create

o

The Show Table
dialog box

Click the Close button ~—_

Figure : 2-9

IT=_sku_pata
B0 warRThsw

dical
Parts +
Templates

External ata

Table SharePuinl Query Query

Dop

-¢12-Cape-Codd : Database (Access 2007) - Microsoft Access

Database Tanks

HeE D fd BEE0

Wizard Design

Al Access Objects
Tables £
T meventony

55 ORDERIEM

T weran_oRoest

Form Form Blank

] Form wizard
[navigation =
Reparl Reporl Blank
Design Reporl
Reparts

Design Fowm 28] More Forms -
s

The Show Table Dialog Box

Figure : 2-10

Fleld:
Table:

Shewe
Criteria:
or

o H nmpm Wirard
E_J ﬂ d o labets

o @ B
=@
Sy S Module
;m“‘ & Crass Madule
8] Visual Basic

Also note that in Figure 2-10 the View gallery is available in the Results group of the
Design tab. We can use this gallery to switch between Design view and SQL view. However, we
can also just use the displayed SQL View button to switch to SQL view. The SQL View button
is being displayed because Microsoft Access considers that to be the view you would most
likely choose in the gallery if you used it. Microsoft Access always presents a most likely
needed view choice as a button above the View gallery.
For our example SQL query in Microsoft Access, we will use SQL-Query-CH02-01, the first
SQL query earlier in our discussion:

/* *** SQL-Query-CHO02-01 *** */

SELECT Department, Buyer
The Query Tools Contextual FROM SKU_DATA;
Command Tab
T - g LA DBP-el2-Cape-Codd : Database [Access 2007) - Microsoft Access T £
The Query Tools tab e s A
File Home Create External Data Database Taoks Detign o a
SQL {] :j! *' ﬂ :K.' a0 ion -"_E ZatnsetRews | g Insen Columns Z _-Jw] AP Praperty Sheet
. r o it 4 g Pass-Through 2 Delete Rows | ¥ Delete Coumns -1 | B Table Hames
The SQL VIeW button / VISW Run ;nl ?ll:h:: Append Update Crostab Delete ﬂnah Befinition ?rnv: ;'?tﬂuilder ﬂﬂnzlmn‘ al = Tolaks Paramelers B
fesults Query Setup ShowHide

The View gallery
drop-down arrow
button

T eEran_oRoes

£ SKU_DATA

The Select Query
Type button

The Query Type
command group

The Queryl tabbed
document window in
Design view

The Design
command tab

Fleld:
Table:
Sort:
Shew:
Criteria:
or

=

Chapter 2 Introduction to Structured Query Language

47

. B2 CU| DBP-#12-Cape-Codd: Database (Access 2007) - Microsoft Access e @ B
The Queryl window L Biis otk b e el o -0
n SQL view ? :‘! *! 4 :R! D tninn . ‘}-ul.lm-n R 5 -.E']'] E:J-‘mpenyﬂnnl
View Fun feit | Make Aupend Updale Crosstab Delele gm“'mmm Showe S Tolaks Phaametess
= Tabile A2 Data Definition 1,0, 5N Builder B
The SQL SELECT; fesults Query Type Query Setup Show/Hide
AN Arcess Objects & o«

statement this is an

Tables -
incomplete statement T meeniony =
and will not run as — = "“"“U‘“‘
written it is intended L
as the start of an SQL 2 warouse
query

Figure : 2-11

The Queryl Window in SQL

View Opening a Microsoft Access SQL Query Window and Running a Microsoft Access SQL Query
1. Click the SQL View button in the Results group on the Design tab. The Queryl win-
dow switches to the SQL view, as shown in Figure 2-11. Note the basic SQL command
SELECT; thats shown in the window. This is an incomplete command, and running
it will not produce any results.
2. Editthe SQL SELECT command to read (do not include the SQL comment line):
SELECT Department, Buyer
FROM SKU_DATA;
as shown in Figure 2-12.
3. Click the Run button on the Design tab. The query results appear, as shown in Figure 2-13.
Compare the results shown in Figure 2-13 to the SQL-Query-CH02-01 results shown
on page 39.
Because Microsoft Access is a personal database and includes an application generator,
we can save Microsoft Access queries for future use. Enterprise-level DBMS products generally
Figure : 2-12 do not allow us to save queries (although they do allow us to save SQL Views within the data-

base and SQL query scripts as separate files we will discuss these methods later).
The SQL Query

Th R b tt (= I B AR e [Acll| DBP-al2-Cape-Codd: Database (Access 2007) - Microsoft Access e B B
€ Run button \% Mome Creste EemsiData DatabateTooks | Deugn | =@
=0 £/ ' AL § Dunion s Sainsent Raws AP Property Sheet
i “‘d! # b = @rasstheougn | | 2= | P B Tabie Mame
The comp|ete SQL View Run | |Seled | Make Aupend Updale Crostab Delele (oo Shoe | N Toals Para
query Statement I iesutts Query Type CQuery Setup Show/Hide
unm w |5 quet
Tables % LLCT Department, Duyer .
2 nvenToRy it @
E oRDEA_TEM
B wrran oRDes
M sku_pata
B warthoUst
A9~ DBP-e12-Cape-C 2007) - Microsoft A ol e
The SQL query reSUIts \ Home Create External Data Database Tank 7)
= B cut Wr 4| aseending " Seieetian - = New E Tatals ﬁ L, Replace | Calir =|11 =iz =
\f < copy i %) Deseending T advanced = “‘I M save ¥ Speling wGoTo- | B 7 U [:E42 |- | B
Ifw sqmat Painte i 35 Remove Sort Toggie Fitter !\I'I!-“ Delete * More 2 L seleat - o rE=®ES %
& v * e
views Clipboard 2 Sen & Filter Aecords Fand Text Farmatting g
Tables B Department - Buyer -
0 wwenron T e vorsen
T ORDERTEM | Water Sports Pete Hansen
H ritan_oRDER | Water Sports | Nancy Meyers
Water 5port M M
B9 sku_patA RUARONE [Woiley eyete
| Camping Cindy Lo
B wartnouse camping Cindy Lo
) Climbing Jarry Martin
Figure - 2-13 | Climbing Jery Martin
*
The SQL Query Results

48

Part 1 Getting Started

The OK button

P 0
The Save button gl .0
r 4 & Cut oy Hew E Tatals 2L Repla Calibs 1n o —
bi Ea copy = IQ shisave S Speling ™GoTo- | B S U |EE| - H-
The Save As .- ey ot o Foomat palatse | T : t 5 Topgle Fiter | T X Cetete ~ EMore= | "™ [y sev | A% B i
dialog box views Cipbaars 3 Som & Fiter Recorets Fana Text Formatting
| M T x|
Tables] Department - Buryer
T meventony orts Pete Hansen
Type the query =3 oRDERTEM Water Sports—Pelg i B
" — 1 . . water sperts | Nancy -
name SQLQuery = \m«'u oe Nang) Qyne:
CHO02-01 here v [Tcamng ot
¥, 3l E,:mplnﬁ Cindh /’E T]
| Climbing —erTy] —_—

| | climbing Jerry Martin

*

Figure - 2-14

The Save As Dialog box

Figure : 2-15

The Named and Saved
Query

Saving a Microsoft Access SQL Query

1. To save the query, click the Save button on the Quick Access Toolbar. The Save As dia-
log box appears, as shown in Figure 2-14.

2. Type in the query name SQL-Query-CH02-01 and then click the OK button. The query
is saved, and the window is renamed with the query name. As shown in Figure 2-15,
the query document window is now named SQ-LQuery-CHO02-01, and a newly
created SQL-Query-CH02-01 query object appears in a Queries section of the
Navigation Pane.

3. Close the SQL-Query-CHO02-01 window by clicking the document window s Close
button.

4. If Microsoft Access displays a dialog box asking whether you want to save changes to
the design of the query SQL-Query-CH02-01, click the Yes button.

At this point, you should work through each of the other nine queries in the preceding dis-
cussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQL-Query-
CHO2-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

Using SQL in Microsoft SQL Server 2008 R2

Before you can use SQL statements with Microsoft SQL Server, you need access to a computer
that has SQL Server installed and that has a database with the tables and data shown in
Figures 2-3, 2-4, and 2-5. Your instructor may have installed SQL Server in your computer lab
and entered the data for you. If so, follow his or her instructions for accessing that database.
Otherwise, you will need to obtain a copy of SQL Server 2008 R2 and install it on your com-
puter. Read the appropriate sections of Chapter 10 about obtaining and installing SQL Server
2008 R2.

After you have SQL Server 2008 R2 installed, you will need to read the introductory dis-
cussion for using SQL Server in Chapter 10, starting on page 373, and create the Cape Codd

The query window is
now named
SQLQuery-CH02-01

The Queries section
of the Navigation Pane

The SQLQuery-
CHO02-01 query object

@9 @a DBP-e12-Cape-Codd : Datsbase (Access 2007) - Microsoft Access =

“ Mome | Creste DdemalDats Database Tools = @

& o _['] ascending ¥z setection - c, = Hew I Totals S Replace Calibni =(n
% | Descenaing ¥ aavanced - 1 il save ¥ spelling wmGoto~ | B I U |EFEIFE |~ =

Filter Refresh

> t ¥ t T nc peiee - BlMores | T [y sewas A% & -
Clipbuasd Sort & Filter Recurds Find Teat Foum Il . |
All Access Objeds =) = r* SL-Queny-LHOZ-OL | x |
Talses A Department - Buyer
T mventonRy T 7ot Hansen
=] ORDER ITEM Water Sports Pete Hansen
T weran_onoer oot bl
Water Sports Nancy Meyers
B swu_oa camping CindyLo
i:_ WARLHOUSE || |camping Cindy Lo
\ Queries % Climbing lerry Mastin
21 cql-query.cHO201 Climbing Jerry Martin
*

Figure : 2-16

Running an SQL Query in
SQL Server Management
Studio

The New Query
button

Available Databases
drop-down list select
the database here

The Execute button

The Cape Codd
database

The Cape Codd
database tables

The Parse button

The IntelliSense
Enabled button

The SQL query in the
tabbed query window

The Results tabbed
window

Chapter 2 Introduction to Structured Query Language 49

database. SQL Server scripts for creating and populating the Cape Codd database tables are
available on our Web site at www.pearsonhighered.com/kroenke.

SQL Server 2008 R2 uses the Microsoft SQL Server 2008 R2 Management Studio as the GUI
tool for managing the SQL Server DBMS and the databases controlled by the DBMS. The
Microsoft SQL Server 2008 R2 Management Studio, which we will also refer to as just the SQL
Server Management Studio, is installed as part of the SQL Server 2008 R2 installation process
and is discussed in Chapter 10. Figure 2-16 shows the execution of SQL-Query-CH02-01 (note
that the SQL comment is not included in the SQL statement as run also note that the SQL
comment could have been included in the SQL code if we had chosen to include it):

/* *** SQL-Query-CH02-01 *** */
SELECT Department, Buyer
FROM SKU_DATA;

Running an SQL Query in SQL Server Management Studio

1. Click the New Query button to display a new tabbed query window.

2. If the Cape Codd database is not displayed in the Available Database box, select it in
the Available Databases drop-down list, and then click the Intellisense Enabled
button to disable Intellisense.

3. Type the SQL SELECT command (without the SQL comment line shown above):

SELECT Department, Buyer
FROM SKU_DATA;

in the query window, as shown in Figure 2-16.

4. At this point you can check the SQL command syntax before actually running the
command by clicking the Parse button. A Results window will be displayed in the
same location shown in Figure 2-16, but with the message Command(s) completed

Fle Edi View Query Project Drbug Tooks Window Commnity Help

oy || BB G0 G E DB

K
2
q
[x] %

| | |
=] Rlesuts | 3 Messages |
Depastmert

Waler Sports | Febe Harsen
Waler Spords | Pele Harmen
Waler Spords Nancy Meyers
Waler Sports Nancy Meyers
Campig Cindy Lo
Campig Cindy Lo
Climbing Jemy Madin
Clmbing Jemy Madin

|w|“|m [q|.|“ |»|-.|

& Query execited swccesshuly, | WS82-003 (30.50RTM) | WSB2-003\Auer (58) | Cape-Codd | 00:00:00 | 8 rows
m2 Col 18 this s

50

Part 1 Getting Started

successfully if the SQL command syntax is correct or with an error message if there
is a problem with the syntax.

5. Click the Execute button to run the query. The results are displayed in a results win-
dow, as shown in Figure 2-16.

Note that in Figure 2-16 the Cape Codd database object in the Object Browser in the left
side window of the SQL Server Management Studio has been expanded to show the tables in
the Cape Codd database. Many of the functions of the SQL Server Management Studio are
associated with the objects in the Object Browser and are often accessed by right-clicking the
object to display a shortcut menu.

THE WAY We are using SQL Server 2008 R2 Enterprise edition running in Microsoft

Server 2008 R2. When we give specific sequences of steps to follow in the
text or figures in this book, we use the command terminology used by SQL Server 2008
and associated utility programs in Microsoft Server 2008 R2. If you are running a
workstation operating system such as Microsoft XP or Microsoft Vista, the terminology
may vary somewhat.

THE WAy As this book goes to press, Microsoft is due to release the next version of

SQL Server SQL Server 2011. Although we cannot show screenshots of
the prerelease version of SQL Server 2011 that we have been using, we have tested all
of the SQL Server commands and SQL statements in this book in SQL Server 2011, and
they should all run correctly in SQL Server 2011 when it is released.

SQL Server 2008 R2 is an enterprise-class DBMS product, and, as is typical of such
products, does not store queries within the DBMS (it does store SQL Views, which can be
considered a type of query, and we will discuss SQL Views in Chapter 7. However, you can
save queries as SQL script files. An SQL script file is a separately stored plain text file, and it
usually uses a file name extension of *.sql. An SQL script can be opened and run as an SQL
command (or set of commands). Often used to create and populate databases, scripts can also
be used to store a query or set of queries. Figure 2-17 shows the SQL query being saved as an
SQL script.

Note that in Figure 2-17 the SQL scripts are shown in a folder named DBP-e12-Cape-Codd-
Database. When the Microsoft SQL Server 2008 R2 Management Studio is installed, a new
folder named SQL Server Management Studio is created in your My Documents folder, with
Projects as a subfolder. The Projects folder is the default location used by SQL Server 2008 R2
for SQL script files.

We recommend that you create a folder for each database in the Projects folder. We have
created a folder named DBP-e12-Cape-Codd-Database to store the script files associated with
the Cape Codd database.

Saving an SQL Server Query as an SQL Script in SQL Server Management Studio

1. Click the Save button shown in Figure 2-17. The Save File As dialog appears, as shown
in Figure 2-17.

2. Browse to the My Documents\SQL Server Management Studio\Projects\DBP-
e12-Cape-Codd-Database folder.

3. Note that there are already two SQL script names displayed in the dialog box. These
are the SQL scripts that were used to create and populate the Cape Codd database
tables, and they are available on our Web site at www.pearsonhighered.com/kroenke.

4. In the File Name text box, type the SQL script file name SQL-Query-CH02-01.

5. Click the Save button.

Chapter 2 Introduction to Structured Query Language 51

The Open File button

| | Fe Edt View Query Project Orbug Took Window Commnity Help

[Ao D n S 8,
%1 1 | cape-Codd Execute b B = ok | A

The Save button

JxL%

l— [Comect- % 8 m T B

= | WSBZ-003 (S Server 1050, 1600 - WSE2-004 E

The Save File As
dialog box

= [Databases

nt, Buyes
W wave ile s 2%
= o Savein: | DEP-ellCape CoddDatsbave =) (@) = (8 | &) % oy [- Took -
e _— Home |- Catemodfied || Type <] S ||
’ =

|5y 08@ -2 12-Cape-Codd-Create-Tables.sal

The DBP-e12-Cape
Codd-Database folder

7 |3 062 12-Cape-Codd-insert-Data. g

My Frogects

Existing SQL scripts
these were used to
create and populate
the Cape Codd
database

My Compnter =l

Type the SQL script
file name here

Flename: o [500 Gumry-Cr020 Lol =] o e 7
/mﬂy et Fies oy E Carcel ||

Bl Coro Cindy Lo

70| Cirting n

8 Jey Madin

/

The Save button

/"’/lLI D Query enecited swcesshuly,

| WS82-003 (30.50RTM) | WSB2-003VAuer (54) | Cape-Codd | 00:00:00 | 8 rows
il

Figure - 2-17

Saving an SQL Query as an

SQL Script in SQL Server
Management Studio

To rerun the saved query, you would click the Open File button shown in Figure 2-17 to
open the Open File dialog box, open the query, and then click the Execute button.

At this point, you should work through each of the other nine queries in the preceding
discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQL-Query-
CHO2-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

Using SQL in Oracle Database 119g

Before you can enter SQL statements into Oracle Database 11g, you need access to a computer
that has Oracle Database 11¢ installed and that has a database with the tables and data shown
in Figure 2-4. Your instructor may have installed Oracle Database 11g on a computer in the lab
and entered the data for you. If so, follow his or her instructions for accessing that database.
Otherwise, you will need to obtain a copy of Oracle Database 11g and install it on your com-
puter. Read the appropriate sections of Chapter 10A about obtaining and installing Oracle
Database 11g.

After you have installed Oracle Database 11g, you will need to read the introductory dis-
cussion for Oracle Database 11g in Chapter 10A, starting on page 10A-1, and create the Cape
Codd database. Oracle scripts for creating and populating the Cape Codd database tables are
available on our Web site at www.pearsonhighered.com/kroenke.

Although Oracle users have been dedicated to the Oracle SQL*Plus command line tool,
professionals are moving to the new Oracle SQL Developer GUI tool. This application is
installed as part of the Oracle Database 11g installation, and updated versions are available for
free download at www.oracle.com/technology/software/products/sql/index.html. We will use it
as our standard GUI tool for managing the databases created by the Oracle DBMS. Figure 2-18
shows the execution of SQL-Query-CH02-01 (note that the SQL comment is not included in
the SQL statement as run also note that the SQL comment could have been included in the
SQL code if we had chosen to include it);

/* *** SQL-Query-CHO02-01 *** */
SELECT
FROM

Department, Buyer
SKU_DATA;

52

Part 1 Getting Started

The SQL Worksheet

—

Connections object
browser shows
connected databases

The New Connection
button

The Cape Codd
database

The Cape Codd
database tables

The Execute button

The SQL query in the
SQL Worksheet

&, Uracle S Developer : Cape Codd Database

Lile gdit Veew Design Navigate Hun Versionng Tools lelp

Foadg Q-0 & ';
[Comections | (lReprts (2] | D5 TP | i Cape-Codd-Database. | =
@y PEHERA RR HRed 15 oo o e -
‘mrm A werksheet | uery Bulder
=[] CapeCodd-Datsbase SFLECT Depnersent, Fuyer

2 Tabies (Flere) PR S_DATA:

/

@ B8 s para
- [waREHoUSE
- [e

;Quurﬂmil
" O, 5 [5oL | AlRowsFetched: 8 n 0,172 seconds
i oo

Pete Hansen

§ ocearmven
1 Water Sporta

2 Water Sporta Pete Hanaen

3 water Sports Hancy Meyers
Hancy Meyers
Cindy Lo
Cindy La

4 Water Sporta
5 Camping
& Camping
7 Climbing
8 Climbing

Jerry Martin

Jerry Martin

The Results
tabbed window

Figure - 2-18

Running an SQL Query in
Oracle SQL Developer

| Line 2 Colun 18 traert | Modfied | Windows: CRAF Editing

Running an SQL Query in Oracle SQL Developer

1. Click the New Connection button and open the Cape Codd database.
2. In the tabbed SQL Worksheet, type the SQL SELECT command (without the SQL
comment line shown above):

SELECT
FROM

Department, Buyer

SKU_DATA;
as shown in Figure 2-18.

3. Click the Execute button to run the query. The results are displayed in a results win-
dow, as shown in Figure 2-18.

Note that in Figure 2-18, the Cape Codd database object in the Object Browser in the left

side Connection object browser of the Oracle SQL Developer has been expanded to show the

tab
the

les in the Cape Codd database. Many of the functions of SQL Developer are associated with
objects in the Connections object browser and are often accessed by right-clicking the

object to display a shortcut menu.

We are using Oracle Database 11g running in Microsoft Server 2008 R2.
When we give specific sequences of steps to follow in the text or figures
in this book, we use the command terminology used by Oracle Database 11g and
associated utility programs in Microsoft Server 2008. If you are running a workstation
operating system such as Microsoft XP, Microsoft Vista, or Linux, the terminology may
vary somewhat.

THE WAY

Oracle Database 119 is an enterprise-class DBMS product, and, as is typical of such

products, does not store queries within the DBMS (it does store SQL Views, which can be con-
sidered a type of query, and we will discuss SQL Views later in this chapter). However, you can

Figure : 2-19

Saving an Oracle SQL Query
as an SQL Script in Oracle
SQL Developer

Chapter 2 Introduction to Structured Query Language 53

save queries as SQL script files. An SQL script file is a separately stored plain text file, and it
usually has a file name extension of *.sgl. An SQL script can be opened and run as an SQL
command (or set of commands). Often used to create and populate databases, scripts can also
be used to store a query or set of queries. Figure 2-19 shows the SQL query being saved as an
SQL script.

Note that in Figure 2-19 the SQL scripts are shown in a folder named {UserName}\
Documents\Oracle Workspace\DBP-e12-Cape-Codd-Database. By default, Oracle SQL Deve-
loper stores *.sql files in an obscure location within its own application files. We recommend
that you create a subfolder in your My Documents folder named Oracle Workspace, and then
create a subfolder for each database in the Oracle Workspace folder. We have created a folder
named DBP-e12-Cape-Codd-Database store the script files associated with the Cape Codd
database.

Saving an SQL Script in Oracle SQL Developer

1. Click the Save button shown in Figure 2-19. The Save dialog appears, as shown in
Figure 2-19.

2. Click the Documents button on the Save dialog box to move to the Documents
folder, and then browse to the DBP-e12-Cape-Codd-Database folder.

3. Note that there are already two SQL script names displayed in the dialog box.
These are the SQL scripts that were used to create and populate the Cape Codd
database tables, and they are available on our Web site at www.pearsonhighered.
com/kroenke.

4. In the File Name text box, type the SQL script file name SQL-Query-CH02-01.sq.

5. Click the Save button.

To rerun the saved query, you would click the SQL Developer Open File button to open
the Open File dialog box, browse to the query file, open the query file, and then click the
Execute button.

The Save button

The Save dialog box

¥, Oracle SO Develaper : Cape. Cadd Database - STET
tile Ldt View Design Navigate Kun Versioning Tools Help
T E2ae 9e xano-0 & 3
[Comections | (fReports [l T e O - Wy =
(heore _
+ @7 = | Cape-Codd Database = |

The Cape-Codd-
Database folder

Location: | (] C: s\ \Documents O ace Workspace JOLE Em

[T cte-e12-Cape-CoddCreate-Tablessd
D2 12-Cape-Lodd-Insert-Data.sql

Existing SQL scripts
these were used to
create and populate
the Cape-Codd
database

The Documents
Folder button

{8 msteriskoed views Logs
L Symormyms

] L b il
Nancy Meyers

Type the SQL script
file name here

The dialog box Save
button

L3 nene
‘able CAPECOD0_UISER:, rull @Cape -Codd Database. | Line 2 Coluen 18 Trsert | Modfied | Windows: CRAF Ediing

54

Figure - 2-20

Running an SQL Query in the
MySQL Workbench

The SQL Editor tab
with menu and toolbar

The Object Browser

The Execute Current
SQL Statement in
Connected Server
button

The Cape Codd
database

The Cape Codd
database tables

The Query 1 tabbed
window enter your
SQL statement

The query results in
the Query 1 Result
tabbed window

Part 1 Getting Started

At this point, you should work through each of the other nine queries in the preceding
discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQLQuery-
CHO2-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

Using SQL in Oracle MySQL 5.5

Before you can use SQL statements with Oracle MySQL 5.5, you need access to a computer that
has MySQL installed and that has a database with the tables and data shown in Figure 2-4. Your
instructor may have installed MySQL in your computer lab and entered the data for you. If so,
follow his or her instructions for accessing that database. Otherwise, you will need to obtain a
copy of MySQL Server 5.5 and install it on your computer. Read the appropriate sections of
Chapter 10B about obtaining and installing MySQL Community Server 5.5.

After you have MySQL Sever 5.5 installed, you will need to read the introductory discus-
sion for MySQL Server 5.5 in Chapter 10B, starting on page 10 B-448, and create the Cape Codd
database. MySQL scripts for creating and populating the Cape Codd database tables are
available on our Web site at www.pearsonhighered.com/kroenke.

MySQL uses the MySQL Workbench as the GUI tool for managing the MySQL DBMS and
the databases controlled by the DBMS. This tool must be installed separately from the MySQL
DBMS, and this is discussed in Chapter 10B. SQL statements are created and run in the
MySQL Workbench, and Figure 2-20 shows the execution of SQL-Query-CH02-01 (note that
the SQL comment is not included in the SQL statement as run also note that the SQL com-
ment could have been included in the SQL code if we had chosen to include it):

/* *** SQL-Query-CH02-01 *** */
SELECT
FROM

Department, Buyer
SKU_DATA;

Running an SQL Query in the MySQL Workbench

1. To make the Cape Codd database the default schema (active database), right-click
the cape_codd schema (database) object to display the shortcut menu and then
click the Set as Default Schema command.

[E%

S0L Bdilor >
File Edit View Query Dstabase Plugins Scipting Commenity Helg
OME P AU e VU ® e =
Coery | %

/ 1% SFIFCT Department, Buyer
2 FROM SKU_DATA;|

Overdew Cutput ripprta wr
©oo oo (LE0E|[Ee|
b | Water Spuds

| Water Spurs
& | Weter Soorts
| Water Spons

*Peln Harman
Pete Harmen

Ny Meyess
Mancy Meyers
| Camping Cindy Lo

| Campng oy La

| Chmbing Jamy Mant

| Cimbing ey Moty

Figure : 2-21

Saving an SQL Query as an

SQL Script in the MySQL
Workbench

Script dialog box

Click the Save SQL
Script to File button
to open the Save SQL

Chapter 2

Introduction to Structured Query Language

55

2. In the Query 1 tabbed window in the SQL Editor tabbed window, type the SQL
SELECT command (without the SQL comment line shown above):

SELECT
FROM

Department, Buyer
SKU_DATA;

as shown in Figure 2-20.
3. Click the Execute Current SQL Statement in Connected Server button to run the
query. The results are displayed in a tabbed Query Result window, shown as the Query 1
Result window in Figure 2-20 (you can have more than one Query Result window open,
and thus they need to be numbered).

Note that in Figure 2-20 the Cape Codd database object in the Object Browser in the left-side
window of the MySQL Workbench has been expanded to show the tables in the Cape Codd data-
base. Many of the functions of the MySQL Workbench are associated with the objects in the
Object Browser and are often accessed by right-clicking the object to display a shortcut menu.

THE WAY

We are using MySQL 5.5 Community Server running in Microsoft Server

2008 R2. When we give specific sequences of steps to follow in the text
or figures in this book, we use the command terminology used for MySQL 5.5 and asso-

ciated utility programs in Microsoft Server 2008 R2. If you are running a workstation

operating system such as Microsoft XP, Microsoft Vista, or Linux, the terminology may

vary somewhat.

MySQL 5.5 is an enterprise-class DBMS product, and, as is typical of such products, does
not store queries within the DBMS (it does store SQL Views, which can be considered a type of
query, and we will discuss SQL Views later in this chapter). However, you can save MySQL
queries as SQL script files. An SQL script file is a separately stored plain text file, and it usually
uses a file name extension of *.sql. An SQL script file can be opened and run as an SQL
command. Figure 2-21 shows the SQL query being saved as an SQL script file.

Note that in Figure 2-21 the query will be saved in a folder named My Documents\MySQL
Workspace\Schemas\DBP-e12-Cape-Codd-Database. By default, MySQL Workbench stores

SQL Edilor %
File Edt View Query Datsbase Plugins Scipting Commwnity Help

w4 MECHE T BR

ACTIONS
F oxecute SOLFIe

The Save SQL
Script dialog box

F Add Schema
[® add Tanie

— ——M

™ add Routine

SCHEMAS

folder

The My Documents\
MySQL Workbench\
Schemas\DBP-e12-
Cape-Codd-Database

¥ ! cape_codd
¥ 77 Tables
® [T inventery
» [T orderitem
¥ [T retail_order
» [0 siu_dats
» [warehause

File name here

Type the SQL script

The Save button

pame -

| .

| “

| Fie rue; | R TR TP
: 2 Save as type: [SQL Fies (*.cdl)
[Connection Information -

LWL e E

1® SELFCT Department, Buyer
2 FROM SKU_DATA;

S|

ar

Host: 127.6.8.1:3306

[Server: MySQLSS

Version: 5.5.11
(IS root

| > |
« | | = |28 [Seorch 080 e 12 Cape Codd 0., g
= - 0
F Favontes = Documents library ! 2
B Desonop DEP-¢12-Cape Codd Database Ay o
o —
Hame |t
" =17
(') DUF-£ 12-Cape-Codd-Create-Tables.sql 3
(' D0+ 17-Cape-Codd-Insert-Data. sg) 1
i
=
| o |
i

56

Part 1 Getting Started

files in the users My Documents folder. We recommend that you create a subfolder in your My
Documents folder named MySQL Workspace, and then create subfolders labeled EER Models
and Schemas. Within each of these subfolders, create a sub-subfolder for each MySQL data-
base. We have created a folder named DBP-e12-Cape-Code-Database to store the script files
associated with the Cape Codd database.

Saving a MySQL Query

1. Use the File | Save as command, as shown in Figure 2-20. The Save Query to File dia-
log appears, as shown in Figure 2-21.

2. Browse to the My Documents\MySQL Workspace\Schemas\DBP-e12-Cape-Codd-
Database folder.

3. In the File Name text box, type the SQL query file name SQL-Query-CH02-01.

4. Click the Save button.

To rerun the saved query, you would click the File | Open SQL Script menu command to
open the Open SQL Script dialog box, then select and open the SQL query *.sql files, and,
finally, click the Execute Current SQL Statement in Connected Server button.

At this point, you should work through each of the other nine queries in the preceding
discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQLQuery-
CHO2-##, where ## is a sequential number from 02 to 09 that corresponds to the SQL query
label shown in the SQL comment line of each query.

SQL Enhancements for Querying a Single Table

We started our discussion of SQL queries with SQL statements for processing a single table, and
now we will add an additional SQL feature to those queries. As we proceed, you will begin to see
how powerful SQL can be for querying databases and for creating information from existing data.

@ THE WAY The SQL results shown in this chapter were generated using Microsoft SQL
Server 2008 R2. Query results from other DBMS products will be similar,
but may vary a bit.

Sorting the SQL Query Results

The order of the rows produced by an SQL statement is arbitrary and determined by programs
in the bowels of each DBMS. If you want the DBMS to display the rows in a particular order,
you can use the SQL ORDER BY clause. For example, the SQL statement:

/* *** SQL-Query-CH02-10 *** */
SELECT *

FROM ORDER_ITEM

ORDER BY OrderNumber;

will generate the following results:

Chapter 2 Introduction to Structured Query Language 57

We can sort by two columns by adding a second column name. For example, to sort first
by OrderNumber and then by Price within OrderNumber, we use the following SQL query:

/* *** SQL-Query-CH02-11 *** */
SELECT *

FROM ORDER_ITEM

ORDER BY OrderNumber, Price;

The result for this query is:

If we want to sort the data by Price and then by OrderNumber, we would simply reverse
the order of those columns in the ORDER BY clause as follows:

/* *** SQL-Query-CH02-12 *** */
SELECT *

FROM ORDER_ITEM

ORDER BY Price, OrderNumber;

with the results:

A

@ THE way Noteto Microsoft Access users: Unlike the SQL Server output shown here,
‘ Microsoft Access displays dollar signs in the output of currency data.

By default, rows are sorted in ascending order. To sort in descending order, add the SQL
DESC keyword after the column name. Thus, to sort first by Price in descending order and
then by OrderNumber in ascending order, we use the SQL query:

/* *** SQL-Query-CH02-13 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY Price DESC, OrderNumber ASC;

58

Part 1 Getting Started

The result is:

Because the default order is ascending, it is not necessary to specify ASC in the last SQL
statement. Thus, the following SQL statement is equivalent to the previous SQL query:

/* *** SQL-Query-CH02-14 *** */
SELECT *

FROM ORDER_ITEM

ORDER BY Price DESC, OrderNumber;

and produces the same results:

SQL WHERE Clause Options

SQL includes a number of SQL WHERE clause options that greatly expand SQLs power and
utility. In this section, we consider three options: compound clauses, ranges, and wildcards.

Compound WHERE Clauses

SQL WHERE clauses can include multiple conditions by using the SQL AND, OR, IN, and NOT
IN operators. For example, to find all of the rows in SKU_DATA that have a Department named
Water Sports and a Buyer named Nancy Meyers, we can use the SQL AND operator in our
query code:

/* *** SQL-Query-CHO2-15 *** */

SELECT *

FROM SKU_DATA

WHERE Department="Water Sports’
AND Buyer="Nancy Meyers”;

The results of this query are:

s] Department | Buyer
[

Chapter 2 Introduction to Structured Query Language 59

Similarly, to find all of the rows of SKU_DATA for either the Camping or Climbing depart-
ments, we can use the SQL OR operator in the SQL query:

/* *** SQL-Query-CHO02-16 *** */

SELECT *

FROM SKU_DATA

WHERE Department="Camping”
OR Department="Climbing”;

which gives us the following results:

Three or more AND and OR conditions can be combined, but in such cases the SQL IN
operator and the SQL NOT IN operator are easier to use. For example, suppose we want to
obtain all of the rows in SKU_DATA for buyers Nancy Meyers, Cindy Lo, and Jerry Martin. We
could construct a WHERE clause with two ANDs, but an easier way to do this is to use the IN
operator, as illustrated in the SQL query:

/% **% SQL-Query-CHO2-17 *** */

SELECT *
FROM SKU_DATA
WHERE Buyer IN (°’Nancy Meyers”, “Cindy Lo”, “Jerry Martin’);

In this format, a set of values is enclosed in parentheses. A row is selected if Buyer is equal to
any one of the values provided. The result is:

Similarly, if we want to find rows of SKU_DATA for which the buyer is someone other than
Nancy Meyers, Cindy Lo, or Jerry Martin, we would use the SQL query:

/* *** SQL-Query-CHO02-18 *** */

SELECT *

FROM SKU_DATA

WHERE Buyer NOT IN (°’Nancy Meyers”, °Cindy Lo”, “Jerry Martin’);
The result is:

B
[

Departmert | Buyer

60

Part 1 Getting Started

Observe an important difference between IN and NOT IN. A row qualifies for an IN condi-
tion if the column is equal to any of the values in the parentheses. However, a row qualifies for
aNOT IN condition if it is not equal to all of the items in the parentheses.

Ranges in SQL WHERE Clauses
SQL WHERE clauses can specify ranges of data values by using the SQL BETWEEN keyword.
For example, the following SQL statement:

/* *** SQL-Query-CH02-19 *** */

SELECT *
FROM ORDER_ITEM
WHERE ExtendedPrice BETWEEN 100 AND 200;

will produce the following results:

Notice that both the ends of the range, 100 and 200, are included in the resulting table. The pre-
ceding SQL statement is equivalent to the SQL query:

/* *** SQL-Query-CH02-20 *** */

SELECT *
FROM ORDER_ITEM
WHERE ExtendedPrice >= 100

AND ExtendedPrice <= 200;

And which, of course, produces identical results:

Wildcards in SQL WHERE Clauses

The SQL LIKE keyword can be used in SQL WHERE clauses to specify matches on portions
of column values. For example, suppose we want to find the rows in the SKU_DATA table for
all buyers whose first name is Pete. To find such rows, we use the SQL keyword LIKE with the
SQL percent sign (%) wildcard character, as shown in the SQL query:

/* *** SQL-Query-CH02-21 *** */

SELECT *
FROM SKU_DATA
WHERE Buyer LIKE ~“Pete%”;

When used as an SQL wildcard character, the percent symbol (%) stands for any sequence
of characters. When used with the SQL LIKE keyword, the character string Pete% means any
sequence of characters that start with the letters Pete. The result of this query is:

T | SKU_Description Department | Buyer

.

Chapter 2 Introduction to Structured Query Language 61

Does Not Work with Microsoft Access ANSI-89 SQL uses wildcards, but

Microsoft Access not the SQL-92 standard wildcards. Microsoft Access

ANSI-89 SQL uses the Microsoft Access asterisk (*) wildcard
character instead of a percent sign to represent
multiple characters.

Solution: Use the Microsoft Access asterisk (*) wildcard in place of the SQL-92 percent
sign (%) wildcard in Microsoft Access ANSI-89 SQL statements. Thus, the preceding
SQL query would be written as follows for Microsoft Access:

/* *** SQL-Query-CHO2-21-Access *** */

SELECT *
FROM SKU_DATA
WHERE Buyer LIKE “Pete*”;

Suppose we want to find the rows in SKU_DATA for which the SKU_Description includes
the word Tent somewhere in the description. Because the word Tent could be at the front, the
end, or in the middle, we need to place a wildcard on both ends of the LIKE phrase, as follows:

/* *** SQL-Query-CH02-22 *** */

SELECT *
FROM SKU_DATA
WHERE Buyer LIKE “%Tent%”;

This query will find rows in which the word Tent occurs in any place in the SKU_Description.
The result is:

| sku | SKU_Description Department | Buyer

]

Sometimes we need to search for a particular value in a particular location in the column.
For example, assume SKU values are coded such that a 2 in the third position from the right
has some particular significance, maybe it means that the product is a variation of another
product. For whatever reason, assume that we need to find all SKUs that have a 2 in the third
column from the right. Suppose we try the SQL query:

/* *** SQL-Query-CH02-23 *** */

SELECT *

FROM SKU_DATA

WHERE SKU LIKE *%2%” ;
The result is:

62

Part 1 Getting Started

This is not what we wanted. We mistakenly retrieved all rows that had a 2 in any position
in the value of SKU. To find the products we want, we cannot use the SQL wildcard character
%. Instead, we must use the SQL underscore (_) wildcard character, which represents a
single, unspecified character in a specific position. The following SQL statement will find all
SKU_DATA rows with a value of 2 in the third position from the right:

/% *** SQL-Query-CH02-24 *** */

SELECT *
FROM SKU_DATA
WHERE SKU LIKE *%2__~;

Observe that there are two underscores in this SQL query one for the first position on the right
and another for the second position on the right. This query gives us the result that we want:

SKU | SKU_Description | Department | Buyer
1 | 100200 Std. Scuba Tank, Magenta Water Sports Pete Hansen
2 101200 Dive Mask, Med Clear Water Spots Mancy Meyers

Does Not Work with Microsoft Access ANSI-89 SQL uses wildcards, but not

Microsoft Access the SQL-92 standard wildcards. Microsoft Access uses

ANSI-89 SQL the Microsoft Access question mark (?) wildcard
character instead of an underscore () to represent a
single character.

Solution: Use the Microsoft Access question mark (?) wildcard in place of the SQL-92
underscore () wildcard in Microsoft Access ANSI-89 SQL statements. Thus, the pre-

ceding SQL query would be written as follows for Microsoft Access:

/* *** SQL-Query-CHO2-24-Access *** */

SELECT *
FROM SKU_DATA
WHERE SKU LIKE **277?7;

Furthermore, Microsoft Access can sometimes be fussy about stored trailing spaces in
a text field. You may have problems with a WHERE clause like this:

WHERE SKU LIKE 71072007 ;
Solution: Use a trailing asterisk (*), which allows for the trailing spaces:

WHERE SKU LIKE 7107200%*7;

THE WAY The SQL wildcard percent sign (%) and underscore (_) characters are spec-

ified in the SQL-92 standard. They are accepted by all DBMS products
except Microsoft Access. So, why does Microsoft Access use the asterisk (¥) character
instead of the percent sign (%) and the question mark (?) instead of the underscore?
This difference probably exists because the designers of Microsoft Access chose to use
the same wildcard characters that Microsoft was already using in the Microsoft MS-DOS
operating system.

Chapter 2 Introduction to Structured Query Language 63

Combining the SQL WHERE Clause and the SQL ORDER BY Clause

If we want to sort the results generated by these enhanced SQL WHERE clauses, we simply
combine the SQL ORDER BY clause with the WHERE clause. This is illustrated by the follow-

ing SQL query:

/* *** SQL-Query-CH02-25 *** */

SELECT *

FROM ORDER_ITEM

WHERE ExtendedPrice BETWEEN 100 AND 200
ORDER BY OrderNumber DESC;

which will produce the following result:

Performing Calculations in SQL Queries

It is possible to perform certain types of calculations in SQL query statements. One group of
calculations involves the use of SQL built-in functions. Another group involves simple arith-
metic operations on the columns in the SELECT statement. We will consider each, in turn.

Using SQL Built-in Functions

There are five SQL built-in functions for performing arithmetic on table columns: SUM,
AVG, MIN, MAX, and COUNT. Some DBMS products extend these standard built-in func-
tions by providing additional functions. Here, we will focus only on the five standard SQL
built-in functions.

Suppose we want to know the sum of OrderTotal for all of the orders in RETAIL_ORDER.
We can obtain that sum by using the SQL built-in SUM function:

/* *** SQL-Query-CH02-26 *** */
SELECT SuM(OorderTotal)
FROM RETAIL_ORDER;

The result will be:

| (Mo column name)
1

Recall that the result of an SQL statement is always a table. In this case, the table has one
cell (the intersection of one row and one column that contains the sum of OrderTotal). But
because the OrderTotal sum is not a column in a table, the DBMS has no column name to
provide. The preceding result was produced by Microsoft SQL Server 2008 R2, and it names the
column (No column name) . Other DBMS products take other, equivalent actions.

This result is ugly. We would prefer to have a meaningful column name, and SQL allows us
to assign one using the SQL AS keyword. If we use the AS keyword in the query as follow:

/* *** SQL-Query-CH02-27 *** */
SELECT SUM(OrderTotal) AS OrderSum
FROM RETAIL_ORDER;

64

Part 1 Getting Started

The result of this modified query will be:

| OrderSum

1

This result has a much more meaningful column label. The name OrderSum is arbitrary
we are free to pick any name that we think would be meaningful to the user of the result. We
could pick OrderTotal_Total, OrderTotalSum, or any other label that we think would be useful.

The utility of the built-in functions increases when you use them with an SQL WHERE
clause. For example, we can write the SQL query:

/* *** SQL-Query-CH02-28 *** */

SELECT SUM(ExtendedPrice) AS Order3000Sum
FROM ORDER_ITEM
WHERE OrderNumber=3000;

The result of this query is:

|{}d33]]]5.|11
1

The SQL built-in functions can be mixed and matched in a single statement. For example,
we can create the following SQL statement:

/* *** SQL-Query-CH02-29 *** */

SELECT SUM(ExtendedPrice) AS OrderltemSum,
AVG(ExtendedPrice) AS OrderltemAvg,
MIN(ExtendedPrice) AS OrderltemMin,
MAX(ExtendedPrice) AS OrderltemMax

FROM ORDER_ITEM;

The result of this query is:

OrderftemSum | Orderttemfvg Iﬂdﬂlﬂnhﬁl I{hiﬂ'lﬂnﬂax

The SQL built-in COUNT function sounds similar to the SUM function, but it produces
very different results. The COUNT function counts the number of rows, whereas the SUM
function adds the values in a column. For example, we can use the SQL built-in COUNT
function to determine how many rows are in the ORDER_ITEM table:

/* *** SQL-Query-CH02-30 *** */
SELECT COUNT(*) AS NumberOfRows
FROM ORDER_ITEM;

The result of this query is:

| NumberOfRows
1

This result indicates that there are seven rows in the ORDER_ITEM table. Notice that we need
to provide an asterisk (*) after the COUNT function when we want to count rows. COUNT is
the only built-in function that requires an asterisk. The COUNT function is also unique
because it can be used on any type of data, but the SUM, AVG, MIN, and MAX functions can
only be used with numeric data.

Chapter 2 Introduction to Structured Query Language 65

The COUNT function can produce some surprising results. For example, suppose you want
to count the number of departments in the SKU_DATA table. If we use the following query:

/* *** SQL-Query-CH02-31 *** */

SELECT COUNT (Department) AS DeptCount
FROM SKU_DATA;
The result is:
DeptCount
1 |8

which is the number of rows in the SKU_DATA table, not the number of unique values of
Department, as shown in Figure 2-4. If we want to count the unique values of Department, we
need to use the SQL DISTINCT keyword, as follows:

/* *** SQL-Query-CH02-32 *** */
SELECT COUNT(DISTINCT Department) AS DeptCount
FROM SKU_DATA;

The result of this query is:

DeptCount

Does Not Work with Microsoft Access does not support the DISTINCT key-

Microsoft Access word as part of the COUNT expression, so although
E ANSI-89 SQL the SQL command with COUNT(Department) will
work, the SQL command with COUNT(DISTINCT
Department) will fail.

Solution: Use an SQL subquery structure (discussed later in this chapter) with the
DISTINCT keyword in the subquery itself. This SQL query works:

/* *** SQL-Query-CH02-32-Access *** */

SELECT COUNT(*) AS DeptCount

FROM (SELECT DISTINCT Department
FROM SKU_DATA) AS DEPT;

Note that this query is a bit different from the other SQL queries using subqueries we
show in this text because this subquery is in the FROM clause instead of (as you Il see) the
WHERE clause. Basically, this subquery builds a new temporary table named DEPT con-
taining only distinct Department values, and the query counts the number of those values.

You should be aware of two limitations to SQL built-in functions. First, except for group-
ing (defined later), you cannot combine a table column name with an SQL built-in function.
For example, what happens if we run the following SQL query?

/* *** SOL-Query-CH02-33 *** */
SELECT Department, COUNT(*)
FROM SKU_DATA;

66

Part 1 Getting Started

The result in SQL Server 2008 R2 is:

Msg 8120, Lewvel l1l&, State 1, Line 1
Column "SEU_DATA . Department’ is inwalid i

because it is not contained

in either an sggregate function or the G

This is the specific SQL Server 2008 R2 error message. However, you will receive an equiv-
alent message from Microsoft Access, Oracle Database, DB2, or MySQL.

The second problem with the SQL built-in functions that you should understand is that you
cannot use them in an SQL WHERE clause. Thus, you cannot use the following SQL statement:

/* *** SQL-Query-CH02-34 *** */

SELECT *
FROM RETAIL_ORDER
WHERE OrderTotal > AVG(OrderTotal);

An attempt to use such a statement will also result in an error statement from the DBMS:

Msg 147, Lewvel 15, State 1, Line 3
In zggregate may not appear in the WHERE clause unless it is in a2 subguery contained
in a2 HAVING clsuse or a select list, and the column being sggregated is an outer reference.

Again, this is the specific SQL Server 2008 error message, but other DBMS products will
give you an equivalent error message. In Chapter 7, you will learn how to obtain the desired
result of the above query using a sequence of SQL views.

SQL Expressions in SQL SELECT Statements

Itis possible to do basic arithmetic in SQL statements. For example, suppose we want to com-
pute the values of extended price, perhaps because we want to verify the accuracy of the data
in the ORDER_ITEM table. To compute the extended price, we can use the SQL expression
Quantity * Price in the SQL query:

/* *** SQL-Query-CH02-35 *** */

SELECT Quantity * Price AS EP

FROM ORDER_ITEM;

The result is:

= | e | o [Ra | —
Eg

130.00

An SQL expression is basically a formula or set of values that determines the exact
results of an SQL query. We can think of an SQL expression as anything that follows an actual
or implied equal to (=) character (or any other relational operator, such as greater than (>), less
than (<), and so on) or that follows certain SQL keywords, such as LIKE and BETWEEN. Thus,
the SELECT clause in the preceding query includes the implied equal to (=) sign as EP =
Quantity * Price. For another example, in the WHERE clause:

WHERE Buyer IN (’Nancy Meyers”, ’Cindy Lo”, ’Jerry Martin”);

the SQL expression consists of the three text values following the IN keyword.

Chapter 2 Introduction to Structured Query Language 67

Now that we know how to calculate the value of extended price, we can compare this
computed value to the stored value of ExtendedPrice by using the SQL query:

/* *** SQL-Query-CH02-36 *** */
SELECT Quantity * Price AS EP, ExtendedPrice
FROM ORDER_ITEM;

The result of this statement now allows us to visually compare the two values to ensure that
the stored data are correct:

Another use for SQL expressions in SQL statements is to perform string manipulation. Sup-
pose we want to combine (using the concatenation operator, which is the plus sign [+] in SQL
Server 2008 R2) the Buyer and Department columns into a single column named Sponsor.
To do this, we can use the SQL statement:

/* *** SQL-Query-CH02-37 *** */
SELECT Buyer+” in “+Department AS Sponsor
FROM SKU_DATA;

The result will include a column named Sponsor that contains the combined text values:

]
1
2 |
3 |
]
5 |
6 |
]

(== [= I S I = S S

l.
@ THE WAY The concatenation operator, like many SQL syntax elements, varies from one
DBMS product to another. Oracle Database uses a double vertical bar [||] as
the concatenation operator, and SQL QUERY-CHO02-37 is written for Oracle Database as:

/* *** SQL-Query-CHO2-37A *** */
SELECT Buyer||> in ”||Department AS Sponsor
FROM SKU_DATA;

MySQL uses the concatenation string function CONCAT() as the concatenation opera-
tor with the elements to be concatenated separated by commas with the parentheses,
and SQL-QUERY-CHO02-37 is written for MySQL as:

/* *** SQL-Query-CH02-37B *** */
SELECT CONCAT(Buyer,” in ”,Department) AS Sponsor
FROM SKU_DATA;

68

Part 1 Getting Started

The result of SQL-Query-CH02-37 is ugly because of the extra spaces in each row. We can
eliminate these extra spaces by using more advanced functions. The syntax and use of such
functions vary from one DBMS to another, however, and a discussion of the features of each
product will take us away from the point of this discussion. To learn more, search on string
functions in the documentation for your specific DBMS product. Just to illustrate the possibilities,
however, here is an SQL Server 2008 R2 statement using the RTRIM function that strips the
tailing blanks off the right-hand side of Buyer and Department:

/* *** SQL-Query-CH02-38 *** */
SELECT DISTINCT RTRIM(Buyer)+” in “+RTRIM(Department) AS Sponsor
FROM SKU_DATA;

The result of this query is much more visually pleasing:

_ﬁxnur

Grouping in SQL SELECT Statements

In SQL queries, rows can be grouped according to common values using the SQL GROUP BY
clause. For example, if you specify GROUP BY Department in a SELECT statement on the
SKU_DATA table, the DBMS will first sort all rows by Department and then combine all of the
rows having the same value into a group for that department. A grouping will be formed for each
unique value of Department. For example, we can use the GROUP BY clause in the SQL query:

/* *** SQL-Query-CH02-39 *** */

SELECT Department, COUNT(*) AS Dept_SKU_Count
FROM SKU_DATA

GROUP BY Department;

We get the result;

To obtain this result, the DBMS first sorts the rows according to Department and then
counts the number of rows having the same value of Department.
Here is another example of an SQL query using GROUP BY:

/* *** SQL-Query-CH02-40 *** */

SELECT SKU, AVG(ExtendedPrice) AS AvgEP
FROM ORDER_ITEM

GROUP BY SKU;

The result for this query is:

Chapter 2 Introduction to Structured Query Language 69

Here the rows have been sorted and grouped by SKU and the average ExtendedPrice for
each group of SKU items has been calculated.

We can include more than one column in a GROUP BY expression. For example, the SQL
statement:

/* *** SQL-Query-CHO02-41 *** */

SELECT Department, Buyer, COUNT(*) AS Dept_Buyer_SKU_Count
FROM SKU_DATA

GROUP BY Department, Buyer;

groups rows according to the value of Department first, then according to Buyer, and then
counts the number of rows for each combination of Department and Buyer. The result is;

When using the GROUP BY clause, only the column or columns in the GROUP BY expres-
sion and the SQL built-in functions can be used in the expressions in the SELECT clause. The
following expressions will result in an error:;

/* *** SOL-Query-CH02-42 *** */

SELECT SKU, Department, COUNT(*) AS Dept_SKU_Count
FROM SKU_DATA

GROUP BY Department;

The resulting error message is:

M=g 8120, Lewel lg, State 1, Line 1
Colurm '"SEU_DATA_SEU' is invalid in the select list because it is not contained
in either an aggregete function or the GROUP BY clause._

This is the specific SQL Server 2008 R2 error message, but other DBMS products will give you
an equivalent error message. Statements like this one are invalid because there are many values of
SKU for each Department group. The DBMS has no place to put those multiple values in the result.
If you do not understand the problem, try to process this statement by hand. It cannot be done.

Of course, the SQL WHERE and ORDER BY clauses can also be used with SELECT state-
ments, as shown in the following query:

/* *** SQL-Query-CH02-43 *** */

SELECT Department, COUNT(*) AS Dept_SKU_Count
FROM SKU_DATA
WHERE SKU <> 302000

GROUP BY Department
ORDER BY Dept_SKU_Count;

The result is:

70 Part 1 Getting Started

Notice that one of the rows of the Climbing department has been removed from the count

because it did not meet the WHERE clause condition. Without the ORDER BY clause, the rows
would be presented in arbitrary order of Department. With it, the order is as shown. In general,
to be safe, always place the WHERE clause before the GROUP BY clause. Some DBMS products
do not require that placement, but others do.

\. Does Not Work with Microsoft Access does not properly recognize the

,’ ANSI-89 SQL creates a parameter query that requests an input

Microsoft Access alias Dept_SKU_Count in the ORDER BY clause and

value of as yet nonexistent Dept_SKU_Count! How-
ever, it doesn t matter whether you enter parameter values or not click the OK button and
the query will run. The results will be basically correct, but they will not be sorted correctly.

Solution: Use the Microsoft Access QBE GUI to modify the query structure. The correct
QBE structure is shown in Figure 2-22. The resulting Microsoft Access ANSI-89 SQL is:

/* *** SQL-Query-CHO2-43-Access-A *** */

SELECT SKU_DATA.Department, Count(*) AS Dept_SKU_Count
FROM SKU_DATA
WHERE (((SKU_DATA.SKU)<>302000))

GROUP BY SKU_DATA.Department
ORDER BY Count(*);

which can be edited down to:

/* *** SQL-Query-CH02-43-Access-B *** */

SELECT Department, Count(*) AS Dept_SKU_Count
FROM SKU_DATA
WHERE SKU<>302000

GROUP BY Department
ORDER BY Count(*);

Edit the query in the
QBE GUI interface so
that it appears as

jjm(*‘t y-CHO7-43 E A

mikg

SKU_DATA

7 sk

shown here SKU Description
Department
Buyer
v
»
Fieltt: | Department | Dept_SKU_Count: Count{*) | sk =
Table: |SKLI_DATA | | SKLI_DATA =
Tolak: | Group By | Expression | Where |
Sort: | Ascending | |
Soné I ¥ I B B
Criteria: «>302000
Figure - 2-22 sic

Editing the SQL Query in the
Access 2010 QBE GUI
Interface

Chapter 2 Introduction to Structured Query Language 71

SQL provides one more GROUP BY clause feature that extends its functionality even
further. The SQL HAVING clause restricts the groups that are presented in the result. We
can restrict the previous query to display only groups having more than one row by using the
SQL query:

/% %% SQL-Query-CHO2-44 **x */

SELECT Department, COUNT(*) AS Dept_SKU_Count
FROM SKU_DATA

WHERE SKU <> 302000

GROUP BY Department

HAVING COUNT (*) > 1

ORDER BY Dept_SKU_Count;

The result of this modified query is:

Comparing this result with the previous one, the row for Climbing (which has a count of 1) has
been eliminated.

Does Not Work with This query fails in Microsoft Access ANSI-89 SQL for
Microsoft Access the same reason as the previous query.
ANSI-89 SQL Solution: See the solution described in the previous

Does Not Work with Microsoft Access ANSI-89
SQL box. The correct Microsoft Access ANSI-89 SQL for this query is:

/* *** SQL-Query-CHO2-44-Access *** */

SELECT Department, Count(*) AS Dept_SKU_Count
FROM SKU_DATA

WHERE SKU<>302000

GROUP BY Department

HAVING Count(*)>1

ORDER BY Count(*);

SQL built-in functions can be used in the HAVING clause. For example, the following is a
valid SQL query:

/* *** SOL-Query-CH02-45 *** */

SELECT COUNT(*) AS SKU_Count, SUM(Price) AS TotalRevenue, SKU
FROM ORDER_ITEM

GROUP BY SKU

HAVING SUM(Price)=100;

72

Part 1 Getting Started

The results for this query are:

Be aware that there is an ambiguity in statements that include both WHERE and
HAVING clauses. The results vary depending on whether the WHERE condition is applied
before or after the HAVING. To eliminate this ambiguity, the WHERE clause is always applied
before the HAVING clause.

Before we continue our discussion of SQL, consider an example problem that will illustrate the
power of the SQL just described.

Suppose that a friend tells you that she suspects the stock market tends to go up on
certain days of the week and down on others. She asks you to investigate past trading data to
determine if this is true. Specifically, she wants to trade an index fund called the NASDAQ 100,
which is a stock fund of the 100 top companies traded on the NASDAQ stock exchange. She
gives you a dataset with 20 years (1985 2004) of NASDAQ 100 trading data for analysis.
Assume she gives you the data in the form of a table named NDX containing 4611 rows of
data for use with a relational database (this dataset is available on the texts Web site at www.
pearsonhighered.com/kroenke).

Investigating the Characteristics of the Data
Suppose you first decide to investigate the general characteristics of the data. You begin by

seeing what columns are present in the table by issuing the SQL query:

/* *** SQL-Query-NDX-CH02-01 *** */
SELECT *
FROM NDX;

The first five rows of that query are as follows:

::@';-THE wAy To control how many rows an SQL query displays, use the SQL TOP

]

{NumberOfRows} expression. To show the top five rows in SQL-Query-
NDX-CH02-02, modify it as:

/* *** SQL-Query-NDX-CHO2-01A *** */
SELECT TOP 5 *
FROM NDX;;

Assume that you learn that the first column has the value of the fund at the close of a trad-
ing day, the second column has the value of the fund at the close of the prior trading day, and

Chapter 2 Introduction to Structured Query Language 73

the third row has the difference between the current day s close and the prior day s close.
Volume is the number of shares traded, and the rest of the data concerns the trading date.
Next, you decide to investigate the change of the stock price by issuing the SQL query:

/* *** SQL-Query-NDX-CH02-02 *** */

SELECT AVG(ChangeClose) AS AverageChange,
MAX(ChangeClose) AS MaxGain,
MIN(ChangeClose) AS MaxLoss

FROM NDX;

The result of this query is:

|hw!m$ihaum Maxzain | MaxlLoss
1

@ THE way DBMS products have many functions for formatting query results to reduce

the number of decimal points displayed, to add currency characters such

as $ or £, or to make other formatting changes. However, these functions are DBMS-

dependent. Search the documentation of your DBMS for the term formatting results to
learn more about such functions.

Just out of curiosity, you decide to determine which days had the maximum and mini-
mum change. To avoid having to key in the long string of decimal places that would be
required to make an equal comparison, you use a greater than and less than comparison with
values that are close:

/* *** SQL-Query-NDX-CH02-03 *** */

SELECT ChangeClose, TMonth, TDayOfMonth, TYear
FROM NDX
WHERE ChangeClose > 398
OR ChangeClose < -400;
The result is:

]
1|

This result is surprising! Is there some reason that both the greatest loss and the greatest gain
both occurred on January 3? You begin to wonder if your friend might have a promising idea.

Searching for Patterns in Trading by Day of Week

You want to determine if there is a difference in the average trade by day of week. Accordingly,
you create the SQL query:

/* *** SQL-Query-NDX-CH02-04 *** */

SELECT TDhayOfWeek, AVG(ChangeClose) AS AvgChange
FROM NDX

GROUP BY TDayOfWeek;

74

Part 1 Getting Started

The result is:

Indeed, there does seem to be a difference according to the day of the week. The NASDAQ
100 appears to go down on Monday and Tuesday and then go up on the other three days of the
week. Thursday, in particular, seems to be a good day to trade long.

But, you begin to wonder, is this pattern true for each year? To answer that question, you

use the query:

/* *** SQL-Query-NDX-CHO02-05 *** */

SELECT
FROM
GROUP BY
ORDER BY

TDayOfWeek, TYear, AVG(ChangeClose) AS AvgChange
NDX

TDayOfWeek, TYear

TDhayOfWeek, TYear DESC;

Because there are 20 years of data, this query results in 100 rows, of which the first 12 are
shown in the following results:

To simplify your analysis, you decide to restrict the number of rows to the most recent
5 years (2000 2004):

/* *** SQL-Query-NDX-CH02-06 *** */

SELECT
FROM
WHERE
GROUP BY
ORDER BY

TDayOfWeek, TYear, AVG(ChangeClose) AS AvgChange
NDX

TYear > 71999”

TDayOfWeek, TYear

TDhayOfWeek, TYear DESC;

Chapter 2 Introduction to Structured Query Language 75

Partial results from this query are as follows:

Alas, it does not appear that day of week is a very good predictor of gain or loss. At least,
not for this fund over this period of time. We could continue this discussion to further analyze
this data, but by now you should understand how useful SQL can be for analyzing and process-
ing a table. Suggested additional NDX analysis exercises are included in the SQL problems at
the end of this chapter.

Querying Two or More Tables with SQL
So far in this chapter we ve worked with only one table. Now we will conclude by describing
SQL statements for querying two or more tables.

Suppose that you want to know the revenue generated by SKUs managed by the Water
Sports department. We can compute revenue as the sum of ExtendedPrice, but we have a
problem. ExtendedPrice is stored in the ORDER_ITEM table, and Department is stored in the
SKU_DATA table. We need to process data in two tables, and all of the SQL presented so far
operates on a single table at a time.

SQL provides two different techniques for querying data from multiple tables: subqueries
and joins. Although both work with multiple tables, they are used for slightly different
purposes, as you will learn.

Querying Multiple Tables with Subqueries

How can we obtain the sum of ExtendedPrice for items managed by the Water Sports depart-
ment? If we somehow knew the SKU values for those items, we could use a WHERE clause
with the IN keyword.

76

Part 1 Getting Started

For the data in Figure 2-4, the SKU values for items in Water Sports are 100100, 100200,
101100, and 101200. Knowing those values, we can obtain the sum of their ExtendedPrice with
the following SQL query:

/* *** SQL-Query-CH02-46 *** */

SELECT SUM(ExtendedPrice) AS Revenue
FROM ORDER_ITEM
WHERE SKU IN (100100, 100200, 101100, 101200);
The result is:
Revenue
1 | 750.00

But, in general, we do not know the necessary SKU values ahead of time. However, we do have
a way to obtain them from an SQL query on the data in the SKU_DATA table. To obtain the
SKU values for the Water Sports department, we use the SQL statement:

/% *** SQL-Query-CHO2-47 *** */

SELECT SKU
FROM SKU_DATA
WHERE Department="Water Sports’

The result of this SQL statement is:

SKU
© 100100
100200
101100
101200

Ll R —

which is, indeed, the desired list of SKU values.

Now we need only combine the last two SQL statements to obtain the result we want. We
replace the list of values in the WHERE clause of the first SQL query with the second SQL
statement as follows:

/* *** SQL-Query-CH02-48 *** */

SELECT SUM(ExtendedPrice) AS Revenue
FROM ORDER_ITEM
WHERE SKU IN
(SELECT SKU
FROM SKU_DATA
WHERE Department="Water Sports’);

The result of the query is:

Revenue
1 | 750.00

which is the same result we obtained before when we know the values of SKU to use.

In the preceding SQL query, the second SELECT statement, the one enclosed in parenthe-
ses, is called a subquery. We can use multiple subqueries to process three or even more tables.
For example, suppose we want to know the name of the buyers who manage any product
purchased in January 2011. First, note that Buyer data is stored in the SKU_DATA table and
OrderMonth and OrderYear data are stored in the RETAIL_ORDER table.

Chapter 2 Introduction to Structured Query Language 77

Now, we can use an SQL query with two subqueries to obtain the desired data as
follows:

/* *** SQL-Query-CH02-49 *** */

SELECT Buyer
FROM SKU_DATA
WHERE SKU IN
(SELECT SKU
FROM ORDER_ITEM
WHERE OrderNumber IN
(SELECT OrderNumber
FROM RETAIL_ORDER
WHERE OrderMonth="January”
AND OrderYear=2011));

The result of this statement is:

To understand this statement, work from the bottom up. The bottom SELECT state-
ment obtains the list of OrderNumbers of orders sold in January 2011. The middle SELECT
statement obtains the SKU values for items sold in orders in January 2011. Finally, the
top-level SELECT query obtains Buyer for all of the SKUs found in the middle SELECT
statement.

Any parts of the SQL language that you have learned earlier in this chapter can be applied
to a table generated by a subquery, regardless of how complicated the SQL looks. For example,
we can apply the DISTINCT keyword on the results to eliminate duplicate rows. Or, we can
apply the GROUP BY and ORDER BY clauses as follows:;

/* *** SQL-Query-CHO02-50 *** */

SELECT Buyer, COUNT(*) AS NumberSold
FROM SKU_DATA
WHERE SKU IN
(SELECT SKU
FROM ORDER_ITEM
WHERE OrderNumber IN
(SELECT OrderNumber
FROM RETAIL_ORDER
WHERE OrderMonth="January”
AND OrderYear=2011))

GROUP BY Buyer
ORDER BY NumberSold DESC;

The result is:

78

Part 1 Getting Started

Does Not Work with This query fails in Microsoft Access ANSI-89 SQL for
Microsoft Access the same reason previously described on page 70.
ANSI-89 SQL Solution: See the solution described in the Does Not

Work with Microsoft Access ANSI-89 SQL box on
page 70. The correct Microsoft Access ANSI-89 SQL statement for this query is:

/* *** SQL-Query-CHO02-50-Access *** */

SELECT Buyer, Count(*) AS NumberSold
FROM SKU_DATA
WHERE SKU IN
(SELECT SKU
FROM ORDER_ITEM
WHERE OrderNumber IN
(SELECT OrderNumber
FROM RETAIL_ORDER
WHERE OrderMonth="January”’
AND OrderYear=2011))

GROUP BY Buyer
ORDER BY Count(*) DESC;

Querying Multiple Tables with Joins

Subqueries are very powerful, but they do have a serious limitation. The selected data can only
come from the top-level table. We cannot use a subquery to obtain data that arise from more
than one table. To do so, we must use a join instead.

The SQL join operator is used to combine two or more tables by concatenating (sticking
together) the rows of one table with the rows of another table. Consider how we might com-
bine the data in the RETAIL_ORDER and ORDER_ITEM tables. We can concatenate the rows
of one table with the rows of the second table with the following SQL statement:

/* *** SQL-Query-CH02-51 *** */
SELECT *
FROM RETAIL_ORDER, ORDER_ITEM;

This statement will just stick every row of one table together with every row of the second
table. For the data in Figure 2-5, the result is:

Chapter 2 Introduction to Structured Query Language 79

Because there are 3 rows of retail order and 7 rows of order items, there are 3 times 7, or 21,
rows in this table. Notice that the retail order with OrderNumber 1000 has been combined
with all seven of the rows in ORDER_ITEM, the retail order with OrderNumber 2000 has been
combined with all seven of the same rows, and, finally, that the retail order with OrderNumber
3000 has again been combined with all seven rows.

Thisisillogical what we need to do is to select only those rows for which the OrderNum-
ber of RETAIL_ORDER matches the OrderNumber in ORDER_ITEM. This is easy to do; we
simply add an SQL WHERE clause to the query:

/* *** SQL-Query-CH02-52 *** */

SELECT *

FROM RETAIL_ORDER, ORDER_ITEM

WHERE RETAIL_ORDER.OrderNumber=0RDER_ITEM.OrderNumber;
The result is:

This is technically correct, but it will be easier to read if we sort the results using an ORDER BY
clause:

/* *** SQL-Query-CH02-53 *** */

SELECT *
FROM RETAIL_ORDER, ORDER_ITEM
WHERE RETAIL_ORDER.OrderNumber=0RDER_ITEM.OrderNumber

ORDER BY RETAIL_ORDER.OrderNumber, ORDER_ITEM.SKU;

The result is:

_|(hhildn: StoreNumber | StoreZip | OrderMonth | OrderYear | OrderTotal | OrderNumber | SKU | Guantty | Price | ExtendedPrice

If you compare this result with the data in Figure 2-5, you will see that only the appropri-
ate order items are associated with each retail order. You also can tell that this has been done
by noticing that in each row the value of OrderNumber from RETAIL_ORDER (the first
column) equals the value of OrderNumber from ORDER_ITEM (the seventh column). This was
not true for our first result.

You may have noticed that we introduced a new variation in SQL statement syntax in the pre-
vious two queries, where the terms RETAIL_ORDER.OrderNumber, ORDER_ITEM.OrderNumber,
and ORDER_ITEM.SKU were used. The new syntax is simply TableName.ColumnName, and

80

Part 1 Getting Started

it is used to specify exactly which table each column is linked to. RETAIL_ORDER.OrderNumber
simply means the OrderNumber from the RETAIL_ORDER table. Similarly, ORDER_ITEM.Order-
Number refers to the OrderNumber in the ORDER_ITEM table, and ORDER_ITEM.SKU
refers to the SKU column in the ORDER_ITEM table. You can always qualify a column name
with the name of its table like this. We have not done so previously because we were working
with only one table, but the SQL statements shown previously would have worked just as
well with syntax like SKU_DATA Buyer rather than just Buyer or ORDER_ITEM .Price instead
of Price.

The table that is formed by concatenating two tables is called a join. The process of creat-
ing such a table is called joining the two tables, and the associated operation is called a join
operation. When the tables are joined using an equal condition (like the one on OrderNum-
ber), this join is called an equijoin. When people say join, 99.99999 percent of the time they
mean an equijoin. This type of join is also referred to as an inner join.

We can use a join to obtain data from two or more tables. For example, using the data in
Figure 2-5, suppose we want to show the name of the Buyer and the ExtendedPrice of the sales
of all items managed by that Buyer. The following SQL query will obtain that result:

/* *** SQL-Query-CHO02-54 *** */

SELECT Buyer, ExtendedPrice

FROM SKU_DATA, ORDER_ITEM

WHERE SKU_DATA . SKU=0ORDER_ITEM.SKU;
The result is:

Again, the result of every SQL statement is just a single table, so we can apply any of the
SQL syntax you learned for a single table to this result. For example, we can use the GROUP BY
and ORDER BY clauses to obtain the total revenue associated with each buyer, as shown in the
following SQL query:

/* *** SQL-Query-CHO02-55 *** */

SELECT Buyer, SUM(ExtendedPrice) AS BuyerRevenue
FROM SKU_DATA, ORDER_ITEM
WHERE SKU_DATA . SKU=ORDER_ITEM. SKU

GROUP BY Buyer
ORDER BY BuyerRevenue DESC;

The result is:

2|

%]

Chapter 2 Introduction to Structured Query Language 81

Does Not Work with This query fails in Microsoft Access ANSI-89 SQL for
Microsoft Access the same reason previously described on page 70.
ANSI-89 SQL Solution: See the solution described in the Does Not

Work with Microsoft Access ANSI-89 SQL box on
page 70. The correct Microsoft Access ANSI-89 SQL statement for this query is:

/* *** SQL-Query-CHO2-55-Access *** */

SELECT Buyer, Sum(ORDER_ITEM.ExtendedPrice) AS BuyerRevenue
FROM SKU_DATA, ORDER_ITEM
WHERE SKU_DATA .SKU=0ORDER_ITEM.SKU

GROUP BY Buyer
ORDER BY Sum(ExtendedPrice) DESC;

We can extend this syntax to join three or more tables. For example, suppose we want to obtain
the Buyer and the ExtendedPrice and OrderMonth for all purchases of items managed by each
buyer. To retrieve that data, we need to join all three tables together, as shown in this SQL query:

/* *** SQL-Query-CHO02-56 *** */

SELECT Buyer, ExtendedPrice, OrderMonth
FROM SKU_DATA, ORDER_ITEM, RETAIL_ORDER
WHERE SKU_DATA.SKU=0ORDER_ITEM. SKU

AND ORDER__ITEM.OrderNumber=RETAIL_ORDER.OrderNumber;

The result is:

We can improve this result by sorting with the ORDER BY clause and grouping by Buyer
with the GROUP BY clause:

/% ** SQL-Query-CHO2-57 *** */

SELECT Buyer, OrderMonth, SUM(ExtendedPrice) AS BuyerRevenue
FROM SKU_DATA, ORDER_ITEM, RETAIL_ORDER
WHERE SKU_DATA .SKU=0ORDER_ITEM.SKU

AND ORDER_ITEM.OrderNumber=RETAIL_ORDER.OrderNumber
GROUP BY Buyer, OrderMonth
ORDER BY Buyer, OrderMonth DESC;

The result is:

82

Part 1 Getting Started

Joins also can be written using another syntax, the SQL JOIN . . . ON syntax, and there is a
bit more for you to learn about joins when values are missing, but this chapter is long enough.
We will finish the discussion of joins in Chapter 7. If you just cannot wait, turn to pages 272 277
for the rest of the join story.

Comparing Subqueries and Joins

Subqueries and joins both process multiple tables, but they differ slightly. As mentioned earlier, a
subquery can only be used to retrieve data from the top table. A join can be used to obtain data
from any number of tables. Thus, a join can do everything a subquery can do, and more. So why
learn subqueries? For one, if you just need data from a single table, you might use a subquery
because it is easier to write and understand. This is especially true when processing multiple tables.

In Chapter 8, however, you will learn about a type of subquery called a correlated sub-
query. A correlated subquery can do work that is not possible with joins. Thus, it is important
for you to learn about both joins and subqueries, even though right now it appears that joins
are uniformly superior. If you re curious, ambitious, and courageous, jump ahead and read the

discussion of correlated subqueries on pages 315 320.

ummary

Wow! That was a full chapter!

Structured Query Language (SQL) was developed by
IBM and has been endorsed by the ANSI SQL-92 and follow-
ing standards. SQL is a data sublanguage that can be embed-
ded into full programming languages or submitted directly
to the DBMS. Knowing SQL is critical for knowledge work-
ers, application programmers, and database administrators.

All DBMS products process SQL. Microsoft Access hides
SQL, but SQL Server, Oracle Database, and MySQL require
that you use it

We are primarily interested in three categories of SQL
statements: DML, DDL, and SQL/PSM statements. DML
statements include statements for querying data and for
inserting, updating, and deleting data. This chapter addresses
only DML query statements. Additional DML statements,
DDL and SQL/PSM are discussed in Chapter 7.

The examples in this chapter are based on three tables
extracted from the operational database at Cape Codd Out-
door Sports. Such database extracts are common and impor-
tant. Sample data for the three tables is shown in Figure 2-5.

The basic structure of an SQL query statement is
SELECT/FROM/WHERE. The columns to be selected are
listed after SELECT, the table(s) to process is listed after
FROM, and any restrictions on data values are listed after

@ey Terms

/*and */
ad-hoc queries

American National Standards Institute (ANSI)

AVG
business intelligence (BI) systems
correlated subquery

WHERE. In a WHERE clause, character and date data values
must be enclosed in single quotes. Numeric data need not be
enclosed in quotes. You can submit SQL statements directly
to Microsoft Access, SQL Server, Oracle Database, and
MySQL, as described in this chapter.

This chapter explained the use of the following SQL
clauses: SELECT, FROM, WHERE, ORDER BY, GROUP BY,
and HAVING. This chapter explained the use of the following
SQL keywords: DISTINCT, DESC, ASC, AND, OR, IN, NOT
IN, BETWEEN, LIKE, % (* for Microsoft Access), _ (? for
Microsoft Access), SUM, AVG, MIN, MAX, COUNT, AS. You
should know how to mix and match these features to obtain
the results you want. By default, the WHERE clause is
applied before the HAVING clause.

You can query multiple tables using subqueries and
joins. Subqueries are nested queries that use the SQL key-
words IN and NOT IN. An SQL SELECT expression is placed
inside parentheses. Using a subquery, you can display data
from the top table only. A join is created by specifying multi-
ple table names in the FROM clause. An SQL WHERE clause
is used to obtain an equijoin. In most cases, equijoins are the
most sensible option. Joins can display data from multiple
tables. In Chapter 8, you will learn another type of subquery
that can perform work that is not possible with joins.

COUNT

CRUD

data definition language (DDL)
data manipulation language (DML)
data mart

data sublanguage

Chapter 2 Introduction to Structured Query Language 83

data warehouse

data warehouse DBMS

equijoin

Extensible Markup Language (XML)

Extract, Transform, and Local (ETL) System

graphical user interface (GUI)

inner join

International Organization for
Standardization (I1SO)

join

join operation

joining the two tables

MAX

Microsoft Access asterisk (*)
wildcard character

Microsoft Access question mark (?) wildcard
character

MIN

query by example (QBE)

schema

SQL AND operator

SQL AS keyword

SQL asterisk (*) wildcard character

SQL BETWEEN keyword

SQL DISTINCT keyword

SQL expression

SQL FROM clause

SQL GROUP BY clause

SQL HAVING clause

SQL IN operator

SQL join operator

SQL JOIN . .. ON syntax

SQL LIKE keyword

SQL NOT IN operator

SQL OR operator

SQL ORDER BY clause

SQL percent sign (%) wildcard character
SQL/Persistent stored modules (SQL/PSM)
SQL queries

SQL script file

SQL SELECT clause

SQL SELECT/FROM/WHERE framework
SQL Server Compatible Syntax (ANSI 92)
SQL TOP {NumberOfRows} expression
SQL underscore (_) wildcard character
SQL WHERE clause

stock-keeping unit (SKU)

Structured Query Language (SQL)

SQL built-in functions subquery
SQL comment SUM
SQL DESC keyword TableName.ColumnName syntax
@eview Questions
2.1 What is a business intelligence (BI) system?
2.2 What is an ad-hoc query?
2.3 What does SQL stand for, and what is SQL?
2.4 What does SKU stand for? What is an SKU?
2.5 Summarize how data were altered and filtered in creating the Cape Codd data extraction.
2.6 Explain, in general terms, the relationships among the RETAIL_ORDER, ORDER_ITEM,
and SKU_DATA tables.
2.7 Summarize the background of SQL.
2.8 What is SQL-92? How does it relate to the SQL statements in this chapter?
2.9 What features have been added to SQL in versions subsequent to the SQL-92?
2.10 Why is SQL described as a data sublanguage?
2.11 What does DML stand for? What are DML statements?
2.12 What does DDL stand for? What are DDL statements?
2.13 What is the SQL SELECT/FROM/WHERE framework?
2.14 Explain how Microsoft Access uses SQL.
2.15 Explain how enterprise-class DBMS products use SQL.

84

Part 1 Getting Started

. RETAIL_ORDER ORNFR_TTFM

7 OrderNumbes H = ¥ OrderNumber
StareMumber ? sku
Storefip Quanlily
OrderMonth Price
OrderYear ExtendedPrice
OrderTotal

SKU_DATA
7 SKU :

SKU_Desaiption
Department
Buyer

r

Lt INVENTORY i WAREHOUSE
7 Warehnuse — # wareh 1l
The INVENTORY / 7 ‘;U " " 2{ Warehou;e&;ty
table SKU_Description /// Warehouse5State
QuantityOnHand Manager
QuantityOnOrder - Squareleet
The WAREHOUSE | ’
table
Figure : 2-23 The Cape Codd Outdoor Sports sale extraction database has been modified to include

The Cape Codd Database
with the WAREHOUSE and
INVENTORY tables

Figure : 2-24

Column Characteristics for

two additional tables, the INVENTORY table and the WAREHOUSE table. The table
schemas for these tables, together with the SKU table, are as follows:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

SKU_DATA (SKU, SKU_Description, Department, Buyer)

WAREHOUSE (WarehouselD, WarehouseCity, WarehouseState, Manager, Squarefeet)

INVENTORY (WarehouselD, SKU, SKU_Description, QuantityOnHand, QuantityOnOrder)

The five tables in the revised Cape Codd database schema are shown in Figure 2-23.
The column characteristics for the WAREHOUSE table are shown in Figure 2-24, and the
column characteristics for the INVENTORY table are shown in Figure 2-25. The data for
the WAREHOUSE table are shown in Figure 2-26, and the data for the INVENTORY table
are shown in Figure 2-27.

If at all possible, you should run your SQL solutions to the following questions
against an actual database. A Microsoft Access database named Cape-Codd.accdb is
available on our Web site (www.pearsonhighered.com/kroenke) that contains all the
tables and data for the Cape Codd Outdoor Sports sales data extract database. Also
available on our Web site are SQL scripts for creating and populating the tables for the
Cape Codd database in SQL Server, Oracle Database, and MySQL.

2.16 Thereis an intentional flaw in the design of the INVENTORY table used in these exer-
cises. This flaw was purposely included in the INVENTORY tables so that you can
answer some of the following questions using only that table. Compare the SKU and
INVENTORY tables, and determine what design flaw is included in INVENTORY.

the WAREHOUSE Table Specifically, why did we include it?
WAREHOUSE
Column Name Type Key Required Remarks
WarehouselD Integer Primary Key Yes Surrogate Key
WarehouseCity Text (30) Yes
WarehouseState Text (2) Yes
Manager Text (35) No No
SquareFeet Integer No No

Chapter 2 Introduction to Structured Query Language 85

INVENTORY
Column Name Type Key Required Remarks
WarehouselD Integer Primary Key, | Yes Surrogate Key
Foreign Key
SKU Integer Primary Key, | Yes Surrogate Key
Foreign Key
SKU_Description Text (35) No Yes
QuantityOnHand Integer No No
QuantityOnOrder Integer No No
Figure : 2-25 Use only the INVENTORY table to answer Review Questions 2.17 through 2.40:

Column Characteristics for
the INVENTORY Table

Figure - 2-26

Cape Codd Outdoor Sports
WAREHOUSE Data

2.17
2.18
2.19
2.20
221

2.22

2.23

2.24

2.25

2.26

2.27

2.28

Write an SQL statement to display SKU and SKU_Description.
Write an SQL statement to display SKU_Description and SKU.
Write an SQL statement to display WarehouselD.

Write an SQL statement to display unique WarehouselDs.

Write an SQL statement to display all of the columns without using the SQL asterisk
(*) wildcard character.

Write an SQL statement to display all of the columns using the SQL asterisk (*)
wildcard character.

Write an SQL statement to display all data on products having a QuantityOnHand
greater than 0.

Write an SQL statement to display the SKU and SKU_Description for products having
QuantityOnHand equal to 0.

Write an SQL statement to display the SKU, SKU_Description, and WarehouselD for
products having QuantityOnHand equal to 0. Sort the results in ascending order by
WarehouselD.

Write an SQL statement to display the SKU, SKU_Description, and WarehouselD for
products that have a QuantityOnHand greater than 0. Sort the results in descending
order by WarehouselD and in ascending order by SKU.

Write an SQL statement to display SKU, SKU_Description, and WarehouselD for all
products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than 0.
Sort the results in descending order by WarehouselD and in ascending order by SKU.

Write an SQL statement to display SKU, SKU_Description, and WarehouselD for all
products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0. Sort
the results in descending order by WarehouselD and in ascending order by SKU.

WarehouselD | WarehouseCity | WarehouseState | Manager SquareFeet

100 Atlanta GA Dave Jones 125,000

200 Chicago IL Lucille Smith 100,000

300 Bangor MA Bart Evans 150,000

400 Seattle WA Dale Rogers 130,000

86

Part 1 Getting Started

WarehouselD SKU SKU_Description QuantityOnHand | QuantityOnOrder
100 100100 Std. Scuba Tank, Yellow 250 0
200 100100 Std. Scuba Tank, Yellow 100 50
300 100100 Std. Scuba Tank, Yellow 100 0
400 100100 Std. Scuba Tank, Yellow 200 0
100 100200 Std. Scuba Tank, Magenta 200 30
200 100200 Std. Scuba Tank, Magenta 75 75
300 100200 Std. Scuba Tank, Magenta 100 100
400 100200 Std. Scuba Tank, Magenta 250 0
100 101100 Dive Mask, Small Clear 0 500
200 101100 Dive Mask, Small Clear 0 500
300 101100 Dive Mask, Small Clear 300 200
400 101100 Dive Mask, Small Clear 450 0
100 101200 Dive Mask, Med Clear 100 500
200 101200 Dive Mask, Med Clear 50 500
300 101200 Dive Mask, Med Clear 475 0
400 101200 Dive Mask, Med Clear 250 250
100 201000 Half-Dome Tent 2 100
200 201000 Half-Dome Tent 10 250
300 201000 Half-Dome Tent 250 0
400 201000 Half-Dome Tent 0 250
100 202000 Half-Dome Tent Vestibule 10 250
200 202000 Half-Dome Tent Vestibule 1 250
300 202000 Half-Dome Tent Vestibule 100 0
400 202000 Half-Dome Tent Vestibule 0 200
100 301000 Light Fly Climbing Harness 300 250
200 301000 Light Fly Climbing Harness 250 250
300 301000 Light Fly Climbing Harness 0 250
400 301000 Light Fly Climbing Harness 0 250
100 302000 Locking Carabiner, Oval 1000 0
200 302000 Locking Carabiner, Oval 1250 0
300 302000 Locking Carabiner, Oval 500 500
400 302000 Locking Carabiner, Oval 0 1000
Figure : 2-27

Cape Codd Outdoor Sports
INVENTORY Data

Chapter 2 Introduction to Structured Query Language 87

2.29

2.30

231

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

Write an SQL statement to display the SKU, SKU_Description, WarehouselD, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Do not use the BETWEEN keyword.

Write an SQL statement to display the SKU, SKU_Description, WarehouselD, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Use the BETWEEN keyword.

Write an SQL statement to show a unique SKU and SKU_Description for all products
having an SKU description starting with Half-dome.

Write an SQL statement to show a unique SKU and SKU_Description for all products
having a description that includes the word 'Climb’.

Write an SQL statement to show a unique SKU and SKU_Description for all products
having a d in the third position from the left in SKU_Description.

Write an SQL statement that uses all of the SQL built-in functions on the QuantityOn-
Hand column. Include meaningful column names in the result.

Explain the difference between the SQL built-in functions COUNT and SUM.

Write an SQL statement to display the WarehouselD and the sum of QuantityOnHand,
grouped by WarehouselD. Name the sum TotalltemsOnHand and display the results in
descending order of TotalltemsOnHand.

Write an SQL statement to display the WarehouselD and the sum of QuantityOnHand,
grouped by WarehouselD. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalltemsOnHandLT3 and display the results in descend-
ing order of TotalltemsOnHandLT3.

Write an SQL statement to display the WarehouselD and the sum of QuantityOn-
Handgrouped by WarehouselD. Omit all SKU items that have 3 or more items on hand
from the sum, and name the sum TotalltemsOnHandLT3. Show WarehouselD only for
warehouses having fewer than 2 SKUs in their TotalltemesOnHandLT3 and display the
results in descending order of TotalltemsOnHandLT3.

In your answer to Review Question 2.39, was the WHERE clause or the HAVING clause
applied first? Why?

Use both the INVENTORY and WAREHOUSE tables to answer Review Questions 2.40
through 2.52:

2.40

241

2.42

2.43

2.44

2.45

Write an SQL statement to display the SKU, SKU_Description, and WarehouselD,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the IN keyword.

Write an SQL statement to display the SKU, SKU_Description, and WarehouselD,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Use the IN keyword.

Write an SQL statement to display the SKU, SKU_Description, WarehouselD, Ware-
houseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the NOT IN keyword.

Write an SQL statement to display the SKU, SKU_Description, WarehouselD, Ware-
houseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Use the NOT IN keyword.

Write an SQL statement to produce a single column called ItemLocation that com-
bines the SKU_Description, the phrase is in a warehouse in , and WarehouseCity. Do
not be concerned with removing leading or trailing blanks.

Write an SQL statement to show the SKU, SKU_Description, WarehouselD for all items
stored in a warehouse managed by Lucille Smith. Use a subquery.

88

Part 1 Getting Started

2.46 Write an SQL statement to show the SKU, SKU_Description, WarehouselD for all items
stored in a warehouse managed by Lucille Smith. Use a join.

2.47 Write an SQL statement to show the WarehouselD and average QuantityOnHand of all
items stored in a warehouse managed by Lucille Smith. Use a subquery.

2.48 Write an SQL statement to show the WarehouselD and average QuantityOnHand of all
items stored in a warehouse managed by Lucille Smith. Use a join.

2.49 Write an SQL statement to display the WarehouselD, the sum of QuantityOnOrder, and
the sum of QuantityOnHand, grouped by WarehouselD and QuantityOnOrder. Name the
sum of QuantityOnOrder as TotalltemsOnOrder and the sum of QuantityOnHand as
TotalltemsOnHand.

2.50 Write an SQL statement to show the WarehouselD, WarehouseCity, WarehouseState,
Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager of
Lucille Smith. Use a join.

2.51 Explain why you cannot use a subquery in your answer to Review Question 2.50.

2.52 Explain how subqueries and joins differ.

Qroject Questions

For this set of project questions, we will continue creating a Microsoft Access
database for the Wedgewood Pacific Corporation (WPC). Founded in 1957 in Seattle,
Washington, WPC has grown into an internationally recognized organization. The
company is located in two buildings. One building houses the Administration,
Accounting, Finance, and Human Resources departments, and the second houses the
Production, Marketing, and Information Systems departments. The company database
contains data about company employees, departments, company projects, company
assets such as computer equipment, and other aspects of company operations.

In the following project questions, we have already created the WPC.accdb
database with the following two tables (see Chapter 1 Project Questions)

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Now we will add in the following two tables:

PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)

ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The four tables in the revised WPC database schema are shown in Figure 2-28.
The column characteristics for the PROJECT table are shown in Figure 2-29, and the
column characteristics for the ASSIGNMENT table are shown in Figure 2-31. Data for
the PROJECT table are shown in Figure 2-30, and the data for the ASSSIGNMENT table
are shown in Figure 2-32.

2.53 Figure 2-29 shows the column characteristics for the WPC PROJECT table. Using the
column characteristics, create the PROJECT table in the WPC.accdb database.

2.54 Create the relationship and referential integrity constraint between PROJECT and
DEPARTMENT. Enable enforcing of referential integrity and cascading of data
updates, but do not enable cascading of data from deleted records.

2.55 Figure 2-30 shows the data for the WPC PROJECT table. Using the Datasheet view,
enter the data shown in Figure 2-30 into your PROJECT table.

2.56 Figure 2-31 shows the column characteristics for the WPC ASSIGNMENT table. Using
the column characteristics, create the ASSIGNMENT table in the WPC.accdb database.

Chapter 2

Introduction to Structured Query Language

89

The PROJECT PROJECT
¥ ProjeciD | -
table DEPARTMENT Mo _\\H‘“‘“x r
i_ W DepartmentName %! -&SSIEEMEP”
The ASSIGNMENT AR T statome | H——
table Phons EndDate //’/ HoursWorked
Ve
el
FMPIOYEF ///
? EmpluyeeNumber e
. FirstName
Figure - 2-28 Lasthiame
Department
Phone
The WPC Database with the Emall
PROJECT and
ASSIGNMENT Tables
PROJECT
Column Name Type Key Required Remarks
ProjectID Number Primary Key Yes Long Integer
Name Text (50) No Yes
Department Text (35) Foreign Key Yes
MaxHours Number No Yes Double
StartDate Date/Time No No
EndDate Date/Time No No

Figure - 2-29

Column Characteristics for 2.57

the PROJECT Table

2.58

2.59

Figure : 2-30 2.60

Sample Data for the

Create the relationship and referential integrity constraint between ASSIGNMENT
and EMPLOYEE. Enable enforcing of referential integrity, but do not enable either
cascading updates or the cascading of data from deleted records.

Create the relationship and referential integrity constraint between ASSIGNMENT
and PROJECT. Enable enforcing of referential integrity and cascading of deletes, but do
not enable cascading updates.

Figure 2-32 shows the data for the WPC ASSIGNMENT table. Using the Datasheet
view, enter the data shown in Figure 2-32 into your ASSIGNMENT table.

In Project Question 2.55, the table data was entered after referential integrity con-
straints were created in Project Question 2.54. In Project Question 2.59, the table data

PROJECT Table
ProjectID Name Department MaxHours StartDate EndDate
1000 2011 Q3 Product Plan Marketing 135.00 05/10/11 06/15/11
1100 2011 Q3 Portfolio Analysis Finance 120.00 07/05/11 07/25/11
1200 2011 Q3 Tax Preparation Accounting 145.00 08/10/11 10/25/11
1300 2011 Q4 Product Plan Marketing 150.00 08/10/11 09/15/11
1400 2011 Q4 Portfolio Analysis Finance 140.00 10/05/11

90 Part 1 Getting Started

ASSIGNMENT
Column Name Type Key Required Remarks
ProjectlD Number Primary Key, | Yes Long Integer
Foreign Key
EmployeeNumber Number Primary Key, | Yes Long Integer
Foreign Key
HoursWorked Number No No Double
Figure - 2-31
Column Characteristics for was entered after referential integrity constraints were created in Project Questions 2.57
the ASSIGNMENT Table and 2.58. Why was the data entered after the referential integrity constraints were
created instead of before the constraints were created?
2.61 Using Microsoft Access SQL, create and run queries to answer the following questions.
Save each query using the query name format SQL-Query-02-##, where the ## sign is
replaced by the letter designator of the question. For example, the first query will be
saved as SQL-Query-02-A.
A. What projects are in the PROJECT table? Show all information for each project.
B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the
PROJECT table?
Figure : 2-32
ProjectID EmployeeNumber HoursWorked
Sample Data for the
ASSIGNMENT Table 1000 1 30.0
1000 8 75.0
1000 10 55.0
1100 4 40.0
1100 6 45.0
1100 1 25.0
1200 2 20.0
1200 4 45.0
1200 5 40.0
1300 1 35.0
1300 8 80.0
1300 10 50.0
1400 4 15.0
1400 5 10.0
1400 6 27.5

Chapter 2

2.62

Introduction to Structured Query Language 91

. What projects in the PROJECT table started before August 1, 2010? Show all the

information for each project.

. What projects in the PROJECT table have not been completed? Show all the infor-

mation for each project.

. Who are the employees assigned to each project? Show ProjectID, EmployeeNumber,

LastName, FirstName, and Phone.

. Who are the employees assigned to each project? Show ProjectID, Name, and

Department. Show EmployeeNumber, LastName, FirstName, and Phone.

. Who are the employees assigned to each project? Show ProjectID, Name, Depart-

ment, and Department Phone. Show EmployeeNumber, LastName, FirstName, and
Employee Phone. Sort by ProjectID, in ascending order.

. Who are the employees assigned to projects run by the marketing department? Show

ProjectID, Name, Department, and Department Phone. Show EmployeeNumber,
LastName, FirstName, and Employee Phone. Sort by ProjectID, in ascending order.

. How many projects are being run by the marketing department? Be sure to assign

an appropriate column name to the computed results.

. What is the total MaxHours of projects being run by the marketing department? Be

sure to assign an appropriate column name to the computed results.

. What is the average MaxHours of projects being run by the marketing department?

Be sure to assign an appropriate column name to the computed results.

. How many projects are being run by each department? Be sure to display each

DepartmentName and to assign an appropriate column name to the computed
results.

Using Microsoft Access QBE, create and run new queries to answer the questions in
Project Question 2.61. Save each query using the query name format QBE-Query-02-##,
where the ## sign is replaced by the letter designator of the question. For example, the
first query will be saved as QBE-Query-02-A.

The following questions refer to the NDX table data as described starting on page 72.
You can obtain a copy of this data in the Microsoft Access database DBP-e12-
NDX.accdb from the text s Web site (www.pearsonhighered.com/kroenke).

2.63 Write SQL queries to produce the following results:

2.64

A.

B.
C.
D.
E.

The ChangeClose on Fridays.

The minimum, maximum, and average ChangeClose on Fridays.

The average ChangeClose grouped by TYear. Show T Year.

The average ChangeClose grouped by TYear and TMonth. Show TYear and TMonth.
The average ChangeClose grouped by TYear, TQuarter, TMonth shown in descend-
ing order of the average (you will have to give a name to the average in order to sort
by it). Show TYear, TQuarter, and TMonth. Note that months appear in alphabetical
and not calendar order. Explain what you need to do to obtain months in calendar
order.

. The difference between the maximum ChangeClose and the minimum ChangeClose

grouped by TYear, TQuarter, TMonth shown in descending order of the difference
(you will have to give a name to the difference in order to sort by it). Show TVYear,
TQuarter, and TMonth.

. The average ChangeClose grouped by TYear shown in descending order of the

average (you will have to give a name to the average in order to sort by it). Show only
groups for which the average is positive.

. Display a single field with the date in the form day/month/year. Do not be

concerned with trailing blanks.

It is possible that volume (the number of shares traded) has some correlation with
the direction of the stock market. Use the SQL you have learned in this chapter to
investigate this possibility. Develop at least five different SQL statements in your
investigation.

92 Part 1 Getting Started

o Marcia Wilson owns and operates Marcia s Dry Cleaning, which is an upscale dry
Marcia’s = cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out
Dl’y from the competition by providing superior customer service. She wants to keep track
C|eaning ‘ of each of her customers and their orders. Ultimately, she wants to notify them that
their clothes are ready via e-mail. To provide this service, she has developed an initial
database with several tables. Three of those tables are the following:

INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)

In the database schema above, the primary keys are underlined and the foreign
keys are shown in italics. The database that Marcia has created is named MDC, and
the three tables in the MDC database schema are shown in Figure 2-33.

The column characteristics for the tables are shown in Figures 2-34, 2-35, and 2-36.
The relationship between CUSTOMER and INVOICE should enforce referential integrity,
but not cascade updates nor deletions, while the relationship between INVOICE and
INVOICE_ITEM should enforce referential integrity and cascade both updates and
deletions. The data for these tables are shown in Figures 2-37, 2-38, and 2-39.

We recommend that you create a Microsoft Access 2010 database named
MDC-CHO02.accdb using the database schema, column characteristics, and data
shown above, and then use this database to test your solutions to the questions in this
section. Alternatively, SQL scripts for creating the MDC-CHO02 database in SQL Server,
Oracle Database, and MySQL are available on our Web site at www.pearsonhighered.
com/kroenke.

Write SQL statements and show the results based on the MDC data for each of
the following:

A. Show all data in each of the tables.

Figure : 2-33 B. List the Phone and LastName of all customers.
The MDC Database

The CUSTOMER (T o
table 7 CustomerD
Firstame
\
LastMame
The INVOICE Phane \]N;cnllrfvilceuumDEI ;_
table T k CustomerMumber INVOICE_ITEM
EarE \\"““2 7 InvoiceNumber |
o e ¥ ItemNumber
The INVOICE_ITEM Totalémaunt et ftem
table e
Figure : 2-34 CUSTOMER
Column Column Name Type Key Required Remarks
Characteristics for
tT:liI(e:USTOMER CustomerID AutoNumber Primary Key Yes Surrogate Key
FirstName Text (25) No Yes
LastName Text (25) No Yes
Phone Text (12) No No
Email Text (100) No No

Figure : 2-35

Column
Characteristics
for the INVOICE
Table

Figure : 2-36

Column Characteristics for
the INVOICE_ITEM Table

Figure : 2-37

Chapter 2 Introduction to Structured Query Language
INVOICE
Column Name Type Key Required Remarks
InvoiceNumber Number Primary Key Yes Long Integer
CustomerNumber Number Foreign Key Yes Long Integer
Dateln Date/Time No Yes
DateOut Date/Time No No
TotalAmount Currency No No Two Decimal Places
INVOICE_ITEM
Column Name Type Key Required Remarks
InvoiceNumber Number Primary Key, | Yes Long Integer
Foreign Key
ItemNumber Number Primary Key Yes Long Integer
Iltem Text (50) No Yes
Quantity Number No Yes Long Integer
UnitPrice Currency No Yes Two Decimal Places
C. Listthe Phone and LastName for all customers with a FirstName of Nikki.
D. List the CustomerNumber, Dateln, and DateOut of all orders in excess of $100.00.
E. List the Phone and FirstName of all customers whose first name starts with B.
F. Listthe Phone and FirstName of all customers whose last name includes the characters cat .
G. List the Phone, FirstName, and LastName for all customers whose second and third

Sample Data for the
CUSTOMER Table

numbers of their phone number are 23.

H. Determine the maximum and minimum TotalAmount.

CustomerID | FirstName LastName Phone Email
1 Nikki Kaccaton 723-543-1233 Nikki.Kaccaton@somewhere.com
2 Brenda Catnazaro 723-543-2344 Brenda.Catnazaro@somewhere.com
3 Bruce LeCat 723-543-3455 Bruce.LeCat@somewhere.com
4 Betsy Miller 725-654-3211 Betsy.Miller@somewhere.com
5 George Miller 725-654-4322 George.Miller@somewhere.com
6 Kathy Miller 723-514-9877 Kathy.Miller@somewhere.com
7 Betsy Miller 723-514-8766 Betsy.Miller@elsewhere.com

94

Figure - 2-38

Sample Data for the
INVOICE Table

Part 1 Getting Started

InvoiceNumber | CustomerNumber Dateln DateOut TotalAmount
2011001 1 04-Oct-11 06-Oct-11 $158.50
2011002 2 04-Oct-11 06-Oct-11 $25.00
2011003 1 06-Oct-11 08-Oct-11 $49.00
2011004 4 06-Oct-11 08-Oct-11 $17.50
2011005 6 07-Oct-11 11-Oct-11 $12.00
2011006 3 11-Oct-11 13-Oct-11 $152.50
2011007 3 11-Oct-11 13-Oct-11 $7.00
2011008 7 12-Oct-11 14-Oct-11 $140.50
2011009 5 12-Oct-11 14-Oct-11 $27.00

< X«

Determine the average TotalAmount.

Count the number of customers.

Group customers by LastName and then by FirstName.

Count the number of customers having each combination of LastName and FirstName.

Show the FirstName and LastName of all customers who have had an order with
TotalAmount greater than $100.00. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

Show the FirstName and LastName of all customers who have had an order with
TotalAmount greater than $100.00. Use a join. Present results sorted by LastName in
ascending order and then FirstName in descending order.

Show the FirstName and LastName, of all customers who have had an order with an
Item named Dress Shirt . Use a subquery. Present results sorted by LastName in ascend-
ing order and then FirstName in descending order.

Show the FirstName and LastName of all customers who have had an order with an Item
named Dress Shirt. Use a join. Present results sorted by LastName in ascending order
and then FirstName in descending order.

Show the FirstName, LastName, and TotalAmount of all customers who have had an
order with an Item named Dress Shirt . Use a join with a subquery. Present results sorted
by LastName in ascending order and then FirstName in descending order.

Chapter 2 Introduction to Structured Query Language 95

Figure © 2-39 InvoiceNumber | ItemNumber | Item Quantity UnitPrice

Sample Data for the 2011001 1 Blouse 2 $3.50

INVOICE_ITEM Table
2011001 2 Dress Shirt 5 $2.50
2011001 3 Formal Gown 2 $10.00
2011001 4 Slacks-Mens 10 $5.00
2011001 5 Slacks-Womens 10 $6.00
2011001 6 Suit-Mens 1 $9.00
2011002 1 Dress Shirt 10 $2.50
2011003 1 Slacks-Mens 5 $5.00
2011003 2 Slacks-Womens 4 $6.00
2011004 1 Dress Shirt 7 $2.50
2011005 1 Blouse 2 $3.50
2011005 2 Dress Shirt 2 $2.50
2011006 1 Blouse 5 $3.50
2011006 2 Dress Shirt 10 $2.50
2011006 3 Slacks-Mens 10 $5.00
2011006 4 Slacks-Womens 10 $6.00
2011007 1 Blouse 2 $3.50
2011008 1 Blouse 8 $3.50
2011008 2 Dress Shirt 12 $2.50
2011008 3 Slacks-Mens 8 $5.00
2011008 4 Slacks-Womens 10 $6.00
2011009 1 Suit-Mens 3 $9.00

James Morgan owns and operates Morgan Importing, which purchases antiques and
home furnishings in Asia, ships those items to a warehouse facility in Los Angeles, and
then sells these items in the United States. James tracks the Asian purchases and
subsequent shipments of these items to Los Angeles by using a database to keep a
list of items purchased, shipments of the purchased items, and the items in each
shipment. His database includes the following tables:

Importing

96

Part 1 Getting Started

ITEM (ItemID, Description, PurchaseDate, Store, City, Quantity, LocalCurrencyAmount,
ExchangeRate)

ArrivalDate, InsuredValue)
SHIPMENT_ITEM (ShipmentID, ShipmentltemID, ItemID, Value)

In the database schema above, the primary keys are underlined and the foreign
keys are shown in italics. The database that James has created is named M, and the
three tables in the MI database schema are shown in Figure 2-40.

The column characteristics for the tables are shown in Figures 2-41, 2-42, and
2-43. The data for the tables are shown in Figures 2-44, 2-45, and 2-46. The
relationship between ITEM and SHIPMENT_ITEM should enforce referential integrity,
and although it should cascade updates, it should not cascade deletions. The
relationship between SHIPMENT and SHIPMENT_ITEM should enforce referential
integrity and cascade both updates and deletions.

We recommend that you create a Microsoft Access 2010 database named
MI-Ch02.accdb using the database schema, column characteristics, and data shown
above, and then use this database to test your solutions to the questions in this section.
Alter-natively, SQL scripts for creating the MI-CHO02 database in SQL Server, Oracle Data-
base, and MySQL are available on our Web site at www.pearsonhighered.com/kroenke.

The ITEM
table

The SHIPMENT | City ArrivalDale
table Quantity InsuredValue
IncalCurrencymount
ExchangeRate
The SHIPMENT_ITEM : A S|
table — SHIPMENT_ITEM |
¥ ShipmentlD =
¥ ShipmentitemiD
1 ItemiD
. ‘ Value
Figure : 2-40 .

The MDC Database

ITEM

¥ NemlD
Description
PurchaseDate

SHIPMENT
_*} ShipmentD
ShipperMame
ShipperdnvaireNumber
DepartureDate

Figure : 2-41 ITEM

gﬁgurr;:teristics Column Name Type Key Required Remarks

frgrbtlze ITEM IltemID AutoNumber Primary Key Yes Surrogate Key
Description Text (255) No Yes Long Integer
PurchaseDate Date/Time No Yes
Store Text (50) No Yes
City Text (35) No Yes
Quantity Number No Yes Long Integer
LocalCurrencyAmount Number No Yes Decimal, 18 Auto
ExchangeRate Number No Yes Decimal, 12 Auto

Chapter 2 Introduction to Structured Query Language 97

SHIPMENT
Column Name Type Key Required Remarks
ShipmentID AutoNumber Primary Key Yes Surrogate Key
ShipperName Text (35) No Yes
ShipperinvoiceNumber Number No Yes Long Integer
Figure : 2-42 DepartureDate Date/Time No No
Column ArrivalDate Date/Time No No
Characteristics
for the SHIPMENT | |nsuredValue Currency No No Two Decimal Places
Table
SHIPMENT_ITEM
Column Name Type Key Required Remarks
ShipmentID Number Primary Key, | Yes Long Integer
Foreign Key
ShipmentltemID Number Primary Key Yes Long Integer
ItemID Number Foreign Key Yes Long Integer
Value Currency No Yes Two Decimal Places
Figure : 2-43

Column Characteristics for
the SHIPMENT_ITEM Table

Figure : 2-44

Sample Data for the ITEM
Table

Write SQL statements and shown the results based on the MDC data for each of
the following:

A. Show all data in each of the tables.
B. List the ShipmentID, ShipperName, and ShipperinvoiceNumber of all shipments.

C. List the ShipmentID, ShipperName, and ShipperinvoiceNumber for all shipments that
have an insured value greater than $10,000.00.

D. List the ShipmentID, ShipperName, and ShipperinvoiceNumber of all shippers whose
name starts with AB.

E. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperinvoiceNumber, and ArrivalDate of all shipments
that departed in December.

ItemID | Description PurchaseDate | Store City Quantity | LocalCurrencyAmount | ExchangeRate
1 QE Dining Set | 07-Apr-11 Eastern Manila 2 403405 0.01774
Treasures
2 Willow Serving | 15-Jul-11 Jade Singapore 75 102 0.5903
Dishes Antiques
3 Large Bureau | 17-Jul-11 Eastern Singapore 8 2000 0.5903
Sales
4 Brass Lamps | 20-Jul-11 Jade Singapore 40 50 0.5903
Antiques

98

Part 1 Getting Started

ShipmentID | ShipperName ShipperinvoiceNumber | DepartureDate ArrivalDate | InsuredValue

1 ABC Trans-Oceanic 2008651 10-Dec-11 15-Mar-11 $15,000.00

2 ABC Trans-Oceanic 2009012 10-Jan-11 20-Mar-11 $12,000.00

3 Worldwide 49100300 05-May-11 17-Jun-11 $20,000.00

4 International 399400 02-Jun-11 17-Jul-11 $17,500.00

5 Worldwide 84899440 10-Jul-11 28-Jul-11 $25,000.00

6 International 488955 05-Aug-11 11-Sep-11 $18,000.00
Figure : 2-45 F. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
Sample Data for the ShipmentID, ShipperName, ShipperinvoiceNumber, and ArrivalDate of all shipments
SHIPMENT Table that departed on the tenth day of any month.

Determine the maximum and minimum InsuredValue.

H. Determine the average InsuredValue.

l. Count the number of shipments.

J. Show ItemID, Description, Store, and a calculated column named USCurrencyAmount
that is equal to LocalCurrencyAmountt multiplied by the ExchangeRate for all rows of
ITEM.

K. Group item purchases by City and Store.

L. Count the number of purchases having each combination of City and Store.

M. Show the ShipperName and DepartureDate of all shipments that have an item with a
value of $1,000.00 or more. Use a subquery. Present results sorted by ShipperName in
ascending order and then DepartureDate in descending order.

N. Show the ShipperName and DepartureDate of all shipments that have an item with a
value of $1,000.00 or more. Use a join. Present results sorted by ShipperName in ascend-
ing order and then DepartureDate in descending order.

O. Show the ShipperName and DepartureDate of all shipments that have an item that was
purchased in Singapore. Use a subquery. Present results sorted by ShipperName in
ascending order and then DepartureDate in descending order.

P. Show the ShipperName and DepartureDate of all shipments that have an item that was
purchased in Singapore. Use a join. Present results sorted by ShipperName in ascending
order and then DepartureDate in descending order.

Q. Show the ShipperName, DepartureDate of shipment, and Value for items that were pur-

Figure : 2-46

Sample Data for the
SHIPMENT_ITEM Table

chased in Singapore. Use a combination of a join and a subquery. Present results sorted
by ShipperName in ascending order and then DepartureDate in descending order.

ShipmentID | ShipmentltemID ItemID Value
3 1 1 $15,000.00
4 1 4 $1,200.00
4 2 3 $9,500.00
4 8 2 $4,500.00

| atabase Design

The four chapters in Part 2 discuss database design principles and
techniques. Chapters 3 and 4 describe the design of databases that
arise from existing data sources, such as spreadsheets, text files, and
database extracts. We begin in Chapter 3 by defining the relational
model and discussing normalization, a process that transforms relations
with modification problems. Then, in Chapter 4, we use normalization
principles to guide the design of databases from existing data.
Chapters 5 and 6 examine the design of databases that arise from
the development of new information systems. Chapter 5 describes the
entity-relationship data model, a tool used to create plans for
constructing database designs. As you will learn, such data models are
developed by analysis of forms, reports, and other information
systems requirements. Chapter 6 concludes this part by describing
¢ techniques for transforming entity-relationship data models into
relational database designs.

99

Chapter Objectives

The Relational
Model and
Normalization

To understand basic relational terminology To be able to identify possible insertion, deletion, and
To understand the characteristics of relations update anomalies in a relation

To understand alternative terminology used in To be able to place a relation into BCNF normal form
describing the relational model To understand the special importance of domain/key
To be able to identify functional dependencies, normal form

determinants, and dependent attributes To be able to identify multivalued dependencies

To identify primary, candidate, and composite keys To be able to place a relation in fourth normal form

100

As we discussed in Chapter 1, databases arise from three sources: from
existing data, from the development of new information systems, and from
the redesign of existing databases. In this chapter and the next, we consider
the design of databases from existing data, such as data from spreadsheets
or extracts of existing databases.

The premise of Chapters 3 and 4 is that you have received one or more
tables of data from some source that are to be stored in a new database.
The question is: Should this data be stored as is, or should it be transformed
in some way before it is stored? For example, consider the two tables in the
top part of Figure 3-1. These are the SKU_DATA and ORDER_ITEM tables
extracted from the Cape Codd Outdoor Sports database as used in the
database in Chapter 2.

Chapter 3 The Relational Model and Normalization 101

ORDER_ITEM

SKU_DATA
|

SKU_ITEM

.....

How Many Tables?

You can design the new database to store this data as two separate
tables, or you can join the tables together and design the database with just
one table. Each alternative has advantages and disadvantages. When you
make the decision to use one design, you obtain certain advantages at the
expense of certain costs. The purpose of this chapter is to help you under-
stand those advantages and costs.

Such questions do not seem difficult, and you may be wondering why
we need two chapters to answer them. In truth, even a single table can have
surprising complexity. Consider, for example, the table in Figure 3-2, which

Figure 3-2 - PRODUCT BUYER

.....

PRODUCT_BUYER A Very
Strange Table

102 Part 2 Database Design

shows sample data extracted from a corporate database. This simple table
has three columns: the buyer s name, the SKU of the products that the buyer
purchases, and the names of the buyer s college major(s). Buyers manage
more than one SKU, and they can have multiple college majors.

To understand why this is an odd table, suppose that Nancy Meyers is
assigned a new SKU, say 101300. What addition should we make to this
table? Clearly, we need to add a row for the new SKU, but if we add just one
row, say the row (Nancy Meyers, 101300, Art), it will appear that she
manages product 101300 as an Art major, but not as an Info Systems major.
To avoid such an illogical state, we need to add two rows: (Nancy Meyers ,
101300, Art)and (Nancy Meyers, 101300, Info Systems).

This is a strange requirement. Why should we have to add two rows of
data simply to record the fact that a new SKU has been assigned to a buyer?
Further, if we assign the product to Pete Hansen instead, we would only
have to add one row, but if we assigned the product to a buyer who had four
majors, we would have to add four new rows.

The more one thinks about the table in Figure 3-2, the more strange it
becomes. What changes should we make if SKU 101100 is assigned to Pete
Hansen? What changes should we make if SKU 100100 is assigned to
Nancy Meyers? What should we do if all the SKU values in Figure 3-2 are
deleted? Later in this chapter, you will learn that these problems arise
because this table has a problem called a multivalued dependency. Even
better, you will learn how to remove that problem.

Tables can have many different patterns; some patterns are susceptible
to serious problems and other patterns are not. Before we can address this
question, however, you need to learn some basic terms.

Relational Model Terminology
Figure 3-3 lists the most important terms used by the relational model. By the time you finish
Chapters 3 and 4, you should be able to define each of these terms and explain how each pertains
to the design of relational databases. Use this list of terms as a check on your comprehension.
Figure | 3-3
Important"liélational Model
Terms

Figure: 3-4

Characteristics of Relations

Chapter 3 The Relational Model and Normalization 103

Characteristics of Relations

Rows contain data about an entity.

Columns contain data about attributes of the entities.

All entries in a column are of the same kind.

Each column has a unique name.

Cells of the table hold a single value.

The order of the columns is unimportant.

The order of the rows is unimportant.

No two rows may be identical.

Relations

So far, we have used the terms table and relation interchangeably. In fact, a relation is a special
case of a table. This means that all relations are tables, but not all tables are relations. Codd
defined the characteristics of a relation in his 1970 paper that laid the foundation for the rela-
tional model.! Those characteristics are summarized in Figure 3-4.

THE WAy [n Figure 3-4 and in this discussion, we use the term entity to mean some

identifiable thing. A customer, a salesperson, an order, a part, and a lease
are all examples of what we mean by an entity. When we introduce the entity-relationship
model in Chapter 5, we will make the definition of entity more precise. For now, just think
of an entity as some identifiable thing that users want to track.

Characteristics of Relations

A relation has a specific definition, as shown in Figure 3-4, and for a table to be a rela-
tion the criteria of this definition must be met. First, the rows of the table must store
data about an entity and the columns of the table must store data about the character-
istics of those entities. Further, in a relation all of the values in a column are of the same
kind. If, for example, the second column of the first row of a relation has FirstName,
then the second column of every row in the relation has FirstName. Also, the names of
the columns are unique; no two columns in the same relation may have the same name.
The EMPLOYEE table shown in Figure 3-5 meets these criteria and is a relation.

THE WAy Columns in different relations may have the same name. In Chapter 2, for
example, two relations had a column named SKU. When there is risk of
confusion, we precede the column name with the relation name followed by a period.
Thus, the name of the SKU column in the SKU_DATA relation is SKU_DATA.SKU, and
column C1 of relation R1 is named R1.C1. Because relation names are unique within a
database, and because column names are unique within a relation, the combination of
relation name and column name uniquely identifies every column in the database.

LE. F Codd, A Relational Model of Data for Large Shared Databanks, Communications of the ACM, June 1970,
pp. 377 387. A downloadable copy of this paper in PDF format is available at portal.acm.org/citation.cfm?id=362685

104

Part 2

Database Design

EmployeeNumber FirstName LastName Department Email Phone
100 Jerry Johnson Accounting JJ@somewhere.com 834-1101
200 Mary Abernathy Finance MA@somewhere.com 834-2101
300 Liz Smathers Finance LS@somewhere.com 834-2102
400 Tom Caruthers Accounting TC@somewhere.com 834-1102
500 Tom Jackson Production TJ@somewhere.com 834-4101
600 Eleanore Caldera Legal EC@somewhere.com 834-3101
700 Richard Bandalone Legal RB@somewhere.com 834-3102

Figure: 3-5

Sample EMPLOYEE Relation

Figure : 3-6

Nonrelational Table
Multiple Entries per Cell

Each cell of a relation has only a single value or item; multiple entries are not allowed. The
table in Figure 3-6 is not a relation, because the Phone values of employees Caruthers and
Bandalone store multiple phone numbers.

In a relation, the order of the rows and the order of the columns are immaterial. No
information can be carried by the ordering of rows or columns. The table in Figure 3-7 is not
a relation, because the entries for employees Caruthers and Caldera require a particular row
arrangement. If the rows in this table were rearranged, we would not know which employee
has the indicated Fax and Home numbers.

Finally, according to the last characteristic in Figure 3-4, for a table to be a relation no two
rows can be identical. As you learned in Chapter 2, some SQL statements do produce tables
with duplicate rows. In such cases, you can use the DISTINCT keyword to force uniqueness.
Such row duplication only occurs as a result of SQL manipulation. Tables that you design to be
stored in the database should never contain duplicate rows.

Do not fall into a common trap. Even though every cell of a relation must
have a single value, this does not mean that all values must have the same
length. The table in Figure 3-8 is a relation even though the length of the Comment
column varies from row to row. It is a relation because, even though the comments have
different lengths, there is only one comment per cell.

THE WAY

EmployeeNumber FirstName LastName Department Email Phone
100 Jerry Johnson Accounting JJ@somewhere.com 834-1101
200 Mary Abernathy Finance MA@somewhere.com 834-2101
300 Liz Smathers Finance LS@somewhere.com 834-2102
400 Tom Caruthers Accounting TC@somewhere.com 834-1102,

834-1191,
834-1192
500 Tom Jackson Production TJ@somewhere.com 834-4101
600 Eleanore Caldera Legal EC@somewhere.com 834-3101
700 Richard Bandalone Legal RB@somewhere.com 834-3102,
834-3191

Chapter 3 The Relational Model and Normalization

105

EmployeeNumber FirstName LastName Department Email Phone
100 Jerry Johnson Accounting JJ@somewhere.com 834-1101
200 Mary Abernathy Finance MA@somewhere.com 834-2101
300 Liz Smathers Finance LS@somewhere.com 834-2102
400 Tom Caruthers Accounting TC@somewhere.com 834-1102

Fax: 834-9911

Home: 723-8795

500 Tom Jackson Production TJ@somewhere.com 834-4101
600 Eleanore Caldera Legal EC@somewhere.com 834-3101
Fax: 834-9912

Home: 723-7654

700 Richard Bandalone Legal RB@somewhere.com 834-3102

Figure : 3-7

Nonrelational Table Order
of Rows Matters and Kind of
Column Entries Differs in Email

Figure: 3-8

Relation with Variable-
Length Column Values

Alternative Terminology

As defined by Codd, the columns of a relation are called attributes, and the rows of a relation
are called tuples (rhymes with couples). Most practitioners, however, do not use these aca-
demic-sounding terms and instead use the terms column and row. Also, even though a table is

not necessarily a relation, most practitioners mean relation when they say table. Thus, in most
conversations the terms relation and table are synonymous. In fact, for the rest of this book
table and relation will be used synonymously.

Additionally, a third set of terminology also is used. Some practitioners use the terms file, field,

and record for the terms table, column, and row, respectively. These terms arose from traditional

EmployeeNumber | FirstName | LastName | Department | Email Phone Comment

100 Jerry Johnson Accounting JJ@somewhere.com | 834-1101 | Joined the
Accounting
Department in
March after
completing his
MBA. Will take the
CPA exam this fall.

200 Mary Abernathy | Finance MA@somewhere.com | 834-2101

300 Liz Smathers | Finance LS@somewhere.com | 834-2102

400 Tom Caruthers | Accounting TC@somewhere.com | 834-1102

500 Tom Jackson Production TJ@somewhere.com | 834-4101

600 Eleanore Caldera Legal EC@somewhere.com | 834-3101

700 Richard Bandalone | Legal RB@somewhere.com | 834-3102 | Is a full-time
consultant to Legal
on a retainer basis.

106

Figure: 3-9

Three Sets of Equivalent
Terms

Part 2 Database Design

Table Column Row
Relation Attribute Tuple
File Field Record

data processing and are common in connection with legacy systems. Sometimes, people mix
and match these terms. You might hear someone say, for example, that a relation has a certain
column and contains 47 records. These three sets of terms are summarized in Figure 3-9.

Functional Dependencies

Functional dependencies are the heart of the database design process, and it is vital for you to
understand them. We first explain the concept in general terms and then examine two examples.
We begin with a short excursion into the world of algebra. Suppose you are buying boxes of
cookies and someone tells you that each box costs $5.00. With this fact, you can compute the
cost of several boxes with the formula:

CookieCost NumberOfBoxes $5

A more general way to express the relationship between CookieCost and NumberOfBoxes
is to say that CookieCost depends on NumberOfBoxes. Such a statement tells us the character
of the relationship between CookieCost and NumberOfBoxes, even though it doesnt give us
the formula. More formally, we can say that CookieCost is functionally dependent on Num-
berOfBoxes. Such a statement can be written as:

NumberOfBoxes = CookieCost

This expression can be read as NumberOfBoxes determines CookieCost. The variable on
the left, here NumberOfBoxes, is called the determinant.

Using another formula, we can compute the extended price of a part order by multiplying
the quantity of the item times its unit price, or:

ExtendedPrice Quantity UnitPrice
In this case, we say that ExtendedPrice is functionally dependent on Quantity and UnitPrice, or:
(Quantity, UnitPrice) = ExtendedPrice

Here, the determinant is the composite (Quantity, UnitPrice).

Functional Dependencies That Are Not Equations

In general, a functional dependency exists when the value of one or more attributes determines

the value of another attribute. Many functional dependencies exist that do not involve equations.
Consider an example. Suppose you know that a sack contains either red, blue, or yellow

objects. Further, suppose you know that the red objects weigh 5 pounds, the blue objects weigh

5 pounds, and the yellow objects weigh 7 pounds. If a friend looks into the sack, sees an object, and

tells you the color of the object, you can tell her the weight of the object. We can formalize this as:

ObjectColor = Weight

Thus, we can say that Weight is functionally dependent on ObjectColor and that ObjectColor
determines Weight. The relationship here does not involve an equation, but the functional
dependency holds. Given a value for ObjectColor, you can determine the objects weight.

If we also know that the red objects are balls, the blue objects are cubes, and the yellow
objects are cubes, we can also say:

ObjectColor = Shape

Chapter 3 The Relational Model and Normalization 107

Thus, ObjectColor determines Shape. We can put these two together to state:
ObjectColor = (Weight, Shape)

Thus, ObjectColor determines Weight and Shape.
Another way to represent these facts is to put them into a table:

Object Color Weight Shape
Red 5 Ball
Blue 5 Cube
Yellow 7 Cube

This table meets all of the conditions listed in Figure 3-4, and therefore it is a relation. You
may be thinking that we performed a trick or sleight of hand to arrive at this relation, but, in
truth, the only reason for having relations is to store instances of functional dependencies. If
there were a formula by which we could take ObjectColor and somehow compute Weight and
Shape, then we would not need the table. We would just make the computation. Similarly, if
there were a formula by which we could take EmployeeNumber and compute EmployeeName
and HireDate, then we would not need an EMPLOYEE relation. However, because there is no
such formula, we must store the combinations of EmployeeNumber, EmployeeName, and
HireDate in the rows of a relation.

Composite Functional Dependencies
The determinant of a functional dependency can consist of more than one attribute. For
example, a grade in a class is determined by both the student and the class, or:

(StudentNumber, ClassNumber) = Grade

In this case, the determinant is called a composite determinant.

Notice that both the student and the class are needed to determine the grade. In general,
if (A, B) = C, then neither A nor B will determine C by itself. However, if A = (B, C), then it is
true that A = Band A = C. Work through examples of your own for both of these cases so
that you understand why this is true.

Finding Functional Dependencies

To fix the idea of functional dependency in your mind, consider what functional dependencies
exist in the SKU_DATA and ORDER_ITEM tables in Figure 3-1.

Functional Dependencies in the SKU_DATA Table
To find functional dependencies in a table, we must ask Does any column determine the value
of another column? For example, consider the values of the SKU_DATA table in Figure 3-1:

108

Part 2 Database Design

Consider the last two columns. If we know the value of Department, can we determine a
unique value of Buyer? No, we cannot, because a Department may have more than one Buyer.
In this sample data, Water Sports is associated with Pete Hansen and Nancy Meyers. There-
fore, Department does not functionally determine Buyer.

What about the reverse? Does Buyer determine Department? In every row, for a given value of
Buyer, do we find the same value of Department? Every time Jerry Martin appears, for example, is
he paired with the same department? The answer is yes. Further, every time Cindy Lo appears, she
is paired with the same department. The same is true for the other buyers. Therefore, assuming
that these data are representative, Buyer does determine Department, and we can write:

Buyer = Department

Does Buyer determine any other column? If we know the value of Buyer, do we know the
value of SKU? No, we do not, because a given buyer has many SKUs assigned to him or her.
Does Buyer determine SKU_Description? No, because a given value of Buyer occurs with many
values of SKU_Description.

THE WAy As stated, for the Buyer = Department functional dependency a Buyer is

paired with one and only one value of Department. Notice that a buyer can
appear more than once in the table, but, if so, that buyer is always paired with the same
department. This is true for all functional dependencies. If A = B, then each value of
A will be paired with one and only one value of B. A particular value of A may appear
more than once in the relation, but, if so, it is always paired with the same value of B.
Note, too, that the reverse is not necessarily true. If A = B, then a value of B may be
paired with many values of A.

What about the other columns? It turns out that if we know the value of SKU, we also
know the values of all of the other columns. In other words:

SKU - SKU_Description

because a given value of SKU will have just one value of SKU_Description. Next,
SKU = Department

because a given value of SKU will have just one value of Department. And, finally,
SKU = Buyer

because a given value of SKU will have just one value of Buyer.

We can combine these three statements as:
SKU = (SKU_Description, Department, Buyer)
For the same reasons, SKU_Description determines all of the other columns, and we can write;

SKU_Description = (SKU, Department, Buyer)

In summary, the functional dependencies in the SKU_DATA table are:
SKU = (SKU_Description, Department, Buyer)
SKU_Description = (SKU, Department, Buyer)
Buyer = Department

THE WAY You cannot always determine functional dependencies from sample data.
You may not have any sample data, or you may have just a few rows that
are not representative of all of the data conditions. In such cases, you must ask the users
who are experts in the application that creates the data. For the SKU_DATA table, you
would ask questions such as, Is a Buyer always associated with the same Department?
and Can a Department have more than one Buyer? In most cases, answers to such
questions are more reliable than sample data. When in doubt, trust the users.

Chapter 3 The Relational Model and Normalization 109

Functional Dependencies in the ORDER_ITEM Table
Now consider the ORDER_ITEM table in Figure 3-1. For convenience, here is a copy of the data
in that table:

What are the functional dependencies in this table? Start on the left. Does OrderNumber
determine another column? It does not determine SKU, because several SKUs are associated with
a given order. For the same reasons, it does not determine Quantity, Price, or ExtendedPrice.

What about SKU? SKU does not determine OrderNumber because several OrderNumbers are
associated with a given SKU. It does not determine Quantity or ExtendedPrice for the same reason.

What about SKU and Price? From this data, it does appear that

SKU = Price

but that might not be true in general. In fact, we know that prices can change after an order
has been processed. Further, an order might have special pricing due to a sale or promotion. To
keep an accurate record of what the customer actually paid, we need to associate a particular
SKU price with a particular order. Thus:

(OrderNumber, SKU) = Price

Considering the other columns, Quantity, Price, and ExtendedPrice do not determine anything
else. You can decide this by looking at the sample data. You can reinforce this conclusion by think-
ing about the nature of sales. Would a Quantity of 2 ever determine an OrderNumber or a SKU?
This makes no sense. At the grocery store, if | tell you | bought two of something, you have no rea-
son to conclude that my OrderNumber was 1010022203466 or that | bought carrots. Quantity does
not determine OrderNumber or SKU.

Similarly, if | tell you that the price of an item was $3.99, there is no logical way to conclude
what my OrderNumber was or that | bought a jar of green olives. Thus, Price does not determine
OrderNumber or SKU. Similar comments pertain to ExtendedPrice. It turns out that no single
column is a determinant in the ORDER_ITEM table.

What about pairs of columns? We already know that

(OrderNumber, SKU) = Price
Examining the data, (OrderNumber, SKU) determines the other two columns as well. Thus:
(OrderNumber, SKU) = (Quantity, Price, ExtendedPrice)

This functional dependency makes sense. It means that given a particular order and a particular
item on that order, there is only one quantity, one price, and one extended price.

Notice, too, that because ExtendedPrice is computed from the formula ExtendedPrice =
(Quantity * Price) we have:

(Quantity, Price) = ExtendedPrice
In summary, the functional dependencies in ORDER_ITEM are;

(OrderNumber, SKU) = (Quantity, Price, ExtendedPrice)
(Quantity, Price) = ExtendedPrice

No single skill is more important for designing databases than the ability to identify functional
dependencies. Make sure you understand the material in this section. Work problems 3.58 and 3.59

110

Part 2 Database Design

and the Marcias Dry Cleaning and Morgan Importing projects at the end of the chapter. Ask your
instructor for help if necessary. You must understand functional dependencies and be able to work
with them.

When Are Determinant Values Unique?

In the previous section, you may have noticed an irregularity. Sometimes the determinants of
a functional dependency are unique in a relation, and sometimes they are not. Consider the
SKU_DATA relation, with determinants SKU, SKU_Description, and Buyer. In SKU_DATA, the
values of both SKU and SKU_Description are unique in the table. For example, the SKU value
100100 appears just once. Similarly, the SKU_Description value Half-dome Tent occurs just
once. From this, it is tempting to conclude that values of determinants are always unique in a
relation. However, this is not true.

For example, Buyer is a determinant, but it is not unique in SKU_DATA. The buyer Cindy
Lo appears in two different rows. In fact, for this sample data all of the buyers occur in two
different rows.

In truth, a determinant is unique in a relation only if it determines every other
column in the relation. For the SKU_DATA relation, SKU determines all of the other columns.
Similarly, SKU_Description determines all of the other columns. Hence, they both are unique.
Buyer, however, only determines the Department column. It does not determine SKU or
SKU_Description.

The determinants in ORDER_ITEM are (OrderNumber, SKU) and (Quantity, Price). Because
(OrderNumber, SKU) determines all of the other columns, it will be unique in the relation. The
composite (Quantity and Price) only determines ExtendedPrice. Therefore, it will not be unique
in the relation.

This fact means that you cannot find the determinants of all functional dependencies
simply by looking for unique values. Some of the determinants will be unique, but some will not
be. Instead, to determine if column A determines column B, look at the data and ask, Every time
that a value of column A appears is it matched with the same value of Column B? If so, it can be
a determinant of B. Again, however, sample data can be incomplete, so the best strategies are to
think about the nature of the business activity from which the data arise and to ask the users.

Keys

The relational model has more keys than a locksmith. There are candidate keys, composite
keys, primary keys, surrogate keys, and foreign keys. In this section, we will define each of
these types of keys. Because key definitions rely on the concept of functional dependency,
make sure you understand that concept before reading on.

In general, a key is a combination of one or more columns that is used to identify particular
rows in a relation. Keys that have two columns or more are called composite keys.

Candidate Keys

A candidate key is a determinant that determines all of the other columns in a relation. The
SKU_DATA relation has two candidate keys: SKU and SKU_Description. Buyer is a determinant,
but it is not a candidate key because it only determines Department.

The ORDER_ITEM table has just one candidate key: (OrderNumber, SKU). The other
determinant in this table, (Quantity, Price), is not a candidate key because it determines only
ExtendedPrice.

Candidate keys identify a unique row in a relation. Given the value of a candidate key, we can
find one and only one row in the relation that has that value. For example, given the SKU value of
100100, we can find one and only one row in SKU_DATA. Similarly, given the OrderNumber and
SKU values (2000, 101100), we can find one and only one row in ORDER_ITEM.

Primary Keys
When designing a database, one of the candidate keys is selected to be the primary key. This
term is used because this key will be defined to the DBMS, and the DBMS will use it as its
primary means for finding rows in a table. A table has only one primary key. The primary key
can have one column or it can be a composite.

In this text, to clarify discussions we will sometimes indicate table structure by showing
the name of a table followed by the names of the tables columns enclosed in parentheses.

Chapter 3 The Relational Model and Normalization 111

When we do this, we will underline the column(s) that comprise the primary key. For example,
we can show the structure of SKU_DATA and ORDER_ITEM as follows:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

This notation indicates that SKU is the primary key of SKU_DATA and that (OrderNumber,
SKU) is the primary key of ORDER_ITEM.

THE WAY What do you do if a table has no candidate keys? In that case, define the

primary key as the collection of all of the columns in the table. Because
there are no duplicate rows in a stored relation, the combination of all of the columns of the
table will always be unique. Again, although tables generated by SQL manipulation may
have duplicate rows, the tables that you design to store data should never be constructed
to have data duplication. Thus, the combination of all columns is always a candidate key.

Surrogate Keys

A surrogate key is an artificial column that is added to a table to serve as the primary key.
The DBMS assigns a unique value to a surrogate key when the row is created. The assigned value
never changes. Surrogate keys are used when the primary key is large and unwieldy. For example,
consider the relation RENTAL_PROPERTY:

RENTAL_PROPERTY (Street, City, State/Province, Zip/PostalCode, Country, Rental_Rate)

The primary key of this table is (Street, City, State/Province, Zip/PostalCode, Country). As you
will learn in Chapter 6, for good performance a primary key should be short and, if possible,
numeric. The primary key of RENTAL_PROPERTY is neither.

In this case, the designers of the database would likely create a surrogate key. The structure
of the table would then be:

RENTAL_PROPERTY (PropertylID, Street, City, State/Province, Zip/PostalCode, Country,
Rental_Rate)

The DBMS will assign a numeric value to PropertylD when a row is created. Using that key will
result in better performance than using the original key. Note that surrogate key values are
artificial and have no meaning to the users. In fact, surrogate key values are normally hidden in
forms and reports.

Foreign Keys

A foreign key is a column or composite of columns that is the primary key of a table other
than the one in which it appears. The term arises because it is a key of a table foreign to the one
in which it appears. In the following two tables, DEPARTMENT.DepartmentName is the
primary key of DEPARTMENT, and EMPLOYEE.DepartmentName is a foreign key. In this text,
we will show foreign keys in italics:

DEPARTMENT (DepartmentName, BudgetCode, ManagerName)
EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName, DepartmentName)

Foreign keys express relationships between rows of tables. In this example, the foreign key
EMPLOYEE.DepartmentName stores the relationship between an employee and his or her
department.

Consider the SKU_DATA and ORDER_ITEM tables. SKU_DATA.SKU is the primary key of
SKU_DATA, and ORDER_ITEM.SKU is a foreign key.

SKU_DATA (SKU, SKU_Description, Department, Buyer)

Notice that ORDER_ITEM.SKU is both a foreign key and also part of the primary key of
ORDER_ITEM. This condition sometimes occurs, but it is not required. In the example above,

112

Normal Forms

Figure : 3-10

The EQUIPMENT_REPAIR
Table

Part 2 Database Design

EMPLOYEE.DepartmentName is a foreign key, but it is not part of the EMPLOYEE primary
key. You will see some uses for foreign keys later in this chapter and the next, and you will
study them at length in Chapter 6.

In most cases, we need to ensure that the values of a foreign key match a valid value of a
primary key. For the SKU_DATA and ORDER_ITEM tables, we need to ensure that all of the
values of ORDER_ITEM.SKU match a value of SKU_DATA.SKU. To accomplish this, we create
a referential integrity constraint, which is a statement that limits the values of the foreign
key. In this case, we create the constraint:

SKU in ORDER_ITEM must exist in SKU in SKU_DATA

This constraint stipulates that every value of SKU in ORDER_ITEM must match a value of
SKU in SKU_DATA.

All relations are not equal. Some are easy to process, and others are problematic. Relations are
categorized into normal forms based on the kinds of problems that they have. Knowledge of
these normal forms will help you create appropriate database designs. To understand normal
forms, we need first to define modification anomalies.

Modification Anomalies

Consider the EQUIPMENT _REPAIR relation in Figure 3-10, which stores data about manufac-
turing equipment and equipment repairs. Suppose we delete the data for repair number 2100.
When we delete this row (the second one in Figure 3-10), we remove not only data about
the repair, but also data about the machine itself. We will no longer know, for example, that the
machine was a Lathe and that its AcquisitionPrice was 4750.00. When we delete one row, the
structure of this table forces us to lose facts about two different things, a machine and a repair.
This condition is called a deletion anomaly.

Now suppose we want to enter the first repair for a piece of equipment. To enter repair
data, we need to know not just RepairNumber, RepairDate, and RepairCost, but also
ItemNumber, EquipmentType, and AcquisitionCost. If we work in the repair department, this
is a problem, because we are unlikely to know the value of AcquisitionCost. The structure of
this table forces us to enter facts about two entities when we just want to enter facts about
one. This condition is called an insertion anomaly.

Finally, suppose we want to change existing data. If we alter a value of RepairNumber,
RepairDate, or RepairCost, there is no problem. But if we alter a value of ltemNumber,
EquipmentType, or AcquisitionCost, we may create a data inconsistency. To see why, suppose
we update the last row of the table in Figure 3-10 using the data (100, Drill Press, 5500, 2500,
08/17/09, 275).

Figure 3-11 shows the table after this erroneous update. The drill press has two different
AcquisitionCosts. Clearly, this is an error. Equipment cannot be acquired at two different costs.
If there were, say, 10,000 rows in the table, however, it might be very difficult to detect this error.
This condition is called an update anomaly.

| temNumber

2 |

e s
a0

Figure : 3-11

The EQUIPMENT_REPAIR
Table After an Incorrect
Update

Chapter 3 The Relational Model and Normalization 113

0000 2000

THE way Notice that the EQUIPMENT_REPAIR table in Figures 3-10 and 3-11 dupli-
cates data. For example, the AcquisitionCost of the same item of equipment
appears several times. Any table that duplicates data is susceptible to update anomalies
like the one in Figure 3-11. A table that has such inconsistencies is said to have data
integrity problems.
As you will learn in Chapter 4, to improve query speed we sometimes design a table
to have duplicated data. Be aware, however, that any time we design a table this way
we open the door to data integrity problems.

A Short History of Normal Forms

When Codd defined the relational model, he noticed that some tables had modification anomalies.
In his second paper? he defined first normal form, second normal form, and third normal form. He
defined first normal form (1NF) as the set of conditions for a relation shown in Figure 3-4. Any table
meeting the conditions in Figure 3-4 is therefore a relation in INF. Codd also noted that some tables
(or, interchangeably in this book, relations) in INF had modification anomalies. He found that he
could remove some of those anomalies by applying certain conditions. A relation that met those
conditions, which we will discuss later in this chapter, was said to be in second normal form (2NF).
He also observed, however, that relations in 2NF could also have anomalies, and so he defined third
normal form (3NF), which is a set of conditions that removes even more anomalies, and which we
will also discuss later in this chapter. As time went by, other researchers found still other ways that
anomalies can occur, and the conditions for Boyce-Codd Normal Form (BCNF) were defined.

These normal forms are defined so that a relation in BCNF is in 3NF, a relation in 3NF is in
2NF, and arelation in 2NF is in INF. Thus, if you put a relation into BCNF, it is automatically in
the lesser normal forms.

Normal forms 2NF through BCNF concern anomalies that arise from functional depend-
encies. Other sources of anomalies were found later. They led to the definition of fourth normal
form (4NF) and fifth normal form (5NF), both of which we will discuss later in this chapter.
So it went, with researchers chipping away at modification anomalies, each one improving on
the prior normal form.

In 1982, Fagin published a paper that took a different tack.? Instead of looking for just
another normal form, Fagin asked, What conditions need to exist for a relation to have no
anomalies? In that paper, he defined domain/key normal form (DK/NF). Fagin ended the
search for normal forms by showing that a relation in DK/NF has no modification anomalies
and, further, that a relation that has no modification anomalies is in DK/NF. DK/NF is
discussed in more detail later in this chapter.

Normalization Categories

As shown in Figure 3-12, normalization theory can be divided into three major categories.
Some anomalies arise from functional dependencies, some arise from multivalued dependen-
cies, and some arise from data constraints and odd conditions.

2E.F.Codd and A. L. Dean, Proceedings of 1971 ACM-SIGFIDET Workshop on Data Description, Access and
Control, San Diego, California, November 11 12,1971 ACM 1971.

3R.Fagin, A Normal Form for Relational Databases That Is Based on Domains and Keys, ACM Transactions on
Database Systems, September 1981, pp. 387 414.

114

Figure : 3-12

Summary of Normalization
Theory

Part 2 Database Design

Source of Anomaly Normal Forms Design Principles

Functional dependencies INF, 2NF, BCNF: Design tables so that every
3NF, BCNF determinant is a candidate key.

Multivalued dependencies ANF 4ANF: Move each multivalued

dependency to a table of its own.

Data constraints and oddities | 5NF, DK/NF DK/NF: Make every constraint a
logical consequence of candidate
keys and domains.

BCNF, 3NF, and 2NF, are all concerned with anomalies that are caused by functional depend-
encies. A relation that is in BCNF has no modification anomalies from functional dependencies. It
is also automatically in 2NF and 3NF, and, therefore, we will focus on transforming relations into
BCNF. However, it is instructive to work through the progression of normal forms from 1INF to
BCNF in order to understand how each normal form deals with specific anomalies, and we will do
this later in this chapter

As shown in the second row of Figure 3-12, some anomalies arise because of another kind
of dependency called a multivalued dependency. Those anomalies can be eliminated by placing
each multivalued dependency in a relation of its own, a condition known as 4NF. You will see
how to do that in the last section of this chapter.

The third source of anomalies is esoteric. These problems involve specific, rare, and even
strange data constraints. Accordingly, we will not discuss them in this text.

From First Normal Form to Boyce-Codd Normal Form Step-by-Step

Any table that meets the definition of a relation in Figure 3-4 is defined as being in INF. This
means that the following must hold: The cells of a table must be a single value, and neither
repeating groups nor arrays are allowed as values; all entries in a column must be of the
same data type; each column must have a unique name, but the order of the columns in the
table is not significant; no two rows in a table may be identical, but the order of the rows is
not significant.

Second Normal Form

When Codd discovered anomalies in 1NF tables, he defined 2NF to eliminate some of these
anomalies. A relation is 2NF if and only if it is in INF and all non-key attributes are
determined by the entire primary key. This means that if the primary key is a composite
primary key, then no non-key attribute can be determined by an attribute or set of attrib-
utes that make up only part of the key. Thus, if you have a relation R (A, B, N, O, P) with the
composite key (A, B), then none of the non-key attributes N, O, or P can be determined by
just A or just B.

Note that the only way a non-key attribute can be dependent on part of the primary key is
if there is a composite primary key. This means that relations with single-attribute primary
keys are automatically in 2NF.

For example, consider the STUDENT_ACTIVITY relation:

STUDENT_ACTIVITY (StudentID, Activity, ActivityFee)

The STUDENT_ACTIVITY relation is shown with sample data in Figure 3-13. Note that
STUDENT_ACTIVITY has the composite primary key (StudentID, Activity), which allows us
to determine the fee a particular student will have to pay for a particular activity. However,
because fees are determined by activities, Fee is also functionally dependent on just Activity

4 See C. J. Date, An Introduction to Database Systems, 8th ed. (New York: Addison-Wesley, 2003), for a complete
discussion of normal forms.

Figure 3-13
The STUDENT ACTIVITY
Relation

Figure : 3-14
The 2NF

STUDENT_ACTIVITY and
ACTIVITY_FEE Relations

Chapter 3 The Relational Model and Normalization 115

STUDENT_ACTIVITY

itself, and we can say that Fee is partially dependent on the key of the table. The set of
functional dependencies is therefore:

(StudentID, Activity) = (ActivityFee)
(Activity) = (ActivityFee)

Thus, there is a non-key attribute determined by part of the composite primary key, and
the STUDENT_ACTIVITY relation is not in 2NF. What do we do in this case? We will have to
move the columns of the functional dependency based on the partial primary key attribute
into a separate relation while leaving the determinant in the original relation as a foreign key.
We will end up with two relations:

STUDENT_ACTIVITY (StudentID, Activity)

ACTIVITY_FEE (Activity, ActivityFee)

The Activity column in STUDENT_ACTIVITY becomes a foreign key. The new relations
are shown in Figure 3-14. Now, are the two new relations in 2NF? Yes. STUDENT_ACTIVITY
still has a composite primary key, but now has no attributes that are dependent on only a part
of this composite key. ACTIVITY _FEE has a set of attributes (just one each in this case) that
are dependent on the entire primary key.

Third Normal Form

However, the conditions necessary for 2NF do not eliminate all anomalies. To deal with addi-
tional anomalies, Codd defined 3NF. A relation is in 3NF if and only if it is in 2NF and there are
no non-key attributes determined by another non-key attribute. The technical name for a non-
key attribute determined by another non-key attribute is transitive dependency. We can
therefore restate the definition of 3NF: A relation is in 3NF if and only if it is in 2NF and it has
no transitive dependencies. Thus, in order for our relation R (A, B, N, O, P) to be in 3NF, none
of the non-key attributes N, O, or P can be determined by N, O, or P.

STUDENT_ACTIVITY ACTIVITY_FEE

116

Figure 3-15
The STUDENT HOUSING
Relation

Figure | 3-16
The 3NF

STUDENT_HOUSING and
HOUSING_FEE Relations

Part 2 Database Design

STUDENT_HOUSING

0O | = [Jen fob L P | —

For example, consider the relation STUDENT_HOUSING (StudentID, Building, Fee)
shown in Figure 3-15. The STUDENT_HOUSING schema is:

STUDENT_HOUSING (StudentID, Building, HousingFee)

Here, we have a single-attribute primary key, StudentID, so the relation is in 2NF because there
is no possibility of a non-key attribute being dependent on only part of the primary key.
Furthermore, if we know the student, we can determine the building where he or she is residing, so:

(StudentID) = Building

However, the building fee is independent of which student is housed in the building, and,
in fact, the same fee is charged for every room in a building. Therefore, Building determines
HousingFee:

(Building) = (HousingFee)

Thus, a non-key attribute (HousingFee) is functionally determined by another non-key
attribute (Building), and the relation is not in 3NF.

To put the relation into 3NF, we will have to move the columns of the functional depend-
ency into a separate relation while leaving the determinant in the original relation as a foreign
key. We will end up with two relations:

STUDENT_HOUSING (StudentlD, Building)
BUILDING_FEE (Building, HousingFee)

The Building column in STUDENT_HOUSING becomes a foreign key. The two relations
are now in 3NF (work through the logic yourself to make sure you understand 3NF), and are
shown in Figure 3-16.

Boyce-Codd Normal Form
Some database designers normalize their relations to 3NF. Unfortunately, there are still anom-
alies due to functional dependences in 3NF. Together with Raymond Boyce, Codd defined

STUDENT_HOUSING HOUSING_FEE

Figure - 3-17

The STUDENT_ADVISOR
Relation

Chapter 3 The Relational Model and Normalization 117

STUDENT_ADVISOR

BCNF to fix this situation. A relation is in BCNF if and only if it is in 3NF and every determinant
is a candidate key.

For example, consider the relation STUDENT_ADVISIOR shown in 3-17, where a
student (StudentID) can have one or more majors (Major), a major can have one or more fac-
ulty advisors (AdvisorName), and a faculty member advises in only one major area. Note that
the figure shows two students (StudentIDs 700 and 800) with double majors (both students
show Majors of Math and Psychology), and two Subjects (Math and Psychology) with two
Advisors.

Because students can have several majors, StudentID does not determine Major. Moreover,
because students can have several advisers, StudentID does not determine AdvisorName.
Therefore, StudentID by itself cannot be a key. However, the composite key (StudentID, Major)
determines AdvisorName, and the composite key (StudentID, AdvisorName) determines Major.
This gives us (StudentID, Major) and (Studentld, AdvisorName) as two candidate keys. We can
select either of these as the primary key for the relation. Thus, two STUDENT_ADVISOR
schemas with different candidate keys are possible:

STUDENT_ADVISOR (StudentID, Major, AdvisorName)

and

STUDENT_ADVISOR (StudentID, Major, AdvisorName)

Note that STUDENT_ADVISOR is in 2NF because it has no non-key attributes in the
sense that every attribute is a part of at least one candidate key. This is a subtle condition,
based on the fact that technically the definition of 2NF states that no non-prime attribute can
be partially dependent on a candidate key, where a non-prime attribute is an attribute that is
not contained in any candidate key. Furthermore, STUDENT_ADVISOR is in 3NF because
there are no transitive dependencies in the relation.

The two candidate keys for this relation are overlapping candidate keys, because
they share the attribute StudentID. When a table in 3NF has overlapping candidate keys,
it can still have modification anomalies based on functional dependencies. In the
STUDENT_ADVISOR relation, there will be modification anomalies because there is one
other functional dependency in the relation. Because a faculty member can be an advisor for
only one major area, AdvisorName determines Major. Therefore, AdvisorName is a determi-
nant, but not a candidate key.

Suppose that we have a student (StudentID = 300) majoring in psychology (Major =
Psychology) with faculty advisor Perls (AdvisorName = Perls). Further, assume that this row is
the only one in the table with the AdvisorName value of Perls. If we delete this row, we will lose
all data about Perls. This is a deletion anomaly. Similarly, we cannot insert the data to represent
the Economics advisor Keynes until a student majors in Economics. This is an insertion anom-
aly. Situations like this led to the development of BCNF.

118

Figure : 3-18

The BCNF
STUDENT_ADVISOR and
ADVISOR_SUBJECT
Relations

Part 2 Database Design

STUDENT_ADVISOR ADVISOR_SUBJECT

i o
L

10

What do we do with the STUDENT_ADVISOR relation? As before, we move the func-
tional dependency creating the problem to another relation while leaving the determinant in
the original relation as a foreign key. In this case, we will create the relations:

STUDENT_ADVISOR (StudentID, AdvisorName)
ADVISOR_SUBJECT (AdvisorName, Major)

The AdvisorName column in STUDENT_ADVISOR is the foreign key, and the two final
relations are shown in Figure 3-18.

Eliminating Anomalies from Functional Dependencies with BCNF

Most modification anomalies occur because of problems with functional dependencies. You
can eliminate these problems by progressively testing a relation for INF, 2NF, 3NF and the
BCNF using the definitions of these normal forms given previously. We will refer to this as the
Step-by-Step method.

You can also eliminate such problems by simply designing (or redesigning) your tables so
that every determinant is a candidate key. This condition, which, of course, is the definition of
BCNF, will eliminate all anomalies due to functional dependencies. We will refer to this
method as the Straight-to-BNCF or general normalization method.

We prefer the Straight-to-BNCF general normalization strategy, and will use it exten-
sively, but not exclusively, in this book. However, this is merely our preference either method
produces the same results, and you (or your professor) may prefer the Step-by-Step method.

The general normalization method is summarized in Figure 3-19. Identify every functional
dependency in the relation, then identify the candidate keys. If there are determinants that are not
candidate keys, then the relation is not in BCNF, and it is subject to modification anomalies. To put
the relation into BCNF, follow the procedure in step 3. To fix this procedure in your mind, we will
illustrate it with five different examples. We will also compare it to the Step-by-Step approach.

@ THE WAy Our process rule that a relation is in BCNF if and only if every determinant
is a candidate key is summed up in a widely known phrase:

| swear to construct my tables so that all non-key columns are dependent on the key, the
whole key, and nothing but the key, so help me Codd!

@ THE WAY The goal of the normalization process is to create relations that are in
BCNEF It is sometimes stated that the goal is to create relations that are in
3NF, but after the discussion in this chapter you should understand why BCNF is
preferred to 3NF.
Note that there are some problems that are not resolved by even BNCF, and we will
discuss those after we discuss our examples of nhormalizing to BNCF.

Figure : 3-19

Process for Putting a
Relation into BCNF

Figure : 3-20

The SKU_DATA Relation

Chapter 3 The Relational Model and Normalization 119

Process for Putting a Relation into BCNF

1. Identify every functional dependency.

2. Identify every candidate key.

3. If there is a functional dependency that has a
determinant that is not a candidate key:

A. Move the columns of that functional
dependency into a new relation.

B. Make the determinant of that functional
dependency the primary key of the new relation.

C. Leave a copy of the determinant as a foreign
key in the original relation.

D. Create a referential integrity constraint between
the original relation and the new relation.

4. Repeat step 3 until every determinant of every
relation is a candidate key.

Note: In step 3, if there is more than one such functional dependency,
start with the one with the most columns.

Normalization Example 1
Consider the SKU_DATA table:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

As discussed earlier, this table has three functional dependencies:

SKU = (SKU_Description, Department, Buyer)
SKU_Description = (SKU, Department, Buyer)
Buyer = Department

Normalization Example 1: The Step-by-Step Method
Both SKU and SKU_Descripion are candidate keys. Logically, SKU makes more sense as the
primary key because it is a surrogate key, so our relation, which is shown in Figure 3-20, is:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

Checking the relation against Figure 3-4, we find that SKU_DATA is in INF.

Is the SKU_DATA relation in 2NF? A relation is 2NF if and only if it is in INF and all non-
key attributes are determined by the entire primary key. Because the primary key SKU is a sin-
gle attribute key, all the non-key attributes are therefore dependent on the entire primary key.
Thus, the SKU_DATA relation is in 2NF.

SKU_DATA

120

Figure : 3-21

The Normalized BUYER and
SKU_DATA 2 Relations

Part 2 Database Design

Is the SKU_DATA relation in 3NF? A relation is in 3NF if and only if it is in 2NF and there
are no non-key attributes determined by another non-key attribute. Because we seem to have
two non-key attributes (SKU_Description and Buyer) that determine non-key attributes, the
relation is not in 3NF!

However, this is where things get a bit tricky. A non-key attribute is an attribute that is neither
(1) acandidate key itself, nor (2) part of a composite candidate key. SKU_Description, therefore, is
not a non-key attribute (sorry about the double negative). The only non-key attribute is Buyer!

Therefore, we must remove only the functional dependency

Buyer = Department
We will now have two relations:

SKU_DATA 2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Is SKU_DATA 2 in 3NF? Yes, it is there are no non-key attributes that determine
another non-key attribute.

Is the SKU_DATA relation in BNCF? A relation is in BCNF if and only if it is in 3NF and every
determinant is a candidate key. The determinants in SKU_DATA 2 are SKU and SKU_Description:

SKU - (SKU_Description, Buyer)
SKU_Description = (SKU, Buyer)

Both determinants are candidate keys (they both determine all the other attributes in the
relation). Thus, every determinant is a candidate key, and the relationship is in BNCF.

At this point, we need to check the BUYER relation to determine if it is in BNCF. Work
through the steps yourself for BUYER to check your understanding of the Step-by-Step
method. You will find that BUYER is in BNCF, and therefore our normalized relations, as
shown with the sample data in Figure 3-21, are:

SKU_DATA 2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Both of these tables are now in BCNF and will have no anomalies due to functional
dependencies. For the data in these tables to be consistent, however, we also need to define a
referential integrity constraint (note that this is step 3D in Figure 3-17):

SKU_DATA_2.Buyer must exist in BUYER.Buyer

SKU_DATA 2

Chapter 3 The Relational Model and Normalization 121

This statement means that every value in the Buyer column of SKU_DATA_2 must also
exist as a value in the Buyer column of BUYER.

Normalization Example 1. The Straight-to-BNCF Method
Now lets rework this example using the Straight-to-BNCF method. SKU and SKU_Description
determine all of the columns in the table, so they are candidate keys. Buyer is a determinant, but
it does not determine all of the other columns, and hence it is not a candidate key. Therefore,
SKU_DATA has a determinant that is not a candidate key and is therefore not in BCNF. It will
have modification anomalies.

To remove such anomalies, in step 3A in Figure 3-17 we move the columns of functional
dependency whose determinant is not a candidate key into a new table. In this case, we place
Buyer and Department into a new table:

BUYER (Buyer, Department)

Next, in step 3B in Figure 3-17, we make the determinant of the functional dependency the
primary key of the new table. In this case, Buyer becomes the primary key:

BUYER (Buyer, Department)

Next, following step 3C in Figure 3-17, we leave a copy of the determinant as a foreign key in
the original relation. Thus, SKU_DATA becomes SKU_DATA 2

SKU_DATA 2 (SKU, SKU_Description, Buyer)
The resulting tables are thus:

SKU_DATA 2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

where SKU_DATA_2.Buyer is a foreign key to the BUYER table.

Both of these tables are now in BCNF and will have no anomalies due to functional
dependencies. For the data in these tables to be consistent, however, we also need to define the
referential integrity constraint in step 3D in Figure 3-17:

SKU_DATA 2.Buyer must exist in BUYER.Buyer

This statement means that every value in the Buyer column of SKU_DATA_2 must also exist
as a value in the Buyer column of BUYER. Sample data for the resulting tables is the same as
shown in Figure 3-21.

Note that both the Step-by-Step method and the Straight-to-BCNF method produced
exactly the same results. Use the method you prefer, the results will be the same. To keep this
chapter reasonably short, we will use only the Straight-to-BNCF method for the rest of the
normalization examples.

Normalization Example 2
Now consider the EQUIPMENT _REPAIR relation in Figure 3-10. The structure of the table is:

EQUIPMENT_REPAIR (ItemNumber, EquipmentType, AcquisitionCost, RepairNumber,
RepairDate, RepairCost)

Examining the data in Figure 3-10, the functional dependencies are:
ItemNumber - (EquipmentType, AcquisitionCost)
RepairNumber = (ItemNumber, EquipmentType, AcquisitionCost, RepairDate, RepairCost)

Both ItemNumber and RepairNumber are determinants, but only RepairNumber is a can-
didate key. Accordingly, EQUIPMENT _REPAIR is not in BCNF and is subject to modification
anomalies. Following the procedure in Figure 3-19, we place the columns of the problematic
functional dependency into a separate table, as follows:

122

Figure : 3-22

The Normalized
EQUIPMENT_ITEM and
REPAIR Relations

Part 2 Database Design

EQUIPMENT_ITEM

eqimuﬂme |

and remove all but ItemNumber from EQUIPMENT_REPAIR (and rearrange the columns so
that the primary key RepairNumber is the first column in the relation) to create:

REPAIR (RepairNumber, ItemNumber, RepairDate, RepairCost)
We also need to create the referential integrity constraint:
REPAIR.ItemNumber must exist in EQUIPMENT _ITEM.IltemNumber

Data for these two new relations are shown in Figure 3-22.

@ THE WAY There is another, more intuitive way to think about normalization. Do you

remember your eighth grade English teacher? She said that every para-
graph should have a single theme. If you write a paragraph that has two themes, you
should break it up into two paragraphs, each with a single theme.

The problem with the EQUIPMENT_REPAIR relation is that it has two themes: one
about repairs and a second about items. We eliminated modification anomalies by break-
ing that single table with two themes into two tables, each with a single theme. Some-
times, it is helpful to look at a table and ask, How many themes does it have? If it has
more than one, then redefine the table so that it has a single theme.

Normalization Example 3
Consider now the Cape Codd database ORDER_ITEM relation with the structure:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
with functional dependencies:

(OrderNumber, SKU) = (Quantity, Price, ExtendedPrice)
(Quantity, Price) = ExtendedPrice

This table is not in BCNF because the determinant (Quantity, Price) is not a candidate key.
We can follow the same normalization practice as illustrated in examples 1 and 2, but in this
case, because the second functional dependency arises from the formula ExtendedPrice =
(Quantity * Price), we reach a silly result.

To see why, we follow the procedure in Figure 3-19 to create tables such that every deter-
minant is a candidate key. This means that we move the columns Quantity, Price, and Extended-
Price to tables of their own, as follows:

EXTENDED_PRICE (Quantity, Price, ExtendedPrice)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price)

Figure | 3-23

The Norma.lii.zed
ORDER_ITEM Relation

Figure 3-24

Sample Data for the

STUDENT_ACTIVITY
Relation

Chapter 3 The Relational Model and Normalization 123

ORDERL_ITEM

Notice that we left both Quantity and Price in the original relation as a composite foreign key.
These two tables are in BCNF, but the values in the EXTENDED_PRICE table are ridiculous. They
are just the results of multiplying Quantity by Price. The simple fact is that we do not need to
create a table to store these results. Instead, any time we need to know ExtendedPrice we will just
compute it. In fact, we can define this formula to the DBMS and let the DBMS compute the value
of ExtendedPrice when necessary. You will see how to do this with Microsoft SQL Server 2008
R2, Oracles Oracle Database 11g, and Oracle MySQL in Chapters 10, 10A, and 10B, respectively.

Using the formula, we can remove ExtendedPrice from the table. The resulting table is in
BCNF:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price)

Note that Quantity and Price are no longer foreign keys. The ORDER_ITEM table with
sample data now appears as shown in Figure 3-23.

Normalization Example 4
Consider the following table that stores data about student activities:

STUDENT_ACTIVITY (StudentlD, StudentName, Activity, ActivityFee, AmountPaid)

where StudentID is a student identifier, StudentName is student name, Activity is the name of a
club or other organized student activity, ActivityFee is the cost of joining the club or participat-
ing in the activity, and AmountPaid is the amount the student has paid toward the ActivityFee.
Figure 3-24 shows sample data for this table.

StudentID is a unique student identifier, so we know that:

StudentID - StudentName
However, does the functional dependency
StudentID = Activity

exist? It does if a student belongs to just one club or participates in just one activity, but it does not
if a student belongs to more than one club or participates in more than one activity. Looking at the
data, student Davis with StudentID 200 participates in both Skiing and Swimming, so StudentID
does not determine Club. StudentID does not determine ActivityFee or AmountPaid, either.

STUDENT_ACTIVITY

124

Part 2 Database Design

Now consider the StudentName column. Does StudentName determine StudentID?
Is, for example, the value Jones always paired with the same value of StudentID? No, there are
two students named Jones, and they have different StudentID values. StudentName does not
determine any other column in this table either.

Considering the next column, Activity, we know that many students can belong to a
club. Therefore, Activity does not determine StudentID or StudentName. Does Activity
determine ActivityFee? Is the value Skiing, for example, always paired with the same value
of ActivityFee? From this data, it appears so, and using just this sample data we can conclude
that Activity determines ActivityFee.

However, this data is just a sample. Logically, it is possible for students to pay different
costs, perhaps because they select different levels of activity participation. If that were the
case, then we would say that

(StudentID, Activity) = ActivityFee

To find out, we need to check with the users. Here, assume that all students pay the same
fee for a given activity. The last column is AmountPaid, and it does not determine anything.
So far, we have two functional dependencies:

StudentID = StudentName
Activity = ActivityFee

Are there other functional dependencies with composite determinants? No single column
determines AmountPaid, so consider possible composite determinants for it. AmountPaid is
dependent on both the student and the club the student has joined. Therefore, it is determined
by the combination of the determinants StudentlID and Activity. Thus, we can say

(StudentlID, Activity) = ActivityFee

So far we have three determinants: StudentID, Activity, and (StudentID, Activity). Are any
of these candidate keys? Do any of these determinants identify a unique row? From the data, it
appears that (StudentlD, Activity) identifies a unique row and is a candidate key. Again, in real
situations, we would need to check this assumption out with the users.

STUDENT_ACTIVITY is not in BCNF because columns StudentID and Activity are both
determinants, but neither is a candidate key. StudentID and Activity are only part of the candidate
key (StudentID, Activity).

THE way Both StudentID and Activity are part of the candidate key (StudentID, Activity).
This, however, is not good enough. A determinant must have all of the
same columns to be the same as a candidate key. Remember, as we stated previously:

| swear to construct my tables so that all non-key columns are dependent on the key, the
whole key, and nothing but the key, so help me Codd.

To normalize this table, we need to construct tables so that every determinant is a
candidate key. We can do this by creating a separate table for each functional dependency as we
did before. The result is:

ACTIVITY (Activity, ActivityFee)
PAYMENT (StudentID, Activity, AmountPaid)

with referential integrity constraints;
PAYMENT.StudentID must exist in STUDENT.StudentID
and

PAYMENT.Activity must exist in ACTIVITY.Activity

Figure 3-25

The Normalized STUDENT,
ACTIVITY, and PAYMENT
Relations

Figure 3-26

Sample Data for the
SKU_DATA 3 Relation

Chapter 3 The Relational Model and Normalization 125

STUDENT

These tables are in BCNF and will have no anomalies from functional dependencies. The
sample data for the normalized tables are shown in Figure 3-25.

Normalization Example 5

Now consider a normalization process that requires two iterations of step 3 in the procedure
in Figure 3-19. To do this, we will extend the SKU_DATA relation by adding the budget code
of each department. We call the revised relation SKU_DATA_3 and define it as follows:

SKU_DATA 3 (SKU, SKU_Description, Department, DeptBudgetCode, Buyer)

Sample data for this relation are shown in Figure 3-26.
SKU_DATA _3 has the following functional dependencies:

SKU = (SKU_Description, Department, DeptBudgetCode, Buyer)
SKU_Description = (SKU, Department, DeptBudgetCode, Buyer)
Buyer - (Department, DeptBudgetCode)

Department = DeptBudgetCode

SKU_DATA 3

|

126

Part 2 Database Design

Of the four determinants, both SKU and SKU_Description are candidate keys, but neither
Department nor Buyer is a candidate key. Therefore, this relation is not in BCNF.

To normalize this table, we must transform this table into two or more tables that are in BCNF.
In this case, there are two problematic functional dependencies. According to the note at the end
of the procedure in Figure 3-19, we take the functional dependency whose determinant is not a
candidate key and has the largest number of columns first. In this case, we take the columns of

Buyer = (Department, DeptBudgetCode)

and place them in a table of their own.

Next, we make the determinant the primary key of the new table, remove all columns
except Buyer from SKU_DATA_3, and make Buyer a foreign key of the new version of
SKU_DATA_3, which we will name SKU_DATA_4. We can also now assign SKU as the primary
key of SKU_DATA_4. The results are:

BUYER (Buyer, Department, DeptBudgetCode)

SKU_DATA 4 (SKU, SKU_Description, Buyer)

We also create the referential integrity constraint:
SKU_DATA_4.Buyer must exist in BUYER .Buyer
The functional dependencies from SKU_DATA 4 are:
SKU = (SKU_Description, Buyer)

SKU_Description = (SKU, Buyer)

Because every determinant of SKU_DATA 4 is also a candidate key, the relationship is
now in BCNF. Looking at the functional dependencies from BUYER we find:
Buyer = (Department, DeptBudgetCode)
Department = DeptBudgetCode
BUYER is not in BCNF because Department is a determinant that is not a candidate key. In
this case, we must move (Department, DeptBudgetCode) into a table of its own. Following the

procedure in Figure 3-19 and breaking BUYER into two tables (DEPARTMENT and BUYER_2)
gives us a set of three tables:

BUYER_2 (Buyer, Department)
SKU_DATA 4 (SKU, SKU_Description, Buyer)

with referential integrity constraints:

SKU_DATA_4.Buyer must exist in BUYER_2.Buyer
BUYER_2.Department must exist in DEPARTMENT.Department

The functional dependencies from all three of these tables are:

Department = DeptBudgetCode
Buyer = Department

SKU = (SKU_Description, Buyer)
SKU_Description = (SKU, Buyer)

At last, every determinant is a candidate key, and all three of the tables are in BCNF. The resulting
relations from these operations are shown in Figure 3-27.

Eliminating Anomalies from Multivalued Dependencies

All of the anomalies in the last section were due to functional dependencies, and when we
normalize relations to BNCF we eliminate these anomalies. However, anomalies can also arise
from another kind of dependency the multivalued dependency. A multivalued dependency
occurs when a determinant is matched with a particular set of values.

Figure - 3-27

The Normalized
DEPARTMENT, BUYER_2,
and SKU_DATA_4 Relations

Chapter 3 The Relational Model and Normalization 127

DEPARTMENT

Examples of multivalued dependencies are:

EmployeeName = = EmployeeDegree
EmployeeName = = EmployeeSibling
PartKitName = = Part

In each case, the determinant is associated with a set of values, and example data for each of
these multivalued dependencies are shown in Figure 3-28. Such expressions are read as

EmployeeName multidetermines EmployeeDegree and EmployeeName multidetermines
EmployeeSibling and PartKitName multidetermines Part. Note that multideterminants are
shown with a double arrow rather than a single arrow.

Employee Jones, for example, has degrees AA and BS. Employee Greene has degrees
BS, MS, and PhD. Employee Chau has just one degree, BS. Similarly, employee Jones has
siblings (brothers and sisters) Fred, Sally, and Frank. Employee Greene has sibling Nikki,
and employee Chau has siblings Jonathan and Eileen. Finally, PartKitName Bike
Repair has parts Wrench, Screwdriver, and Tube Fix. Other kits have parts as shown in
Figure 3-28.

Unlike functional dependencies, the determinant of a multivalued dependency can never be
the primary key. In all three of the tables in Figure 3-28, the primary key consists of the composite
of the two columns in each table. For example, the primary key of the EMPLOYEE_DEGREE table
is the composite key (EmployeeName, EmployeeDegree).

Multivalued dependencies pose no problem as long as they exist in tables of their own.
None of the tables in Figure 3-28 have modification anomalies. However, if A = = B, then
any relation that contains A, B, and one or more additional columns will have modification
anomalies.

For example, consider the situation if we combine the employee data in Figure 3-28 into
a single EMPLOYEE_DEGREE_SIBLING table with three columns (EmployeeName,
EmployeeDegree, EmployeeSibling), as shown in Figure 3-29.

128

Figure | 3-28

Three Exarﬁples of
Dependencies

Part 2 Database Design

EMPLOYEE_DEGREE

FIETEIREL

[=x]

EMPLOYEE_SIBLING

Pl e

[=x]

PARTKIT_PART
PartkitName | Part

T

Now, what actions need to be taken if employee Jones earns an MBA? We must add three
rows to the table. If we do not, if we only add the row (Jones, MBA, Fred), it will appear as if
Jones is an MBA with her brother Fred, but not with her sister Sally or her other brother Frank.
However, suppose Greene earns an MBA. Then we need only add one row (Greene, MBA,

Nikki). But, if Chau earns an MBA, we need to add two rows. These are insertion anomalies.
There are equivalent modification and deletion anomalies as well.

In Figure 3-29, we combined two multivalued dependencies into a single table and obtained
modification anomalies. Unfortunately, we will also get anomalies if we combine a multivalued
dependency with any other column, even if that other column has no multivalued dependency.

Figure 3-30 shows what happens when we combine the multivalued dependency

PartKitName - = Part
with the functional dependency
PartKitName = PartKitPrice

For the data to be consistent, we must repeat the value of price for as many rows as each
kit has parts. For this example, we must add three rows for the Bike Repair kit and four rows
for the First Aid kit. The result is duplicated data that can cause data integrity problems.

Figure | 3-29

EMPLOYEE_DEGREE_
SIBLING Relation with Two
Multivalued Dependencies

Figure : 3-30 -

PARTKIT_PART_PRICE
Relation with a Functional
Dependency and a
Multivalued Dependency

Chapter 3 The Relational Model and Normalization 129

EMPLOYEE_DEGREE_SIBLING

Now you also know the problem with the relation in Figure 3-2. Anomalies exist in that
table because it contains two multivalued dependencies:
BuyerName = - SKU_Managed
BuyerName = = CollegeMajor

Fortunately, it is easy to deal with multivalued dependencies: Put them into a table of their
own. None of the tables in Figure 3-28 has modification anomalies, because each table consists
of only the columns in a single, multivalued dependency. Thus, to fix the table in Figure 3-2, we
must move BuyerName and SKU_Managed into one table and BuyerName and CollegeMajor
into a second table:
PRODUCT_BUYER_SKU (BuyerName, SKU_Managed)
PRODUCT_BUYER_MAJOR (BuyerName, CollegeMajor)

The results are shown in Figure 3-31. If we want to maintain strict equivalence between these
tables, we would also add the referential integrity constraint:

PRODUCT_BUYER_SKU.BuyerName must be identical to
PRODUCT_BUYER_MAJOR.BuyerName

This referential integrity constraint may not be necessary, depending on the requirements of
the application.

Notice that when you put multivalued dependencies into a table of their own, they disappear.
The result is just a table with two columns, and the primary key (and sole candidate key) is the

PARTKIT_PART_PRICE

130

Figure : 3-31

Placing the Two Multivalued
Dependencies in Figure 3-2
into Separate Relations

Part 2 Database Design

PRODUCT_BUYER_SKU

composite of those two columns. When multivalued dependencies have been isolated in this way,
the table is said to be in fourth normal form (4NF).

The hardest part of multivalued dependencies is finding them. Once you know they exist
in a table, just move them into a table of their own. Whenever you encounter tables with odd
anomalies, especially anomalies that require you to insert, modify, or delete different numbers
of rows to maintain integrity, check for multivalued dependencies.

@ THE WAy You will sometimes hear people use the term normalize in phrases like,

that table has been normalized or check to see if those tables are

normalized. Unfortunately, not everyone means the same thing with these words. Some

people do not know about BCNF, and they will use it to mean tables in 3NF, which is a

lesser form of normalization, one that allows for anomalies from functional dependen-

cies that BCNF does not allow. Others use it to mean tables that are both BCNF and 4NF.

Others may mean something else. The best choice is to use the term normalize to mean
tables that are in both BCNF and 4NF.

Fifth Normal Form

There is a fifth normal form (5NF), also known as Project-Join Normal Form (PJ/NF), which
involves an anomaly where a table can be split apart but not correctly joined back together.
However, the conditions under which this happens are complex, and generally if a relation is in
ANF it is in 5SNF. We will not deal with 5NF in this book. For more information about 5NF, start
with the works cited earlier in this chapter and the Wikipedia article at http://en.wikipedia.org/
wiki/Fifth_normal_form.

Domain/Key Normal Form

As discussed earlier in this chapter, in 1982 R. Fagin published a paper that defined
domain/key normal form (DK/NF). Fagin asked, What conditions need to exist for a relation
to have no anomalies? He showed that a relation in DK/NF has no modification anomalies
and, further, that a relation that has no modification anomalies is in DK/NF.

Chapter 3 The Relational Model and Normalization 131

But what does this mean? Basically, DK/NF requires that all the constraints on the data values
be logical implications of the definitions of domains and keys. To the level of detail in this text, and
to the level of detail experienced by 99 percent of all database practitioners, this can be restated as
follows: Every determinant of a functional dependency must be a candidate key. This, of course, is
simply our definition of BCNF, and, for practical purposes, relations in BCNF are in DK/NF as well.

ummary

Databases arise from three sources: from existing data, from
new systems development, and from the redesign of existing
databases. This chapter and the next are concerned with
databases that arise from existing data. Even though a table
is a simple concept, certain tables can lead to surprisingly
difficult processing problems. This chapter uses the concept
of normalization to understand and possibly solve those
problems. Figure 3-3 lists terms you should be familiar with.
A relation is a special case of a table; all relations are
tables, but not all tables are relations. Relations are tables
that have the properties listed in Figure 3-4. Three sets of
terms are used to describe relation structure: (relation,
attribute, tuple); (table, column, row); and (file, field, and
record). Sometimes these terms are mixed and matched. In
practice, the terms table and relation are commonly used
synonymously, and we will do so for the balance of this text.
In a functional dependency, the value of one attribute, or
attributes, determines the value of another. In the functional
dependency A = B, attribute A is called the determinant. Some
functional dependencies arise from equations, but many others
do not. The purpose of a database is, in fact, to store instances
of functional dependencies that do not arise from equations.
Determinants that have more than one attribute are called
composite determinants. IfA = (B,C),thenA = BandA = C.
However, if (A, B) = C,then,ingeneral, neither A = CnorB = C.
If A = B, the values of A may or may not be unique in a
relation. However, every time a given value of A appears, it
will be paired with the same value of B. A determinant is
unique in a relation only if it determines every other attrib-
ute of the relation. You cannot always rely on determining
functional dependencies from sample data. The best idea is
to verify your conclusions with the users of the data.
A key is a combination of one or more columns used to
identify one or more rows. A composite key is a key with two
or more attributes. A determinant that determines every

‘Bey Terms

attribute

Boyce-Codd Normal Form (BCNF)
candidate key

composite determinant
composite key

other attribute is called a candidate key. A relation may have
more than one candidate key. One of them is selected to be
used by the DBMS for finding rows and is called the primary
key. A surrogate key is an artificial attribute used as a pri-
mary key. The value of a surrogate key is supplied by the
DBMS and has no meaning to the user. A foreign key is a key
in one table that references the primary key of a second
table. A referential integrity constraint is a limitation on data
values of a foreign key that ensures that every value of the
foreign key has a match to a value of a primary key.

The three kinds of modification anomalies are insert,
update, and delete. Codd and others defined normal forms
for describing different table structures that lead to anom-
alies. A table that meets the conditions listed in Figure 3-4 is
in INF. Some anomalies arise from functional dependencies.
Three forms, 2NF, 3NF, and BCNF, are used to treat such
anomalies.

In this text, we are only concerned with the best of these
forms, BCNF. If arelation is in BCNF, then no anomalies from
functional dependencies can occur. A relation is in BCNF if
every determinant is a candidate key.

Relations can be normalized using either a Step-by-
Step method or a Straight-to-BNCF method. Which
method to use is a matter of personal preference, and both
methods produce the same results

Some anomalies arise from multivalued dependencies.
A multidetermines B, or A = = B, if A determines a set of
values. If A multidetermines B, then any relation that contains
A, B, and one or more other columns will have modification
anomalies. Anomalies due to multivalued dependencies can
be eliminated by placing the multivalued dependency in a
table of its own. Such tables are in 4NF.

There is a 5NF, but generally tables in 4NF are in 5NF.
DK/NF has been defined, but in practical terms the defini-
tion of DK/NF is the same as the definition of BCNF.

data integrity problems

deletion anomaly

determinant

domain/key normal form (DK/NF)
entity

132

Part 2 Database Design

fifth normal form (5NF)
first normal form (1INF)
foreign key

fourth normal form (4NF)
functional dependency
functionally dependent
insertion anomaly

key

multivalued dependency
non-prime attribute
normal forms
overlapping candidate key

partially dependent

primary key

Project-Join Normal Form (PJ/NF)
referential integrity constraint
relation

second normal form (2NF)
surrogate key

third normal form (3NF)
transitive dependency

tuple

update anomaly

@eview Questions

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10

3.11

3.12

3.13

3.14
3.15
3.16
3.17

3.18

3.19

Name three sources for databases.

What is the basic premise of this and the next chapter?
Explain what is wrong with the table in Figure 3-2.

Define each of the terms listed in Figure 3-3.

Describe the characteristics of a table that make it a relation.
Give an example of two tables that are not relations.

Suppose that two columns in two different tables have the same column name. What
convention is used to give each a unique name?

Must all the values in the same column of a relation have the same length?
Explain the three different sets of terms used to describe tables, columns, and rows.

Explain the difference between functional dependencies that arise from equations and
those that do not.

Intuitively, what is the meaning of the functional dependency
PartNumber = PartWeight

Explain the following statement: The only reason for having relations is to store
instances of functional dependencies.

Explain the meaning of the expression:
(FirstName, LastName) = Phone

What is a composite determinant?

If (A,B) = C,then canwe also say that A = C?
If A = (B, C), then can we also say that A = B?

For the SKU_DATA table in Figure 3-1, explain why Buyer determines Department, but
Department does not determine Buyer.

For the SKU_DATA table in Figure 3-1, explain why:
SKU_Description = (SKU, Department, Buyer).
Ifitis true that

PartNumber = PartWeight

does that mean that PartNumber will be unique in a relation?

Chapter 3 The Relational Model and Normalization 133

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

3.31
3.32

3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48

3.49
3.50

3.51

Under what conditions will a determinant be unique in a relation?
What is the best test for determining whether a determinant is unique?
What is a composite key?

What is a candidate key?

What is a primary key?

Explain the difference between a candidate key and a primary key.
What is a surrogate key?

Where does the value of a surrogate key come from?

When would you use a surrogate key?

What is a foreign key?

The term domestic key is not used. If it were used, however, what do you think it would
mean?

What is a normal form?

Illustrate deletion, modification, and insertion anomalies on the STUDENT_ACTIVITY
relation in Figure 3-24.

Explain why duplicated data leads to data integrity problems.

What relations are in INF?

Which normal forms are concerned with functional dependencies?

What conditions are required for a relation to be in 2NF?

What conditions are required for a relation to be in 3NF?

What conditions are required for a relation to be in BCNF?

If a relation is in BCNF, what can we say about it with regard to 2NF and 3NF?
What normal form is concerned with multivalued dependencies?

What is the premise of Fagins work on DK/NF?

Summarize the three categories of normalization theory.

In general, how can you transform a relation not in BCNF into ones that are in BCNF?
What is a referential integrity constraint?

Explain the role of referential integrity constraints in normalization.

Why is an un-normalized relation like a paragraph with multiple themes?
In normalization Example 3, why is the EXTENDED_PRICE relation silly ?
In normalization Example 4, under what conditions is

(StudentID, Activity) = ActivityFee

more accurate than

Activity = ActivityFee

If a determinant is part of a candidate key, is that good enough for BCNF?
In normalization Example 5, why are the following two tables not correct?

DEPARTMENT (Department, DeptBudgetCode, Buyer)
SKU_DATA 4 (SKU, SKU_Description, Department)

How does a multivalued dependency differ from a functional dependency?

134 Part 2

3.52

3.53
3.54

3.55
3.56
3.57

Qroject Questions

3.58

3.59

Database Design

Consider the relation:

PERSON (Name, Sibling, ShoeSize)

Assume that the following functional dependencies exist:

Name = = Sibling

Name - ShoeSize

Describe deletion, modification, and insertion anomalies for this relation.
Place the PERSON relation into 4NF.

Consider the relation:

PERSON_2 (Name, Sibling, ShoeSize, Hobby)

Assume that the following functional dependencies exist:
Name = = Sibling

Name - ShoeSize

Name = = Hobby

Describe deletion, modification, and insertion anomalies for this relation.
Place the PERSON_2 relation into 4NF.

What is 5NF?

How do the conditions for DK/NF correspond to the conditions for BCNF?

Consider the table:
STAFF_MEETING (EmployeeName, ProjectName, Date)

The rows of this table record the fact that an employee from a particular project
attended a meeting on a given date. Assume that a project meets at most once per day.
Also, assume that only one employee represents a given project, but that employees

can be assigned to multiple projects.
A. State the functional dependencies in STAFF_MEETING.

B. Transform this table into one or more tables in BCNF. State the primary keys,

candidate keys, foreign keys, and referential integrity constraints.

C. Isyour designin part B an improvement over the original table? What advantages

and disadvantages does it have?

Consider the table:

STUDENT (StudentNumber, StudentName, Dorm, RoomType, DormCost, Club,

ClubCost, Sibling, Nickname)

Assume that students pay different dorm costs, depending on the type of room they
have, but that all members of a club pay the same cost. Assume that students can have

multiple nicknames.

A. State any multivalued dependencies in STUDENT.
B. State the functional dependencies in STUDENT.

C. Transform this table into two or more tables such that each table is in BCNF and in
4NF. State the primary keys, candidate keys, foreign keys, and referential integrity

constraints.

Chapter 3 The Relational Model and Normalization 135

A. Assume that Marcia keeps a table of data about her customers. Consider just the follow-
ing part of that table:

Dry . | CUSTOMER (Phone, FirstName, LastName)
Cleaning

Marcia’s

Explain the conditions under which each of the following are true:
1. Phone = (FirstName, LastName)

2. (Phone, FirstName) = LastName

3. (Phone, LastName) - FirstName

4, (LastName, FirstName) = Phone

5. Phone = = LastName

6. Phone - = FirstName

7. Phone = = (FirstName, LastName)

Is condition A.7 the same as conditions A.5 and A.6? Why or why not?
C. State an appropriate referential integrity constraint for the tables:

CUSTOMER (Phone, FirstName, LastName)
INVOICE (InvoiceNumber, Dateln, DateOut, Phone)

D. Consider the tables:

CUSTOMER (Phone, FirstName, LastName)
INVOICE (InvoiceNumber, Dateln, DateOut, FirstName, LastName)

What does the following referential integrity constraint mean?
INVOICE.(FirstName, LastName) must be in CUSTOMER.(FirstName, LastName)

Is this constraint the same as the set of referential integrity constraints:

INVOICE.FirstName must be in CUSTOMER.FirstName
INVOICE.LastName must be in CUSTOMER.LastName

Explain why or why not.
E. Do you prefer the design in C or the design in D? Explain your reasoning.

F. Transform the following table into two or more tables in BCNF and 4NF. Indicate the
primary keys, candidate keys, foreign keys, and referential integrity constraints. Make
and state assumptions as necessary.

INVOICE (CustomerNumber, FirstName, LastName, Phone, InvoiceNumber, Dateln,
DateOut, ItemType, Quantity, ItemPrice, ExtendedPrice, Speciallnstructions)

G. Explain how your answer to question F changes depending on whether you assume that
CustomerNumber = (FirstName, LastName)
or

CustomerNumber = = (FirstName, LastName)

136

Morgan

Importing

Part 2 Database Design

1.
2.
3.
4.
5.
6.
7.
B.
1.
2.
C.

Morgan keeps a table of data about the stores from which he purchases. The stores are
located in different countries and have different specialties. Consider the following relation:

STORE (StoreName, City, Country, OwnerName, Specialty)

Explain the conditions under which each of the following are true:

StoreName = City

City = StoreName

City = Country

(StoreName, Country) = (City, OwnerName)
(City, Specialty) = StoreName

OwnerName = = StoreName

StoreName = = Specialty

With regard to the relation in part A:

Specify which of the dependencies in part A seem most appropriate for a small
import export business.

Given your assumptions in B.1, transform the STORE table into a set of tables that
are in both 4NF and BCNF. Indicate the primary keys, candidate keys, foreign keys,
and referential integrity constraints.

Consider the relation:

SHIPMENT (ShipmentNumber, ShipperName, ShipperContact, ShipperFax,
DepartureDate, ArrivalDate, CountryOfOrigin, Destination, ShipmentCost,
InsuranceValue, Insurer)

1.

Write a functional dependency that expresses the fact that the cost of a shipment
between two cities is always the same.

Write a functional dependency that expresses the fact the insurance value is always
the same for a given shipper.

Write a functional dependency that expresses the fact the insurance value is always
the same for a given shipper and country of origin.

Describe two possible multivalued dependencies in SHIPMENT.

State what you believe are reasonable functional dependencies for the SHIPMENT
relation for a small import export business.

State what you believe are reasonable multivalued dependencies for the SHIPMENT
relation.

Using your assumptions in 5 and 6, transform SHIPMENT into a set of tables in BCNF
and 4NF. Indicate the primary keys, candidate keys, foreign keys, and referential
integrity constraints.

Database Design
Using Normalization

Chapter Objectives

To design updatable databases to store data received To recognize and be able to correct common design
from another source problems:

To use SQL to access table structure

To understand the advantages and disadvantages of
normalization

To understand denormalization

To design read-only databases to store data from
updatable databases

The multivalue, multicolumn problem

The inconsistent values problem

The missing values problem

The general-purpose remarks column problem

In Chapter 3, we defined the relational model, described modification

anomalies, and discussed normalization using BCNF and 4NF. In this

chapter, we apply those concepts to the design of databases that are

created from existing data.

The premise of this chapter is that you have received, from some source,
one or more tables of data that are to be stored in a new database. The

question is, should that data be stored as is, or should it be transformed in

some way before it is stored? Normalization theory plays an important role,

as you will see.

137

138 Part 2 Database Design

Assess Table Structure

When someone gives you a set of tables and asks you to construct a database to store them,
your first step should be to assess the tables structure and content. General guidelines for
assessing a tables structure are summarized in Figure 4-1.

As shown in Figure 4-1, you should examine the data and determine the functional
dependencies, multivalued dependencies, candidate keys, and each tables primary key. Also,
look for possible foreign keys. Again, you can base your conclusions on sample data, but that
data might not have all of the possible data cases. Therefore, verify your assumptions and
conclusions with the users.

For example, suppose you receive data for the following SKU_DATA and BUYER tables:

SKU_DATA (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Begin by counting the number of rows in each table using the SQL COUNT(*) function.
Then, to determine the number and type of the tables columns, use an SQL SELECT * statement.
If your table has thousands or millions of rows, however, a full query will take considerable time.
One way to limit the results of this query is to use the SQL TOP {numberofRows} expression.
For example, to obtain all columns for the first 10 rows of the SKU_DATA table, you would code:

/* *** SQL-Query-CHO04-01 *** */
SELECT TOP 10 *
FROM SKU_DATA;

This query will show you all columns and data for 10 rows. If you want the top 50 rows, just use
TOP 50 instead of TOP 10, and so on.

With regard to foreign keys, it is risky to assume that referential integrity constraints have
been enforced on the data. Instead, check it yourself.

After investigation, you learn that SKU is the primary key of SKU_DATA, and that Buyer is the
primary key of BUYER. You also think that SKU_DATA Buyer is likely a foreign key linking to
BUYER Buyer. The question is whether the following referential integrity constraint holds:

SKU_DATA.Buyer must exist in BUYER.Buyer

You can use SQL to determine whether this is true. The following query will return any values
of the foreign key that violate the constraint:

/* *** SQL-Query-CHO04-02 *** */

SELECT Buyer
FROM SKU_DATA
WHERE Buyer NOT IN
(SELECT SKU_DATA .Buyer
FROM SKU_DATA, BUYER
WHERE SKU_DATA.Buyer = BUYER.Buyer);

Figure: 4-1
Count rows and examine columns
Examine data values and interview users to determine:
Multivalued dependencies
Functional dependencies
Candidate keys
Primary keys
Foreign keys
Assess validity of assumed referential integrity constraints

Guidelines for Assessing
Table Structure

Chapter 4 Database Design Using Normalization 139

The subquery finds all values of Buyer for which there is a match between SKU_DATA Buyer
and BUYER.Buyer. If there is any value of Buyer that is not in this subquery, then that value will
be displayed in the results of the main query. All such values violate the referential integrity
constraint. If we run this query using the data shown in Figure 3-14 (where SKU_DATA
appears with the table name SKU_DATA_2), the query result will be an empty set showing that
there are no referential integrity constraint violations.

After you have assessed the input tables, your next steps depend on whether you are creating
an updatable database or a read-only database. We will consider updatable databases first.

Designing Updatable Databases

Figure: 4-2

Advantages and
Disadvantages of
Normalization

If you are constructing an updatable database, then you need to be concerned about modifica-
tion anomalies and inconsistent data. Consequently, you must carefully consider normalization
principles. Before we begin, lets first review the advantages and disadvantages of normalization.

Advantages and Disadvantages of Normalization

Figure 4-2 summarizes the advantages and disadvantages of normalization. On the positive
side, normalization eliminates modification anomalies and reduces data duplication. Reduced
data duplication eliminates the possibility of data integrity problems due to inconsistent data
values. It also saves file space.

THE WAY Why do we say reduce data duplication rather than eliminate data
duplication? The answer is that we cannot eliminate all duplicated data
because we must duplicate data in foreign keys. We cannot eliminate Buyer, for example,
from the SKU_DATA table, because we would then not be able to relate BUYER and
SKU_DATA rows. Values of Buyer are thus duplicated in the BUYER and SKU_DATA tables.
This observation leads to a second question: If we only reduce data duplication,
how can we claim to eliminate inconsistent data values? Data duplication in foreign keys
will not cause inconsistencies, because referential integrity constraints prohibit them.
As long as we enforce such constraints, the duplicate foreign key values will cause no
inconsistencies.

On the negative side, normalization requires application programmers to write more
complex SQL. To recover the original data, they must write subqueries and joins to connect
data stored in separate tables. Also, with normalized data, the DBMS must read two or more
tables, and this can mean slower application processing.

Functional Dependencies

As you learned in Chapter 3, we can eliminate anomalies due to functional dependencies by
placing all tables in BCNF. Most of the time, the problems of modification anomalies are so
great that you should put your tables into BCNF. There are exceptions, however, as you will see.

Advantages
Eliminate modification anomalies
Reduce duplicated data
Eliminate data integrity problems
Save file space
Disadvantages

More complicated SQL required for multitable
subqueries and joins

Extra work for DBMS can mean slower applications

140

Figure{ 4-3
The EQUIF;MENT_REPAIR
Table

Figure | 4-4

The Norméii.zed
EQUIPMENT _ITEM and
REPAIR Relations

Part 2 Database Design

EQUIPMENT_REPAIR

Normalizing with SQL

As we discussed in Chapter 3, a table is in BCNF if all determinants are candidate keys. If any
determinant is not a candidate key, we must break the table into two or more tables. Consider
an example. Suppose you are given the EQUIPMENT_REPAIR table in Figure 4-3 (the same
table shown in Figure 3-10). In Chapter 3, we found that ltemNumber is a determinant, but not
a candidate key. Consequently, we created the EQUIPMENT _ITEM and REPAIR tables shown
in Figure 4-4. In these tables, ltemNumber is a determinant and a candidate key of
EQUIPMENT _ITEM, and RepairNumber is a determinant and primary key of REPAIR; thus
both tables are in BCNF.

Now, as a practical matter, how do we transform the data in the format in Figure 4-3 to
that in Figure 4-4? To answer that question, we need to use the SQL INSERT statement. You
will learn the particulars of the INSERT statement in Chapter 7. For now, we will jump ahead
and use one version of it to illustrate the practical side of normalization.

First, we need to create the structure for the two new tables in Figure 4-4. If you are using
Microsoft Access, you can follow the procedure in Appendix A to create the tables. Later, in
Chapter 7, you will learn how to create tables using SQL, a process that works for all DBMS
products.

Once the tables are created, you can fill them using the SQL INSERT command. To fill the
ITEM table, we use:

/* *** SQL-INSERT-CHO4-01 *** */

INSERT INTO EQUIPMENT_ITEM
SELECT DISTINCT ItemNumber, EquipmentType, AcquisitionCost
FROM EQUIPMENT_REPAIR;

Notice that we must use the DISTINCT keyword because the combination (ItemNumber,
EquipmentType, AcquisitionCost) is not unique in the EQUIPMENT_REPAIR table. Once we

EQUIPMENT_ITEM
| temNumber | EquipmentType | AcquisitionCost

Chapter 4 Database Design Using Normalization 141

have created the rows in EQUIPMENT _ITEM, we can then use the following INSERT com-
mand to fill the rows of REPAIR:

/* *** SQL-INSERT-CHO04-02 *** */

INSERT INTO REPAIR
SELECT RepairNumber, ItemNumber, RepairDate, RepairCost
FROM EQUIPMENT_REPAIR;

As you can see, the SQL statements for normalizing tables are relatively simple. After this
transformation, we should probably remove the EQUIPMENT _REPAIR table. For now, you can
do this using the graphical tools in Microsoft Access, SQL Server, Oracle Database, or MySQL.
In Chapter 7, you will learn how to remove tables using the SQL DROP TABLE statement.
You will also learn how to use SQL to create the referential integrity constraint:

REPAIR.ItemNumber must exist in ITEM.ltemNumber

If you want to try out this example, download the Microsoft Access 2010 database
Equipment-Repair-Database.accdb from the texts Web site at www.pearsonhighered.com/
kroenke. This database has the EQUIPMENT _REPAIR table with data. Create the new tables (see
Appendix A) and then do the normalization by executing the SQL INSERT statements illustrated.

This process can be extended to any number of tables. We will consider richer examples of
it in Chapter 7. For now, however, you should have the gist of the process.

Choosing Not to Use BCNF

Although in most cases the tables in an updatable database should be placed in BCNF, in some
situations BCNF is just too pure. The classic example of unneeded normalization involves zip
and similar postal codes (although, in fact, zip codes may not always determine city and state).
Consider the following table for customers in the United States:

The functional dependencies of this table are:

CustomerID = (LastName, FirstName, Street, City, State, Zip)
Zip - (City, State)

This table is not in BCNF because Zip is a determinant that is not a candidate key. We can nor-
malize this table as follows:

ZIP_CODE (Zip, City, State)
with referential integrity constraint:
CUSTOMER_2.Zip must exist in ZIP_CODE.Zip

The tables CUSTOMER_2 and ZIP_CODE are in BCNF, but consider these tables in light of the
advantages and disadvantages of normalization listed in Figure 4-2. Normalization eliminates
modification anomalies, but how often does zip code data change? How often does the post office
change the city and state assigned to a zip code value? Almost never. The consequences on every
business and person would be too severe. So, even though the design allows anomalies to occur, in
practice, they will not occur because the data never change. Consider the second advantage:
Normalization reduces data duplication, and hence improves data integrity. In fact, data integrity
problems can happen in the single-table example if someone enters the wrong value for City, State,
or Zip. In that case, the database will have inconsistent Zip values. But, normal business processes
will cause zip code errors to be noticed, and they will be corrected without problem.

142

Part 2 Database Design

Now consider the disadvantages of normalization. Two separate tables require application
programs to write more complex SQL. They also require the DBMS to process two tables,
which may make the applications slow. Weighing the advantages and disadvantages, most
practitioners would say that the normalized data are just too pure. Zip code data would there-
fore be left in the original table.

In summary, when you design an updatable database from existing tables, examine every
table to determine if it is in BCNF. If it is not, then the table is susceptible to modification
anomalies and inconsistent data. In almost all cases, transform the table into tables that are in
BCNF. However, if the data are never modified and if data inconsistencies will be easily
corrected via the normal operation of business activity, then you may choose not to place the
table into BCNF.

Multivalued Dependencies

Unlike functional dependencies, the anomalies from multivalued dependencies are so serious
that multivalued dependencies should always be eliminated. Unlike BCNF, there is no gray
area. Just place the columns of a multivalued dependency in tables of their own.

As shown in the last section, normalization is not difficult. It does mean that application
programmers will have to write subqueries and joins to re-create the original data. Writing
subqueries and joins, however, is nothing compared with the complexity of code that must be
written to handle the anomalies due to multivalued dependencies.

Some experts might object to such a hard and fast rule, but it is justifiable. Although there
may be a few rare, obscure, and weird cases in which multivalued dependencies are not
problematic, such cases are not worth remembering. Until you have years of database design
experience, always eliminate multivalued dependencies from any updatable table.

Designing Read-Only Databases

In the course of your career, you will likely be given tables of data and asked to create a read-
only database. In fact, this task is commonly assigned to beginning database administrators.

Read-only databases are used in business intelligence (Bl) systems for querying, reporting,
and data mining applications, as you will learn in Chapter 13. Because such databases are
updated by carefully controlled and timed procedures, the design guidelines and design
priorities are different than those for operational databases that are frequently updated.

For several reasons, normalization is seldom an advantage for a read-only database. For
one, if a database is never updated, then no modification anomalies can occur. Hence, consid-
ering Figure 4-2, the only reason to normalize a read-only database is to reduce data duplica-
tion. However, with no update activity, there is no risk of data integrity problems, so the only
remaining reason to avoid duplicated data is to save file space.

Today, however, file space is exceedingly cheap, nearly free. So unless the database is
enormous, the cost of storage is minimal. It is true that the DBMS will take longer to find and
process data in large tables, so data might be normalized to speed up processing. But even that
advantage is not clear-cut. If data are normalized, then data from two or more tables may need
to be read, and the time required for the join may overwhelm the time savings of searching
in small tables. In almost all cases, normalization of the tables in a read-only database is a
bad idea.

Denormalization

Often the data for a read-only database are extracted from operational databases. Because
such databases are updatable, they are probably normalized. Hence, you will likely receive the
extracted data in normalized form. In fact, if you have a choice, ask for normalized data. For
one, normalized data are smaller in size and can be transmitted to you more quickly. Also, if
the data are normalized, it will be easier for you to reformat the data for your particular needs.

According to the last section, you probably do not want to leave the data in normalized
form for a read-only database. If that is the case, you will need to denormalize, or join, the
data prior to storage.

Figuref 4-5

The Normalized STUDENT,
ACTIVITY, and PAYMENT
Relations

Chapter 4 Database Design Using Normalization 143

STUDENT

Consider the example in Figure 4-5. This is a copy of the normalized STUDENT,
ACTIVITY, and PAYMENT data in Figure 3-18. Suppose that you are creating a read-only
database that will be used to report amounts due for student activity payments. If you store
the data in this three-table form, every time someone needs to compare AmountPaid with
ActivityFee, he or she must join the three tables together. To do this, that person will need to
know how to write a three-table join, and the DBMS will need to perform the join every time
the report is prepared.

You can reduce the complexity of the SQL required to read these data and also reduce
DBMS processing by joining the tables once and storing the joined result as a single table.
The following SQL statement will join the three tables together and store them in a new table
named STUDENT_ACTIVITY_PAYMENT_DATA:

/* *** SQL-INSERT-CHO04-03 *** */
INSERT INTO STUDENT_ACTIVITY_PAYMENT_DATA
SELECT STUDENT.StudentlD, StudentName, ACTIVITY.Activity,
ActivityFee, AmountPaid
FROM STUDENT, PAYMENT, ACTIVITY
WHERE STUDENT.StudentlD = PAYMENT.StudentlD
AND PAYMENT.Activity = ACTIVITY._Activity;

As shown in Figure 4-6, the STUDENT_ACTIVITY_PAYMENT_DATA table that results from
this join has the same data as the original STUDENT_ACTIVITY table shown in Figure 3-24.

As you can see, denormalization is simple. Just join the data together and store the joined
result as a table. By doing this when you place the data into the read-only database, you save
the application programmers from having to code joins for each application, and you also save
the DBMS from having to perform joins and subqueries every time the users run a query or
create a report.

144

Figure 4-6

The DenorFrﬂalized
STUDENT_ACTIVITY_
PAYMENT_DATA Relation

Figurei 4-7
Columns ir'l.t'he PRODUCT
Table

Part 2 Database Design

STUDENT_ACTIVITY_PAYMENT_DATA

Customized Duplicated Tables

Because there is no danger of data integrity problems in a read-only database, and because the
cost of storage today is miniscule, read-only databases are often designed with many copies of
the same data, each copy customized for a particular application.

For example, suppose a company has a large PRODUCT table with the columns listed in
Figure 4-7. The columns in this table are used by different business processes. Some are used
for purchasing, some are used for sales analysis, some are used for displaying parts on a Web
site, some are used for marketing, and some are used for inventory control.

The values of some of these columns, such as those for the picture images, are large. If the
DBMS is required to read all of these data for every query, processing is likely to be slow.
Accordingly, the organization might create several customized versions of this table for use by
different applications. In an updatable database, so much duplicated data would risk severe
data integrity problems, but for a read-only database there is no such risk.

Suppose for this example that the organization designs the following tables:

PRODUCT_PURCHASING (SKU, SKU_Description, VendorNumber,
VendorName, VendorContact_1, VendorContact_2, VendorStreet, VendorCity, VendorState,
VendorZip)

PRODUCT_USAGE (SKU, SKU_Description, QuantitySoldPastYear,
QuantitySoldPastQuarter, QuantitySoldPastMonth)

Chapter 4 Database Design Using Normalization 145

PRODUCT_WEB (SKU, DetailPicture, ThumbnailPicture,
MarketingShortDescription, MarketingLongDescription,
PartColor)

PRODUCT_INVENTORY (SKU, PartNumber, SKU_Description, UnitsCode,

BinNumber, ProductionKeyCode)

You can create these tables using the graphical design facilities of Access or another DBMS.
Once the tables are created, they can be filled using INSERT commands similar to those
already discussed. The only tricks are to watch for duplicated data and to use DISTINCT where
necessary. See Review Question 4.10.

Common Design Problems

Figure - 4-8

Practical Problems in
Designing Databases from
Existing Data

Although normalization and denormalization are the primary considerations when designing
databases from existing data, there are four additional practical problems to consider. These
are summarized in Figure 4-8.

The Multivalue, Multicolumn Problem

The table in Figure 4-7 illustrates the first common problem. Notice the columns VendorContact_1
and VendorContact_2. These columns store the names of two contacts at the part vendor. If the
company wanted to store the names of three or four contacts using this strategy, it would add
columns VendorContact 3, VendorContact_4, and so forth.

Consider another example for an employee parking application. Suppose the
EMPLOYEE_AUTO table includes basic employee data plus columns for license numbers for
up to three cars. The following is the typical table structure:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,Email,
Autol_LicenseNumber, Auto2_LicenseNumber, Auto3_LicenseNumber)

Other examples of this strategy are to store employees childrens names in columns such as
Child_1, Child_2, Child_3, and so forth, for as many children as the designer of the table thinks
appropriate, to store a picture of a house in a real estate application in columns labeled
Picture_1, Picture_2, Picture_3, and so forth.

Storing multiple values in this way is convenient, but it has two serious disadvantages. The
more obvious one is that the number of possible items is fixed. What if there are three contacts
at a particular vendor? Where do we put the third name if only columns VendorContact_1 and
VendorContact_2 are available? Or, if there are only three columns for child names, where do we
put the name of the fourth child? And so forth.

The second disadvantage occurs when querying the data. Suppose we have the following
EMPLOYEE table:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
Email, Child_1, Child_2, Child_3, ... {other data})

Multivalue, Multicolumn Problem
Inconsistent Values

Missing Values

General-Purpose Remarks Column

146

Part 2 Database Design

Further, suppose we want to know the names of employees who have a child with the first
name Gretchen. If there are three child name columns as shown in our EMPLOYEE table, we
must write:

/* *** EXAMPLE CODE-DO NOT RUN *** */
/* *** SQL-Query-CH04-03 *** */

SELECT *

FROM EMPLOYEE

WHERE Child_1 = ’Gretchen”
OR Child_2 = ’Gretchen”’
OR Child_3 = ’Gretchen”;

Of course, if there are seven child names . . . well, you get the picture.
These problems can be eliminated by using a second table to store the multivalued attribute.
For the employee child case, the tables are:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
Email, . . . {other data})

CHILD (EmployeeNumber, ChildFirstName, . . . {other data})

Using this second structure, employees can have an unlimited number of children, and storage
space will be saved for employees who have no children at all. Additionally, to find all of the
employees who have a child named Gretchen, we can code:

/% **% EXAMPLE CODE-DO NOT RUN *** */
/% *** SQL-Query-CHO4-04 *** */

SELECT *
FROM EMPLOYEE
WHERE EmployeeNumber IN
(SELECT EmployeeNumber
FROM CHILD
WHERE ChildFirstName = “Gretchen”);

This second query is easier to write and understand and will work regardless of the number of
children that an employee has.

The alternate design does require the DBMS to process two tables, and if the tables are
large and performance is a concern one can argue that the original design is better. In such
cases, storing multivalues in multiple columns may be preferred. Another, less valid objection
to the two-table design is as follows: We only need space for three cars because university
policy restricts each employee to registering no more than three cars. The problem with this
statement is that databases often outlive policies. Next year that policy may change, and, if it
does, the database will need to be redesigned. As you will learn in Chapter 8, database redesign
is tricky, complex, and expensive. It is better to avoid the need for a database redesign.

THE WAy A few years ago, people argued that only three phone number columns

were needed per person: Home, Office, and Fax. Later they said, Well,
OK, maybe we need four: Home, Office, Fax, and Mobile. Today, who would want to
guess the maximum number of phone numbers a person might have? Rather than
guess, just store Phone in a separate table; such a design will allow each person to have
from none to an unlimited number of phone numbers.

You are likely to encounter the multivalue, multicolumn problem when creating databases
from nondatabase data. It is particularly common in spreadsheet and text data files.
Fortunately, the preferred two-table design is easy to create, and the SQL for moving the data
to the new design is easy to write.

Chapter 4 Database Design Using Normalization 147

THE WAY The multivalue, multicolumn problem is just another form of a multivalued

dependency. For the parking application, for example, rather than store
multiple rows in EMPLOYEE for each auto, multiple named columns are created in the
table. The underlying problem is the same, however.

Inconsistent Values

Inconsistent values are a serious problem when creating databases from existing data.
Inconsistencies occur because different users or different data sources may use slightly
different forms of the same data value. These slight differences may be hard to detect and will
create inconsistent and erroneous information.

One of the hardest such problems occurs when different users have coded the same
entries differently. One user may have coded a SKU_Description as Corn, Large Can; another
may have coded the same item as Can, Corn, Large; and another may have coded the entry as
Large Can Corn. Those three entries all refer to the same SKU, but they will be exceedingly
difficult to reconcile. These examples are not contrived; such problems frequently occur,
especially when combining data from different database, spreadsheet, and file sources.

A related, but simpler, problem occurs when entries are misspelled. One user may enter
Coffee, another may enter Coffeee. They will appear as two separate products.

Inconsistent data values are particularly problematic for primary and foreign key columns.
Relationships will be missing or wrong when foreign key data are coded inconsistently or
misspelled.

Two techniques can be used to find such problems. One is the same as the check for refer-
ential integrity shown on page 138. This check will find values for which there is no match and
will find misspellings and other inconsistencies.

Another technique is to use GROUP BY on the suspected column. For example, if we sus-
pect that there are inconsistent values on SKU_Description in the SKU_DATA table (and note
that here we are discussing and using the original SKU_DATA table with four columns as shown
in Figure 2-5, not the three column version discussed in this chapter on page 138, even though
the query would actually run correctly on either version of the table), we can use the SQL query:

/* *** SQL-Query-CH04-05 *** */

SELECT SKU_Description, COUNT(*) as SKU_NameCount
FROM SKU_DATA

GROUP BY SKU_Description;

The result of this query for the SKU_DATA values we have been using is:

SKIU_Description | NameCount
: Dive Mask, Med Clear 1

Dive Mask, Small Clear

Half-dome Tent

Half-dome Tent Vestibule

Light Fy Climbing Hamess

Std. Scuba Tank, Magenta

Std. Scuba Tank, Yellow

CO =l | | o L P2 | —
—_ = = = = =

In this case, there are no inconsistent values, but if there were, they would stand out. If the
list resulting from the select is too long, groups can be selected that have just one or two elements
using HAVING. Neither check is foolproof. Sometimes, you just have to read the data.

When working with such data, it is important to develop an error reporting and tracking
system to ensure that inconsistencies that users do find are recorded and fixed. Users grow
exceedingly impatient with data errors that persist after they have been reported.

148

Part 2 Database Design

Missing Values

Missing values are a third problem that occurs when creating databases from existing data.
A missing value, or null value, is a value that has never been provided. It is not the same as a
blank value, because a blank value is a value that is known to be blank. A null value is not
known to be anything.

The problem with null values is ambiguity. A null value can indicate one of three conditions:
The value is inappropriate; the value is appropriate but unknown; or the value is appropriate and
known, but no one has entered it into the database. Unfortunately, we cannot tell from a null
value which of these conditions is true.

Consider, for example, a null value for the column DateOfLastChildbirth in a PATIENT
table. If a row represents a male patient, then the null occurs because the value is inappropriate;
a male cannot give birth. Alternatively, if the patient is a female, but the patient has never
been asked for the data, then the value is appropriate, but unknown. Finally, the null value could
also mean that a date value is appropriate and known, but no one has recorded it into the
database.

You can use the SQL term IS NULL to check for null values. For example, to find the
number of null values of Quantity in the ORDER_ITEM table, you can code:

/* *** SQL-Query-CHO04-05 *** */

SELECT COUNT (*) as QuantityNullCount
FROM ORDER_ITEM
WHERE Quantity IS NULL;

The result of this query for the ORDER_ITEM values we have been using is:

Cuantity Mull Count
1 |0

In this case, there are no NULL values, but if there were, we would know how many, and then
we could use a SELECT * statement to find the data of any row that has a null value.

When creating a database from existing data, if you try to define a column that has null
values as the primary key, the DBMS will generate an error message. You will have to remove
the nulls before creating the primary key. Also, you can tell the DBMS that a given column is
not allowed to have null values, and when you import the data, if any row has a null value in
that column, the DBMS will generate an error message. The particulars depend on the DBMS
in use. See Chapter 10 for Microsoft SQL Server 2008 R2, Chapter 10A for Oracles Oracle
Database 11g, and Chapter 10B for Oracle MySQL 5.5. You should form the habit of checking
for null values in all foreign keys. Any row with a null foreign key will not participate in the
relationship. That may or may not be appropriate; you will need to ask the users to find out.
Also, null values can be problematic when joining tables together. You will learn how to deal
with this problem in Chapter 7.

The General-Purpose Remarks Column

The general-purpose remarks column problem is common, serious, and very difficult to solve.
Columns with names such as Remarks, Comments, and Notes often contain important data
that are stored in an inconsistent, verbal, and verbose manner. Learn to be wary of columns
with any such names.

To see why, consider customer data for a company that sells expensive items such as air-
planes, rare cars, boats, or paintings. In a typical setting, someone has used a spreadsheet to
track customer data. That person used a spreadsheet not because it was the best tool for such
a problem, but rather because he or she had a spreadsheet program and knew how to use it.

The typical spreadsheet has columns like LastName, FirstName, Email, Phone, Address,
and so forth. It almost always includes a column entitled Remarks, Comments, Notes, or some-
thing similar. The problem is that needed data are usually buried in such columns and nearly

Chapter 4 Database Design Using Normalization 149

impossible to dig out. Suppose you want to create a database for a customer contact application
for an airplane broker. Assume your design contains the two tables:

CONTACT (ContactlD, ContactlLastName, ContactFirstName,
Address, . . . {other data}, Remarks, AirplaneModellD)

AIRPLANE_MODEL (AirplaneModellD, AirplaneModelName
AirplaneModelDescription, . . . {other airplane model data})

where CONTACT.AirplaneModelID is a foreign key to AIRPLANE_MODEL.AirplaneModellD.
You want to use this relationship to determine who owns, has owned, or is interested in buying
a particular model of airplane.

In the typical situation, the data for the foreign key has been recorded in the Remarks column.
If you read the Remarks column data in CONTACT, you will find entries like: Wants to buy a Piper
Seneca Il , Owner of a Piper Seneca Il , and Possible buyer for a turbo Seneca. All three of these rows
should have a value of AirplaneModelID (the foreign key in CONTACT) that equals the value of
AIRPLANE_MODEL AirplaneModelD for the AirplaneModelName of Piper Seneca Il , but you will
pull your hair out making that determination.

Another problem with general-purpose remarks columns is that they are used inconsis-
tently and contain multiple data items. One user may have used it to store the name of the
spouse of the contact, another may have used it to store airplane models as just described, and
a third may have used it to store the date the customer was last contacted. Or, the same user

may have used it for all three purposes at different times!

The best solution in this case is to identify all of the different purposes of the remarks
column, create new columns for each of those purposes, and then extract the data and store it
into the new columns as appropriate. However, this solution can seldom be automated.

In practice, all solutions require patience and hours of labor. Learn to be wary of such
columns, and dont take such jobs on a fixed-price basis!

ummary

When constructing a database from existing data, the first step
is to assess the structure and content of the input tables. Count
the number of rows and use the SQL SELECT TOP 10 * phrase
to learn the columns in the data. Then, examine the data and
determine functional dependencies, multivalued dependencies,
candidate keys, each tables primary key, and foreign keys. Check
out the validity of possible referential integrity constraints.

Design principles differ depending on whether an updat-
able or read-only database is being constructed. If the former,
then modification anomalies and inconsistent data are
concerns. The advantages of normalization are elimination of
modification anomalies, reduced data duplication, and the
elimination of data inconsistencies. The disadvantages are
that more complex SQL will be required and application
performance may be slower.

For updatable databases, most of the time the problems
of madification anomalies are so great that all tables should
be placed in BCNF. SQL for normalization is easy to write. In
some cases, if the data will be updated infrequently and if
inconsistencies are readily corrected by business processes,
then BCNF may be too pure and the tables should not be
normalized. The problems of multivalued dependencies are
so great that they should always be removed.

Read-only databases are created for reporting, querying,
and data mining applications. Creating such a database is
a task commonly assigned to beginners. When designing

read-only databases, normalization is less desired. If input
data is normalized, it frequently needs to be denormalized
by joining it together and storing the joined result. Also,
sometimes many copies of the same data are stored in tables
customized for particular applications.

Four common problems occur when creating databases
from existing data. The multivalue, multicolumn design sets a
fixed number of repeating values and stores each in a column
of its own. Such a design limits the number of items allowed
and results in awkward SQL query statements. A better design
results from putting multiple values in a table of their own.

Inconsistent values result when data arise from different
users and applications. Inconsistent foreign key values create
incorrect relationships. Data inconsistencies can be detected
using SQL statements, as illustrated in this chapter. A null
value is not the same as a blank. A null value is not known to be
anything. Null values are a problem because they are ambigu-
ous. They can mean that a value is inappropriate, unknown, or
known, but not yet been entered into the database.

The general-purpose remarks column is a column that
is used for different purposes. It collects data items in an
inconsistent and verbose manner. Such columns are espe-
cially problematic if they contain data needed for a foreign
key. Even if they do not, they often contain data for several
different columns. Automated solutions are not possible,
and the correction requires patience and labor.

150 Part 2 Database Design

@ey Terms

denormalize SQL INSERT statement
null value SQL SELECT * statement
SQL COUNT(*) function SQL TOP {numberOfRows} expression

SQL DROP TABLE statement

@eview Questions

4.1
4.2

4.3

4.4

4.5

4.6
4.7
4.8

4.9
4.10

411

Summarize the premise of this chapter.

When you receive a set of tables, what steps should you take to assess their structure
and content?

Show SQL statements to count the number of rows and to list the top 15 rows of the
RETAIL_ORDER table.

Suppose you receive the following two tables:

DEPARTMENT (DepartmentName, BudgetCode)
EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,

Email, DepartmentName)

and you conclude that EMPLOYEE DepartmentName is a foreign key to DEPARTMENT.
DepartmentName. Show SQL for determining whether the following referential integrity
constraint has been enforced:

DepartmentName in EMPLOYEE must exist in DepartmentName in DEPARTMENT
Summarize how database design principles differ with regards to the design of
updatable databases and the design of read-only databases.

Describe two advantages of normalized tables.

Why do we say that data duplication is only reduced? Why is it not eliminated?

If data duplication is only reduced, how can we say that the possibility of data inconsis-
tencies has been eliminated?

Describe two disadvantages of normalized tables.
Suppose you are given the table:

EMPLOYEE_DEPARTMENT (EmployeeNumber, EmployeelLastName,
EmployeeFirstName, Email, DepartmentName, BudgetCode)

and you wish to transform this table into the two tables:

DEPARTMENT (DepartmentName, BudgetCode)
EMPLOYEE (EmplyeeNumber, EmployeeLastName, EmployeeFirstName,

Email, DepartmentName)
Write the SQL statements needed for filling the EMPLOYEE and DEPARTMENT tables
with data from EMPLOYEE_DEPARTMENT.

Summarize the reasons explained in this chapter for not placing zip code values into
BCNF.

Chapter 4 Database Design Using Normalization 151

4.12

4.13

4.14

4.15
4.16

4.17

4.18
4.19

4.20
4.21
4.22
4.23

4.24
4.25

4.26

4.27

4.28
4.29
4.30

431
4.32
4.33
4.34

4.35
4.36

4.37

4.38

Describe a situation, other than the one for zip codes, in which one would choose not
to place tables into BCNF. Justify your decision not to use BCNF.

According to this text, under what situations should you choose not to remove
multivalued dependencies from a relation?

Compare the difficulty of writing subqueries and joins with the difficulty of dealing
with anomalies caused by multivalued dependencies.

Describe three uses for a read-only database.

How does the fact that a read-only database is never updated influence the reasons for
normalization?

For read-only databases, how persuasive is the argument that normalization reduces
file space?

What is denormalization?

Suppose you are given the DEPARTMENT and EMPLOYEE tables in Review Question 4.10
and asked to denormalize them into the EMPLOYEE_DEPARTMENT relation. Show the
design of the EMPLOYEE_DEPARTMENT relation. Write an SQL statement to fill this
table with data.

Summarize the reasons for creating customized duplicated tables.
Why are customized duplicated tables not used for updatable databases?
List four common design problems when creating databases from existing data.

Give an example of a multivalue, multicolumn table other than one discussed in this
chapter.

Explain the problems in your example in Review Question 4.23.

Show how to represent the relation in your answer to Review Question 4.23 with two
tables.

Show how the tables in your answer to Review Question 4.25 solve the problems you
identified in Review Question 4.22.

Explain the following statement: The multivalue, multicolumn problem is just
another form of multivalued dependency. Show how this is so.

Explain ways in which inconsistent values arise.
Why are inconsistent values in foreign keys particularly troublesome?

Describe two ways to identify inconsistent values. Are these techniques certain to find
all inconsistent values? What other step can be taken?

What is a null value?
How does a null value differ from a blank value?
What are three interpretations of null values? Use an example in your answer.

Show SQL for determining the number of null values in the column EmployeeFirstName
of the table EMPLOYEE.

Describe the general-purpose remarks column problem.

Give an example in which the general-purpose remarks column makes it difficult to
obtain values for a foreign key.

Give an example in which the general-purpose remarks column causes difficulties
when multiple values are stored in the same column. How is this problem solved?

Why should one be wary of general-purpose remarks columns?

152

Part 2 Database Design

Qroject Questions

Marcia’s

Dry
Cleaning

The Elliot Bay Sports Club owns and operates three sports club facilities in Houston,
Texas. Each facility has a large selection of modern exercise equipment, weight
rooms, and rooms for yoga and other exercise classes. Elliot Bay offers 3-month and
1-year memberships. Members can use the facilities at any of the three club locations.

Elliot Bay maintains a roster of personal trainers who operate as independent
consultants. Approved trainers can schedule appointments with clients at Elliot Bay
facilities, as long as their client is a member of the club. Trainers also teach yoga,
Pilates, and other classes. Answer the following questions, assuming you have been
provided the following three tables of data (PT stands for personal trainer):

PT_SESSION (Trainer, Phone, Email, Fee, ClientLastName, ClientFirstName,
ClientPhone, ClientEmail, Date, Time)

CLUB_MEMBERSHIP (ClientNumber, ClientLastName, ClientFirstName, ClientPhone,
ClientEmail, MembershipType, EndingDate, Street, City, State, Zip)

CLASS (ClassName, Trainer, StartDate, EndDate, Time, DayOfWeek, Cost)
4.39 Identify possible multivalued dependencies in these tables.
4.40 Identify possible functional dependencies in these tables.
4.41 Determine whether each table is in either BCNF or in 4NF. State your assumptions.

4.42 Modify each of these tables so that every table is in BCNF and 4NF. Use the assumptions
you made in your answer to Project Question 4.41.

4.43 Using these tables and your assumptions, recommend a design for an updatable database.

4.44 Add a table to your answer to Project Question 4.43 that would allow Elliot Bay to assign
members to particular classes. Include an AmountPaid column in your new table.

4.45 Recommend a design for a read-only database that would support the following needs:

A. Enable trainers to ensure that their clients are members of the club.

B. Enable the club to assess the popularity of various trainers.

C. Enable the trainers to determine if they are assisting the same client.

D. Enable class instructors to determine if the attendees to their classes have paid.

Marcia Wilson, the owner of Marcia s Dry Cleaning, is in the process of creating
databases to support the operation and management of her business. For the past
year, she and her staff have been using a cash register system that collects the
following data:

LastName)

Unfortunately, during rush times, not all of the data are entered, and there are
many null values in Phone, FirstName, and LastName. In some cases all three are null,
in other cases one or two are null. InvoiceNumber, Dateln, and Total are never null.
DateOut has a few null values. Also, occasionally during a rush, phone number and
name data have been entered incorrectly. To help create her database, Marcia
purchased a mailing list from a local business bureau. The mailing list includes the
following data:

HOUSEHOLD (Phone, FirstName, LastName, Street, City, State, Zip, Apartment)

In some cases, a phone number has multiple names. The primary key is thus the
composite (Phone, FirstName, LastName). There are no null values in Phone,
FirstName, and LastName, but there are some null values in the address data.

Morgan

Importing

153

Chapter 4 Database Design Using Normalization

There are many names in SALE that are not in HOUSEHOLD, and there are many
names in HOUSEHOLD that are not in SALE.

A. Design an updatable database for storing customer and sales data. Explain how to deal
with the problems of missing data. Explain how to deal with the problems of incorrect
phone and name data.

B. Design a read-only database for storing customer and sales data. Explain how to deal

with the problems of missing data. Explain how to deal with the problems of incorrect
phone and name data.

Phillip Morgan, the owner of Morgan Importing, makes periodic buying trips to various
countries. During the trips, he keeps notes about the items he purchases and basic
data about their shipments. He hired a college student as an intern, and she
transformed his notes into the spreadsheets in Figure 4-9. This is just sample data.
Phillip has purchased hundreds of items over the years, and they have been shipped in
dozens of different shipments.

Phillip wants to enter the information age, thus he has decided to develop a
database of his inventory. He wants to keep track of the items he has purchased, their
shipments, and eventually customers and sales. To get started, he has asked you to
create a database for the data in Figure 4-9.

A. Follow the procedure shown in Figure 4-1 to assess these data.
1. Listall functional dependencies.
2. List any multivalued dependencies.
3. List all candidate keys.
4. Listall primary keys
5. List all foreign keys.
6. State any assumptions you make as you list these components.
List questions you would ask Phillip to verify your assumptions.

C. If there are any multivalued dependencies, create the tables needed to eliminate these
dependencies.

D. The relationship between shipment and item data could possibly be inferred by matching
values in the From cells to values in the City cells. Describe two problems with that
strategy.

E. Describe a change to this spreadsheet that does express the shipment item relationship.

Fiqure : 4-9 F. Assume that Phillip wishes to create an updatable database from these data. Design
9 tables you think are appropriate. State all referential integrity constraints.
Spreadsheets from Morgan
Importing
A B C 1] E | F | G H | 1
1 |ShipmentNumber Shipper Phune Contact From Depailure Anrival Contents InsuredValue
WE dining set, large bureau,
i 49100300 Wordwide 800-1234567 Jose Philippines 5/5/2011 6/17/1999 porcelain lamps $27.500
Miscellaneous linen, large masks,
3 488955 Intenational 600-123-6898 Marilyn Singapore 6/2/2011 14 setting Willow design china §7.500
Woven goods, antigue leather
a4 R4899440 Wardwide A00-173-45R7 .Inze Per Ti32011 72812011 chairs
Large burcau, brass lamps, willow
5 399400 Inlenativnal 600-123-6896 Maiilyn Singapureee 8/5/2011 9/11/2011 design sewviny dishes $18,000
6
7
2
) Item Date City Store Salesperson Price
1u Willow Serving Dishes 7/15/2009 Singapore .Jade Antiques Swee Lai 54,500
11 Large bureau T/M7/2009 Singapore Eastemn Sales Jeremey $9,500
12 Brass lamps T/20/2009 Singapore Jade Antiques Mr. James $1,200
13 QE Dining Set 4/7/2009 Manila E. Treasures Cracielle §14,300
14
15

154

Part 2 Database Design

G.

Assume that Phillip wishes to create a read-only database from these data. Design tables
you think are appropriate. State all referential integrity constraints.

Do these data have the multivalue, multicolumn problem? If so, how will you deal
with it?

Do these data have the inconsistent data problem? If so, how will you deal with it?
Do these data have a null value data problem? If so, how will you deal with it?

Do these data have the general-purpose remarks problem? If so, how will you deal
with it?

Chapter Objectives

To understand the two-phase data modeling/database
design process

To understand the purpose of the data modeling process
To understand entity-relationship (E-R) diagrams

To be able to determine entities, attributes, and
relationships

To be able to create entity identifiers

To be able to determine minimum and maximum
cardinalities

To understand variations of the E-R model

To understand and be able to use ID-dependent and
other weak entities

To understand and be able to use supertype/subtype
entities

Data Modeling
with the Entity-
Relationship Model

To understand and be able to use strong entity patterns
To understand and be able to use the ID-dependent
association pattern

To understand and be able to use the ID-dependent
multivalued attribute pattern

To understand and be able to use the ID-dependent
archetype/instance pattern

To understand and be able to use the line-item pattern
To understand and be able to use the for-use-by
pattern

To understand and be able to use recursive patterns
To understand the iterative nature of the data modeling
process

To be able to use the data modeling process

In this chapter and the next, we consider the design of databases that

arise from the development of new information systems. As you will learn,
such databases are designed by analyzing requirements and creating a data
model, or blueprint, of a database that will meet those requirements. The
data model is then transformed into a database design.

155

156

Part 2 Database Design

This chapter addresses the creation of data models using the entity-
relationship data model, the most popular modeling technique. This chapter
consists of three major sections. First, we explain the major elements of the
entity-relationship model and briefly describe several variations on that model.
Next, we examine a number of patterns in forms, reports, and data models that
you will encounter when data modeling. We then illustrate the data modeling
process using the example of a small database at a university. Before starting,
however, you need to understand the purpose of a data model.

Data modeling is a part of the systems analysis and design process. For
an introduction to systems analysis and design, see Appendix B.

The Purpose of a Data Model

A data model is a plan, or blueprint, for a database design. By analogy, consider the construction
of your dorm or apartment building. The contractor did not just buy some lumber, call for the
concrete trucks, and start work. Instead, an architect constructed plans and blueprints for that
building long before construction began. If, during the planning stage, it was determined that a
room was too small or too large, the blueprint could be changed simply by redrawing the lines. If,
however, the need for change occurs after the building is constructed, the walls, electrical system,
plumbing, and so on will need to be rebuilt, at great expense and loss of time. It is easier, simpler,
and faster to change the plan than it is to change a constructed building.

The same argument applies to data models and databases. Changing a relationship during
the data modeling stage is just a matter of changing the diagram and related documentation.
Changing a relationship after the database and applications have been constructed, however,
is much more difficult. Data must be migrated to the new structure, SQL statements will need
to be changed, forms and reports will need to be altered, and so forth.

The Entity-Relationship Model

Dozens of different tools and techniques for constructing data models have been defined over
the years. They include the hierarchical data model, the network data model, the ANSI/SPARC
data model, the entity-relationship data model, the semantic object model, and many others.
Of these, the entity-relationship data model has emerged as the standard data model, and we
will consider only that data model in this chapter.

The entity-relationship (E-R) model was first published by Peter Chen in 1976.1 In this
paper, Chen set out the basic elements of the model. Subtypes (discussed later) were added to
the E-R model to create the extended E-R model,2 and today it is the extended E-R model
that most people mean when they use the term E-R model. In this text, we will use the
extended E-R model.

Entities

An entity is something that users want to track. It is something that is readily identified in the
users work environment. Example entities are EMPLOYEE Mary Lai, CUSTOMER 12345,
SALES-ORDER 1000, SALESPERSON Wally Smith, and PRODUCT A4200. Entities of a given
type are grouped into an entity class. Thus, the EMPLOYEE entity class is the collection of all
EMPLOYEE entities. In this text, entity classes are shown in capital letters.

Lpeter P.Chen, The Entity-Relationship Model Towards a Unified View of Data, ACM Transactions on Data-
base Systems, January 1976, pp. 9 36. For information on Peter Chen see http://en.wikipedia.org/wiki/
Peter_Chen, and for a copy of the article see http://csc.Isu.edu/news/erd.pdf.

27T.). Teorey, D. Yang, and J. P. Fry, A Logical Design Methodology for Relational Databases Using the Extended
Entity-Relationship Model, ACM Computing Surveys, June 1986, pp. 197 222.

Figure: 5-1

CUSTOMER Entity and Two
Entity Instances

Figure: 5-2

Variations on Entity Diagram
Attribute Displays

EMPLOYEE
EmployeeNumber
EmployeeName

Chapter 5 Data Modeling with the Entity-Relationship Model 157

CUSTOMER Entity
CUSTOMER

CustomerNumber
CustomerName
Street

City

State

Zip

ContactName
Email

Two CUSTOMER Instances

1234 99890

Ajax Manufacturing Jones Brothers
123 EIm Street 434 10th Street
Memphis Boston

TN MA

32455 01234
P_Schwartz Fritz Billingsley
P_S@Ajax.com Fritz@JB.com

It is important to understand the differences between an entity class and an entity
instance. An entity class is a collection of entities and is described by the structure of the
entities in that class. An entity instance of an entity class is the occurrence of a particular
entity, such as CUSTOMER 12345. An entity class usually has many instances of an entity. For
example, the entity class CUSTOMER has many instances one for each customer represented
in the database. The CUSTOMER entity class and two of its instances are shown in Figure 5-1.

Attributes

Entities have attributes that describe their characteristics. Examples of attributes are
EmployeeNumber, EmployeeName, Phone, and Email. In this text, attributes are written in
both uppercase and lowercase letters. The E-R model assumes that all instances of a given
entity class have the same attributes.

Figure 5-2 shows two different ways of displaying the attributes of an entity. Figure 5-2(a)
shows attributes in ellipses that are connected to the entity. This style was used in the original
E-R model, prior to the advent of data modeling software products. Figure 5-2(b) shows the
rectangle style that is commonly used by data modeling software products today.

Phone
Email
HireDate
ReviewDate

EMPLOYEE

(a) Attributes in Ellipses (b) Attributes in Rectangle

158

Figure : 5-3

Variations on Level of Entity
Attribute Displays

Part 2 Database Design

Identifiers

Entity instances have identifiers, which are attributes that name, or identify, entity instances. For
example, EMPLOYEE instances can be identified by EmployeeNumber, SocialSecurityNumber, or
EmployeeName. EMPLOYEE instances are not likely to be identified by attributes such as Salary
or HireDate because these attributes are not normally used in a naming role. Similarly, customers
can be identified by CustomerNumber or CustomerName, and sales orders can be identified by
OrderNumber.

The identifier of an entity instance consists of one or more of the entity s attributes.
Identifiers that consist of two or more attributes are called composite identifiers. Examples are
(AreaCode, LocalNumber), (ProjectName, TaskName), and (FirstName, LastName, DateOfHire).

THE way Notice the correspondence of identifiers and keys. The term identifier is

used in a data model, and the term key (which we have already introduced
in our discussion of relational databases in Chapter 3) is used in a database design.
Thus, entities have identifiers, and tables (or relations) have keys. Identifiers serve the
same role for entities that keys serve for tables.

As shown in Figure 5-3, entities are portrayed in three levels of detail in a data model. As
shown in Figure 5-3(a), sometimes the entity and all of its attributes are displayed. In such cases,
the identifier of the attribute is shown at the top of the entity and a horizontal line is drawn after
the identifier. However, in a large data model, so much detail can make the data model diagrams
unwieldy. In those cases, the entity diagram is abbreviated by showing just the identifier, as in
Figure 5-3(b), or by showing just the name of the entity in a rectangle, as shown in Figure 5-3(c).
All three techniques are used in practice; the more abbreviated form in Figure 5-3(c) is used to
show the big picture and overall entity relationships. The more detailed view in Figure 5-3(a) is
frequently used during database design. Most data modeling software products have the ability
to show all three displays.

Relationships

Entities can be associated with one another in relationships. The E-R model contains both
relationship classes and relationship instances.? Relationship classes are associations among
entity classes, and relationship instances are associations among entity instances. In the
original E-R model, relationships could have attributes. Today, that feature is no longer used.

Relationships are given names that describe the nature of the relationship, as shown in
Figure 5-4. In Figure 5-4(a), the Qualification relationship shows which employees have which
skills. In Figure 5-4(b), the Assignment relationship shows which combinations of clients,
architects, and projects have been created. To avoid unnecessary complexity, in this chapter
we will show the names of relationships only if there is a chance of ambiguity.

EMPLOYEE
EmployeeNumber EMPLOYEE

EmployeeName EmployeeNumber | | EMPLOYEE
Phone
Email
HireDate
ReviewDate

(a) Entity with All (b) Entity with Identifier (c) Entity with No
Attributes Attribute Only Attributes

3 For brevity, we sometimes drop the word instance when the context makes it clear that an instance rather
than an entity class is involved.

Figure: 5-4

Binary Versus Ternary
Relationships

Chapter 5 Data Modeling with the Entity-Relationship Model 159

(a) Example Binary Relationship

EMPLOYEE SKILL

Qualification

(b) Example Ternary Relationship
Assignment

CLIENT ARCHITECT

PROJECT

THE WAy Yourinstructor may believe that it is important to always show the name of

a relationship. If so, be aware that you can name a relationship from the
perspective of either of the entities or both. For example, you can name the relationship
between DEPARTMENT and EMPLOYEE as Department Consists Of; or you can hame
it as Employee Works In; or you can name it both ways, using a slash between the two
names, Department Consists Of/Employee Works In. Relationship names are a necessity
when there are two different relationships between the same two entities.

A relationship class can involve two or more entity classes. The number of entity classes in the
relationship is the degree of the relationship. In Figure 5-4(a), the Qualification relationship is of
degree two because it involves two entity classes: EMPLOYEE and SKILL. In Figure 5-4(b), the
Assignment relationship is of degree three because it involves three entity classes: CLIENT,
ARCHITECT, and PROJECT. Relationships of degree two are referred to as binary relationships.
Similarly, relationships of degree three are called ternary relationships.

When transforming a data model into a relational database design, relationships of all
degrees are treated as combinations of binary relationships. The Assignment relationship in
Figure 5-4(b), for example, is decomposed into three binary relationships (can you spot them?).
Most of the time, this strategy is not a problem. However, some nonbinary relationships need
additional work, as you will learn in Chapter 6. All data modeling software products require
you to express relationships as binary relationships.

THE WAY Atthis point, you may be wondering, Whats the difference between an entity

and a table? So far, they seem like different terms for the same thing. The
principle difference between an entity and a table is that you can express a relationship
between entities without using foreign keys. In the E-R model, you can specify a relation-
ship just by drawing a line connecting two entities. Because you are doing logical data
modeling and not physical database design, you need not worry about primary and foreign
keys, referential integrity constraints, and the like. Most data modeling products will allow
you to consider such details if you choose to, but they do not require it.

This characteristic makes entities easier to work with than tables, especially early
in a project when entities and relationships are fluid and uncertain. You can show
relationships between entities before you even know what the identifiers are. For
example, you can say that a DEPARTMENT relates to many EMPLOYEEs before you
know any of the attributes of either EMPLOYEE or DEPARTMENT. This characteristic
enables you to work from the general to the specific. First identify the entities, then think
about relationships, and, finally, determine the attributes.

160

Figure: 5-5

Three Types of Maximum
Cardinality

Part 2 Database Design

In the entity-relationship model, relationships are classified by their cardinality, a word
that means count. The maximum cardinality is the maximum number of entity instances
that can participate in a relationship instance. The minimum cardinality is the minimum
number of entity instances that must participate in a relationship instance.

Maximum Cardinality

In Figure 5-5, the maximum cardinality is shown inside the diamond that represents the
relationship. The three parts of this figure show the three basic maximum cardinalities in the
E-R model.

Figure 5-5(a) shows a one-to-one (abbreviated 1:1) relationship. In a 1.1 relationship, an
entity instance of one type is related to at most one entity instance of the other type. The
Employee_ldentity relationship in Figure 5-5(a) associates one EMPLOYEE instance with one
BADGE instance. According to this diagram, no employee has more than one badge, and no
badge is assigned to more than one employee.

The Computer_Assignment relationship in Figure 5-5(b) illustrates a one-to-many
(abbreviated 1:N) relationship. Here, a single instance of EMPLOYEE can be associated with
many instances of COMPUTER, but a COMPUTER instance is associated with just one
instance of EMPLOYEE. According to this diagram, an employee can be associated with
several computers, but a computer is assigned to just one employee.

The positions of the 1 and the N are significant. The 1 is close to the line connecting
EMPLOYEE, which means that the 1 refers to the EMPLOYEE side of the relationship. The N is
close to the line connecting COMPUTER, which means that the N refers to the COMPUTER
side of the relationship. If the 1 and the N were reversed and the relationship were written N:1,
an EMPLOYEE would have one COMPUTER, and a COMPUTER would be assigned to many
EMPLOYEEs.

When discussing one-to-many relationships, the terms parent and child are sometimes
used. The parent is the entity on the 1 side of the relationship, and the child is the entity on the
many side of the relationship. Thus, in a 1:N relationship between DEPARTMENT and
EMPLOYEE, DEPARTMENT is the parent and EMPLOYEE is the child (one DEPARTMENT
has many EMPLOYEES).

Figure 5-5(c) shows a many-to-many (abbreviated N:M) relationship. According to the
Qualification relationship, an EMPLOYEE instance can be associated with many SKILL
instances, and a SKILL instance can be associated with many EMPLOYEE instances. This
relationship documents that fact that an employee may have many skills, and a skill may be
held by many employees.

Sometimes students wonder why we do not write many-to-many relationships as N:N or
M:M. The reason is that cardinality in one direction may be different than the cardinality in the
other direction. In other words, in an N:M relationship, N need not equal M. An EMPLOYEE

(a) One-to-One Relationship

EMPLOYEE % BADGE

Employee_ldentity

(b) One-to-Many Relationship

EMPLOYEE % COMPUTER

Computer_Assignment

(c) Many-to-Many Relationship

EMPLOYEE ﬂw SKILL

Quialification

Figure: 5-6

Minimum Cardinality
Examples

Chapter 5 Data Modeling with the Entity-Relationship Model 161

can have five skills, for example, but one of those skills can have three employees. Writing the
relationship as N:M highlights the possibility that the cardinalities may be different.
Sometimes the maximum cardinality is an exact number. For example, for a sports team, the
number of players on the roster is limited to some fixed number, say, 15. In that case, the maximum
cardinality between TEAM and PLAYER would be set to 15 rather than to the more general N.

THE WAy Relationships like those in Figure 5-5 are sometimes called HAS-A

relationships. This term is used because each entity instance has a
relationship to a second entity instance. An employee has a badge, and a badge has
an employee. If the maximum cardinality is greater than one, then each entity has a set
of other entities. An employee has a set of skills, for example, and a skill has a set of
employees who have that skill.

Minimum Cardinality

The minimum cardinality is the number of entity instances that must participate in a relationship.
Generally, minimums are stated as either zero or one. If zero, then participation in the relationship
is optional. If one, then at least one entity instance must participate in the relationship, which is
called mandatory participation. In E-R diagrams, an optional relationship is represented by a
small circle on the relationship line; a mandatory relationship is represented by a hash mark or
line across the relationship line.

To better understand these terms, consider Figure 5-6. In the Employee_ldentity relationship
in Figure 5-6(a), the hash marks indicate that an EMPLOYEE is required to have a BADGE, and a
BADGE must be allocated to an EMPLOYEE. Such a relationship is referred to as a mandatory-
to-mandatory (M-M) relationship, because entities are required on both sides. The complete
specification for the Employee_ldentity relationship is that it is a 1.1, M-M relationship.

In Figure 5-6(b), the two small circles indicate that the Computer_Assignment relation-
ship is an optional-to-optional (O-O) relationship. This means that an EMPLOYEE need
not have a COMPUTER, and a COMPUTER need not be assigned to an EMPLOYEE. The Com-
puter_Assignment relationship is thus a 1:N, O-O relationship.

Finally, in Figure 5-6(c) the combination of a circle and a hash mark indicates an
optional-to-mandatory (O-M) relationship. Here, an EMPLOYEE must be assigned to at
least one SKILL, but a SKILL may not necessarily be related to any EMPLOYEE. The complete
specification for the Qualification relationship is thus an N:M, O-M relationship. The position
of the circle and the hash mark are important. Because the circle is in front of EMPLOYEE, it
means that the employee is optional in the relationship.

(a) Mandatory-to-Mandatory (M-M) Relationship

EMPLOYEE 4—@—# BADGE

Employee_ldentity

(b) Optional-to-Optional (O-0O) Relationship

EMPLOYEE 1IN COMPUTER

Computer_Assignment

(c) Optional-to-Mandatory (O-M) Relationship

EMPLOYEE SKILL

Qualification

162

Part 2 Database Design

THE WAY Sometimes when interpreting diagrams like Figure 5-6(c) students become

confused about which entity is optional and which is required. An easy way
to clarify this situation is to imagine that you are standing in the diamond on the relation-
ship line. Imagine looking toward one of the entities. If you see an circle in that direction,
then that entity is optional; if you see a hash mark, then that entity is required. Thus, in
Figure 5-6(c), if you stand on the diamond and look toward SKILL, you see a hash mark.
This means that SKILL is required in the relationship.

A fourth option, a mandatory-to-optional (M-O) relationship is not shown in Figure 5-6.
But, if we exchange the circle and the hash mark in Figure 5-6(c), then Qualification becomes an
M-O relationship. In that case, an EMPLOYEE need not have a SKILL, but a SKILL must have at
least one EMPLOYEE.

As with maximum cardinalities, in rare cases the minimum cardinality is a specific
number. To represent the relationship between PERSON and MARRIAGE, for example, the
minimum cardinality would be 2:0Optional.

Entity-Relationship Diagrams and Their Versions

The diagrams in Figures 5-5 and 5-6 are sometimes referred to as entity-relationship (E-R)
diagrams. The original E-R model specified that such diagrams use diamonds for relationships,
rectangles for entities, and connected ellipses for attributes, as shown in Figure 5-2. You may
still see examples of such E-R diagrams, and it is important for you to be able to interpret them.
For two reasons, however, this original notation is seldom used today. First, there are a
number of different versions of the E-R model, and these versions use different symbols.
Second, data modeling software products use different techniques. For example, Computer
Associates ERwin product uses one set of symbols, and Microsoft Visio uses a second set.

Variations of the E-R Model

At least three different versions of the E-R model are in use today. One of them, the
Information Engineering (IE) model, was developed by James Martin in 1990. This model
uses crow s feet to show the many side of a relationship, and it is called the IE Crow s Foot
model. It is easy to understand, and we will use it throughout this text. In 1993, the National
Institute of Standards and Technology announced another version of the E-R model as a
national standard. This version is called Integrated Definition 1, Extended (IDEF1X).* This
standard incorporates the basic ideas of the E-R model, but uses different graphical symbols.
Although this model is a national standard, it is difficult to understand and use. As a national
standard, however, it is used in government, and thus it may become important to you.
Therefore, the fundamentals of the IDEF1X model are described in Appendix C.

Meanwhile, to add further complication, a new object-oriented development methodology
called the Unified Modeling Language (UML) adopted the E-R model, but introduced its
own symbols while putting an object-oriented programming spin on it. UML notation is
summarized in Appendix D.

THE WAY In addition to differences due to different versions of the E-R model, there

also are differences due to software products. For example, two products
that both implement the IE Crow s Foot model may do so in different ways. The result is a
mess. When creating a data model diagram, you need to know not just the version of the
E-R model you are using, but also the idiosyncrasies of the data modeling product you use.

4 Integrated Definition for Information Modeling (IDEF1X), Federal Information Processing Standards Publication
184,1993.

Figure : 5-7

Two Versions of a 1:N
Relationship

Figure: 5-8

Crow s Foot Notation

Chapter 5 Data Modeling with the Entity-Relationship Model 163

DEPARTMENT EMPLOYEE

(a) Original E-R Model Version

DEPARTMENT HO------———-——————- F4 EMPLOYEE

(b) Crow s Foot Version

E-R Diagrams Using the IE Crow s Foot Model

Figure 5-7 shows two versions of a one-to-many, optional-to-mandatory relationship. Figure 5-7(a)
shows the original E-R model version. Figure 5-7(b) shows the crows foot model using common
crows foot symbols. Notice that the relationship is drawn as a dashed line. The reason for this will
be explained later in this chapter. For now, notice the crow s foot symbol used to show the many
side of the relationship.

The crows foot model uses the notation shown in Figure 5-8 to indicate the relationship
cardinality. The symbol closest to the entity shows the maximum cardinality, and the other
symbol shows the minimum cardinality. A hash mark indicates one (and therefore also
mandatory), a circle indicates zero (and thus optional), and the crow s foot symbol indicates
many. Thus, the diagram in Figure 5-7(b) means that a DEPARTMENT has one or more
EMPLOYEEs (the symbol shows many and mandatory), and an EMPLOYEE belongs to zero or
one DEPARTMENTS (the symbol shows one and optional).

A 1:1 relationship would be drawn in a similar manner, but the line connecting to each entity
should be similar to the connection shown for the one side of the 1:N relationship in Figure 5-7(b).

Figure 5-9 shows two versions of an N:M, optional-to-mandatory relationship. Modeling
N:M relationships presents some complications. According to the original E-R model diagram
shown in Figure 5-9(a), an EMPLOYEE must have at least one SKILL and may have several.
At the same time, although a SKILL may or may not be held by any EMPLOYEE, a SKILL may
also be held by several EMPLOYEEs. The crow s foot version in Figure 5-9(b) shows the N:M

Symbol Meaning

| | Mandatory One

| Mandatory Many

Optional Many

O | Optional One
()
N

164

Figure: 5-9

Two Versions of a N:M
Relationship

Part 2 Database Design

EMPLOYEE SKILL

(a) Original E-R Model Version

EMPLOYEE pPO---------———————- K SKILL

(b) Crow s Foot Version

maximum cardinalities using the notation in Figure 5-8. The crows foot symbols again
indicate the minimum cardinalities for the N:M relationship.

Except for Appendices C and D, for the rest of this text we will use the IE Crow s Foot model
for E-R diagrams. There are no completely standard symbols for the crows foot notation, and
we explain our symbols and notation when we first use it. You can obtain various modeling
products that will produce crow s foot models, and they are easily understood and related to the
original E-R model. Be aware that those other products may use the oval, hash mark, crows foot,
and other symbols in slightly differently ways. Further, your instructor may have a favorite
modeling tool for you to use. If that tool does not support crow s feet, you will have to adapt the
data models in this text to your tool. Making these adaptations is a good learning exercise. See,
for example, Project Questions 5.57 and 5.58.

THE WAY A number of modeling products are available, and each will have its own

idiosyncrasies. Computer Associates produces ERwin, a commercial data
modeling product that handles both data modeling and database design tasks. You can
download the CA ERwin Data Modeler Community Edition, which is suitable for class
use, from www.ca.com/us/software-trials.aspx. You can use ERwin to produce either
crow s foot or IDEF1X data models.

Although it is better at creating database designs (discussed in Chapter 6) than data
models, Microsoft Visio is a possibility. A trial version is available from the Microsoft Web
site at http://office.microsoft.com/en-us/visio/default.aspx. See Appendix F for a full
discussion of using Microsoft Visio for data modeling and database designs.

Finally, Oracle is continuing development of the MySQL Workbench, as described in
this book in Chapters 2 and 10B, and a free (but somewhat limited) version is available
at the MySQL Web site at http://dev.mysql.com/downloads/workbench/5.2.html.
Although, like Microsoft Visio, it is better at database designs than data models, it is a very
useful tool, and the database designs it produces can be used with any DBMS, not just
MySQL. See Appendix E for a full discussion of using MySQL Workbench for data
modeling and database designs.

Strong Entities and Weak Entities

A strong entity is an entity that represents something that can exist on its own. For example,
PERSON is a strong entity we consider people to exist as individuals in their own right.
Similarly, AUTOMOBILE is a strong entity. In addition to strong entities, the original version of
the E-R model included the concept of a weak entity, which is defined as any entity whose
existence depends on the presence of another entity.

ID-Dependent Entities

The E-R model includes a special type of weak entity called an ID-dependent entity. An
ID-dependent entity is an entity whose identifier includes the identifier of another entity.
Consider, for example, an entity for a student apartment in a building, as shown in Figure 5-10(a).

The identifier of such an entity is a composite (BuildingName, ApartmentNumber),
where BuildingName is the identifier of the entity BUILDING. ApartmentNumber by itself is

Figure : 5-10

Example ID-Dependent
Entities

Chapter 5 Data Modeling with the Entity-Relationship Model 165

BUILDING PAINTING PATIENT
BuildingName PaintingName PatientName
Street Description Phone
City Dimensions Email
State/Province Year I
Zip/PostalCode Artist T

APARTMENT PRINT EXAM

BuildingName PaintingName PatientName

ApartmentNumber CopyNumber ExamDate

NumberBedrooms Condition Weight

NumberBaths PurchasePrice Height

MonthlyRent DatePurchased BloodPressure

(a) APARTMENT Is (b) PRINT Is (c) EXAM Is
ID-Dependent on ID-Dependent ID-Dependent
BUILDING on PAINTING on PATIENT

insufficient to tell someone where you live. If you say you live in apartment number 5, they
must ask you, In what building?

Figure 5-10 shows three different ID-dependent entities. In addition to APARTMENT,
the entity PRINT in Figure 5-10(b) is ID-dependent on PAINTING, and the entity EXAM in
Figure 5-10(c) is ID-dependent on PATIENT.

In each of these cases, the ID-dependent entity cannot exist unless the parent (the entity
on which it depends) also exists. Thus, the minimum cardinality from the ID-dependent entity
to the parent is always one.

However, whether the parent is required to have an ID-dependent entity depends on the
application requirements. In Figure 5-10, both APARTMENT and PRINT are optional, but
EXAM is required. These restrictions arise from the nature of the application and not from any
logical requirement.

As shown in Figure 5-10, in our E-R models we use an entity with rounded corners to
represent the ID-dependent entity. We also use a solid line to represent the relationship
between the ID-dependent entity and its parent. This type of a relationship is called an
identifying relationship. A relationship drawn with a dashed line (refer to Figure 5-7) is used
between strong entities and is called a nonidentifying relationship because there are no
ID-dependent entities in the relationship.

ID-dependent entities pose restrictions on the processing of the database that is
constructed from them. Namely, the row that represents the parent entity must be created
before any ID-dependent child row can be created. Further, when a parent row is deleted, all
child rows must be deleted as well.

ID-dependent entities are common. Another example is the entity VERSION in the
relationship between PRODUCT and VERSION, where PRODUCT is a software product and
VERSION is a release of that software product. The identifier of PRODUCT is ProductName,
and the identifier of VERSION is (ProductName, ReleaseNumber). Yet another example is
EDITION in the relationship between TEXTBOOK and EDITION. The identifier of TEXTBOOK
is Title, and the identifier of EDITION is (Title, EditionNumber).

Non-ID-Dependent Weak Entities

All ID-dependent entities are weak entities. But, according to the original E-R model, some enti-
ties that are weak are not ID-dependent. Consider the AUTO_MODEL and VEHICLE entity
classes in the database of a car manufacturer, such as Ford or Honda, as shown in Figure 5-11.

166

Figure - 5-11

Weak Entity Example

Part 2 Database Design

AUTO_MODEL AUTO_MODEL
Manufacturer Manufacturer
Model Model
Description Description
NumberOfPassengers NumberOfPassengers
EngineType EngineType
RatedMPG RatedMPG

s
<4
|
|
|
|
|
Q
AN
VEHICLE VEHICLE
(Manufacturer) VIN

Model

ManufacturingSeqNumber gg}glrvlanufactured

DateManufactured DealerName

Color DealerCost

DealerName SalesDate

DealerCost SalesPrice

SalesDate

SalesPrice Note: VEHICLE is a weak but not

\ J ID-dependent entity.

(a) ID-Dependent Entity (b) Non-ID-Dependent

Weak Entity

In Figure 5-11(a), each VEHICLE is assigned a sequential number as it is manufactured.
So, for the manufacturers Super SUV AUTO_MODEL, the first VEHICLE manufactured
gets a ManufacturingSegNumber of 1, the next gets a ManufacturingSegNumber of 2, and
so on. This is clearly an ID-dependent relationship because ManufacturingSeqNumber is
based on the Manufacturer and Model.

Now lets assign VEHICLE an identifier that is independent of the Manufacturer and
Model. We will use a VIN (vehicle identification number), as shown in Figure 5-11(b). Now, the
VEHICLE has a unique identifier of its own and does not need to be identified by its relation to
AUTO_MODEL.

This is an interesting situation. VEHICLE has an identity of its own and therefore is not
ID-dependent. Yet the VEHICLE is an AUTO_MODEL, and if that particular AUTO_MODEL
did not exist, the VEHICLE itself would never have existed. Therefore, VEHICLE is now a weak
but non-ID-dependent entity.

Consider your car lets say it is a Ford Mustang just for the sake of this discussion. Your
individual Mustang is a VEHICLE, and it exists as a physical object and is identified by the VIN
that is required for each licensed automobile. It is not ID-dependent on AUTO_MODEL, which
in this case is Ford Mustang, for its identity. However, if the Ford Mustang had never been
created as an AUTO_MODEL a logical concept that was first designed on paper your car
would never have been built because no Ford Mustangs would ever have been built! Therefore,
your physical individual VEHICLE would not exist without a logical AUTO_MODEL of Ford
Mustang, and in a data model (which is what we re talking about) a VEHICLE cannot exist
without a related AUTO_MODEL. This makes VEHICLE a weak but non-ID-dependent entity.
Most data modeling tools cannot model non-1D-dependent entities. So, to indicate such
situations, we will use a nonidentifying relationship with a note added to the data model
indicating that the entity is weak, as shown in Figure 5-11(b).

The Ambiguity of the Weak Entity

Unfortunately, an ambiguity is hidden in the definition of weak entity, and this ambiguity is
interpreted differently by different database designers (as well as different textbook authors).
The ambiguity is that in a strict sense, if a weak entity is defined as any entity whose presence

Figure - 5-12

Summary of ID-Dependent
and Weak Entities

Figure - 5-13

Example Subtype Entities

Chapter 5 Data Modeling with the Entity-Relationship Model 167

A weak entity is an entity whose existence depends on another entity.

An ID-dependent entity is a weak entity whose identifier includes the identifier of
another entity.

Indentifying relationships are used to represent ID-dependent entities.

Some entities are weak, but not ID-dependent. Using data modeling tools, they
are shown with nonidentifying relationships, with separate documentation
indicating they are weak.

in the database depends on another entity, then any entity that participates in a relationship
having a minimum cardinality of one to a second entity is a weak entity. Thus, in an academic
database, if a STUDENT must have an ADVISER, then STUDENT is a weak entity, because a
STUDENT entity cannot be stored without an ADVISER.

This interpretation seems too broad to some people. A STUDENT is not physically
dependent on an ADVISER (unlike an APARTMENT to a BUILDING), and a STUDENT is not
logically dependent on an ADVISER (despite how it might appear to either the student or the
adviser), and, therefore, STUDENT should be considered a strong entity.

To avoid such situations, some people interpret the definition of weak entity more
narrowly. They say that to be a weak entity an entity must logically depend on another entity.
According to this definition, APARTMENT is a weak entity, but STUDENT is not. An
APARTMENT cannot exist without a BUILDING in which it is located. However, a STUDENT
can logically exist without an ADVISER, even if a business rule requires it.

We agree with the latter approach. Characteristics of ID-dependent and non-ID-dependent
weak entities, as used in this book, are summarized in Figure 5-12.

Subtype Entities

The extended E-R model introduced the concept of subtypes. A subtype entity is a special case
of another entity called its supertype. Students, for example, may be classified as undergraduate
or graduate students. In this case, STUDENT is the supertype, and UNDERGRADUATE and
GRADUATE are the subtypes.

Alternatively, a student could be classified as a freshman, sophomore, junior, or senior. In
that case, STUDENT is the supertype, and FRESHMAN, SOPHOMORE, JUNIOR, and SENIOR
are the subtypes.

As illustrated in Figure 5-13, in our E-R models we use a circle with a line under it as a
subtype symbol to indicate a supertype subtype relationship. Think of this as a symbol for an
optional (the circle), 1:1 (the line) relationship. In addition, we use a solid line to represent an
ID-dependent subtype entity because each subtype is ID-dependent on the supertype. Also
note that none of the line end symbols shown in Figure 5-8 are used on the connecting lines.

STUDENT STUDENT

StudentID StudentID

LastName LastName

FirstName FirstName

isGradStudent

isGradStudent

UNDERGRADUATE GRADUATE HIKING_CLUB SAILING_CLUB
(StudentID | (StudentID] (StudentlD | (StudentlD
HighSchooIGPA’ UndergraduateGPA’ DateDuesEaid J DateDuesPaid \
ScoreOnSAT ScoreOnGMAT AmountPaid AmountPaid

(a) Exclusive Subtypes with Discriminator (b) Inclusive Subtypes

168 Part 2 Database Design

In some cases, an attribute of the supertype indicates which of the subtypes is appropriate
for a given instance. An attribute that determines which subtype is appropriate is called a
discriminator. In Figure 5-13(a), the attribute named isGradStudent (which has only the
values Yes and No) is the discriminator. In our E-R diagrams, the discriminator is shown next
to the subtype symbol, as illustrated in Figure 5-13(a). Not all supertypes have a discriminator.
Where a supertype does not have a discriminator, application code must be written to create
the appropriate subtype.

Subtypes can be exclusive or inclusive. With exclusive subtypes, a supertype instance is
related to at most one subtype. With inclusive subtypes, a supertype instance can relate to one
or more subtypes. In Figure 5-13(a), the X in the circle means that the UNDERGRADUATE and
GRADUATE subtypes are exclusive. Thus,a STUDENT can be either an UNDERGRADUATE or
a GRADUATE, but not both. Figure 5-13(b) shows that a STUDENT can join either the
HIKING_CLUB or the SAILING_CLUB, or both. These subtypes are inclusive (note there is no X
in the circle). Because a supertype may relate to more than one subtype, inclusive subtypes do
not have a discriminator.

The most important (some would say the only) reason for creating subtypes in a data model
is to avoid value-inappropriate nulls. Undergraduate students take the SAT exam and report that
score, whereas graduate students take the GMAT and report their score on that exam. Thus, the
SAT score would be NULL in all STUDENT entities for graduates, and the GMAT score would be
NULL for all undergraduates. Such null values can be avoided by creating subtypes.

THE WAy The relationships that connect supertypes and subtypes are called IS-A

relationships because a subtype is the same entity as the supertype.
Because this is so, the identifier of a supertype and all its subtypes must be the same;
they all represent different aspects of the same entity. Contrast this with HAS-A
relationships, in which an entity has a relationship to another entity, but the identifiers of
the two entities are different.

The elements of the entity-relationship model and their IE Crow s Foot representation are
summarized in Figure 5-14. The identifier and attributes are shown only in the first example.
Note that for 1:1 and 1:N nonidentifying relationships a relationship to a parent entity may be
optional. For identifying relationships, the parent is always required.

Patterns in Forms, Reports, and E-R Models

A data model is a representation of how users view their world. Unfortunately, you cannot
walk up to most computer users and ask questions like, What is the maximum cardinality
between the EMPLOYEE and SKILL entities? Few users would have any idea of what you
mean. Instead, you must infer the data model indirectly from user documents and from users
conversations and behavior.

One of the best ways to infer a data model is to study the users forms and reports. From
such documents, you can learn about entities and their relationships. In fact, the structure of
forms and reports determines the structure of the data model, and the structure of the data
model determines the structure of forms and reports. This means that you can examine a form
or report and determine the entities and relationships that underlie it.

You can also use forms and reports to validate the data model. Rather than showing the
data model to the users for feedback, an alternative is to construct a form or report that
reflects the structure of the data model and obtain user feedback on that form or report. For
example, if you want to know if an ORDER has one or many SALESPERSONS, you can show
the users a form that has a space for entering just one salespersons name. If the user asks,

Where do | put the name of the second salesperson? then you know that orders have at least
two and possibly many salespeople. Sometimes, when no appropriate form or report exists,
teams create a prototype form or report for the users to evaluate.

Chapter 5 Data Modeling with the Entity-Relationship Model 169

DEPARTMENT DEPARTMENT entity; DepartmentName is identifier; BudgetCode and OfficeNumber
DepartmentName are attributes.
BudgetCode
OfficeNumber

A . iy . .

1:1, nonidentifying relationship. A relates to zero or one B; B relates to exactly one
HF——-of A. Identifier and attributes not shown.

A

1:N, nonidentifying relationship. A relates to one or many Bs; B relates to zero or
Ho ——— one A. Identifier and attributes not shown.

A . o . .

Many-to-many, nonidentifying relationship. A relates to zero or more Bs; B relates to
P ——-o< one or more As.

A 1:N identifying relationship. A relates to zero, one, or many Bs. B relates to exactly
one A. Identifier and attributes not shown. For identifying relationships, the child
must always relate to exactly one parent. The parent may relate to zero, one, many,
or a combination of these minimum cardinalities.

A is supertype, C and D are exclusive subtypes. Discriminator not shown. Identifier
and attributes not shown.
C D
A
A is supertype, C and D are inclusive subtypes. Identifier and attributes not shown.
C D
Figure : 5-14

IE Crow s Foot Symbol

Summary

All of this means that you must understand how the structure of forms and reports
determines the structure of the data model, and the reverse. Fortunately, many forms and
reports fall into common patterns. If you learn how to analyze these patterns, you will be
well on your way to understanding the logical relationship between forms and reports and
the data model. Accordingly, in the next sections we will discuss the most common patterns
in detail.

Strong Entity Patterns

Three relationships are possible between two strong entities: 1:1, 1:N, and N:M. When
modeling such relationships, you must determine both the maximum and minimum
cardinality. The maximum cardinality often can be determined from forms and reports. In
most cases, to determine the minimum cardinality you will have to ask the users.

1.1 Strong Entity Relationships
Figure 5-15 shows a data entry form and a report that indicate a one-to-one relationship between
the entities CLUB_MEMBER and LOCKER. The MEMBER_LOCKER form in Figure 5-15(a)
shows data for an athletic club member, and it lists just one locker for that member. This form
indicates that a CLUB_MEMBER has at most one locker. The report in Figure 5-15(b) shows the
lockers in the club and indicates the member who has been allocated that locker. Each locker is
assigned to one club member.

The form and report in Figure 5-15 thus suggest that a CLUB_MEMBER has one
LOCKER, and a LOCKER is assigned to one CLUB_MEMBER. Hence, the relationship

170

Figure - 5-15

Form and Report Indicating

a 1:1 Relationship

Figure - 5-16

Data Model for the 1:1
Relationship in Figure 5-15

Part 2 Database Design

(a) Club Membership Data Entry Form

b Member Number [h 000}
Member Name ;Jones
Phone [123-456-7777
Email {jones@somewhere.com
Locker Number l 2100
Locker Room é:Mens B
Record: M« 1of4 b M b | B Mo Filter | Search

(b) Club Locker Report

CLUB LOCKERS
Member Number Member Name Locker Number Locker Room Locker Size
| 1000 | Jones | 2100 || Mens | Med |
I 2000 ” Abernathy || 2200 |! Womens || Large |
| 3000 |[wu | 2115 || Mens | targe |
| 4000 || Lai I 2217 || womens | small |

between them is 1:1. To model that relationship, we draw a nonidentifying relationship
(meaning the relationship is strong and not ID-dependent) between the two entities, as shown
in Figure 5-16. We then set the maximum cardinality to 1:1. You can tell that this is a nonidenti-
fying relationship, because the relationship line is dashed. Also, the absence of a crow s foot
indicates that the relationship is 1:1.

Regarding minimum cardinality, every club member shown in the form has a locker, and
every locker shown in the report is assigned to a club member, so it appears that the
relationship is mandatory to mandatory. However, this form and report are just instances;
they may not show every possibility. If the club allows social, nonathletic memberships,
then not every club member will have a locker. Furthermore, it is unlikely that every locker
is occupied; there must be some lockers that are unused and nonallocated. Accordingly,
Figure 5-16 shows this relationship as optional to optional, as indicated by the small circles
on the relationship lines.

CLUB_MEMBER
MemberNumber

MemberName
Phone
Email

T
?

0

LOCKER+
LockerNumber

LockerRoom
LockerSize

Figure - 5-17

Form Indicating a 1:N
Relationship

Chapter 5 Data Modeling with the Entity-Relationship Model 171

THE WAy How do you recognize strong entities? You can use two major tests. First,

does the entity have an identifier of its own? If it shares a part of its identi-
fier with another entity, then it is an ID-dependent entity, and is therefore weak. Second,
does the entity seem to be logically different from and separate from the other entities?
Does it stand alone, or is it part of something else? In this case, a CLUB_MEMBER and
a LOCKER are two very different, separate things; they are not part of each other or of
something else. Hence, they are strong.

Note also that a form or report shows only one side of a relationship. Given entities A
and B, a form can show the relationship from A to B, but it cannot show the relationship
from B to A at the same time. To learn the cardinality from B to A, you must examine a
second form or report, ask the users, or take some other action.

Finally, it is seldom possible to infer minimum cardinality from a form or report.
Generally, you must ask the users.

1:N Strong Entity Relationships

Figure 5-17 shows a form that lists the departments within a company. The company has many
departments, so the maximum cardinality from COMPANY to DEPARTMENT is N. But what
about the opposite direction? To determine if a department relates to one or N companies, we
need to examine a form or report that shows the relationship from a department to a company.
However, assume that no such form or report exists. Also assume that the users never view
company data from the perspective of a department. We cannot ignore the issue, because we
need to know whether the relationship is 1:N or N:M.

In such a case, we must ask the users or at least make a determination by thinking about
the nature of the business setting. Can a department belong to more than one company? Is a
department shared among companies? Because this seems unlikely, we can reasonably assume
that DEPARTMENT relates to just one COMPANY. Thus, we conclude the relationship is 1:N.
Figure 5-18 shows the resulting data model. Note that the many side of the relationship is
indicated by the crows foot next to DEPARTMENT.

Considering minimum cardinality, we do not know if a COMPANY must have a
DEPARTMENT or if a DEPARTMENT must have a COMPANY. We will definitely need to
ask the users. Figure 5-18 depicts the situation in which a DEPARTMENT must have a
COMPANY, but a COMPANY need not have any DEPARTMENTS.

N:M Strong Entity Relationships

Figure 5-19(a) shows a form with data about a supplier and the parts it is prepared to supply.
Figure 5-19(b) shows a report that summarizes parts and lists the companies that can supply
those parts. In both cases, the relationship is many: A SUPPLIER supplies many PARTSs, and a
PART is supplied by many SUPPLIERS. Thus, the relationship is N:M.

==] Company Departments X
. Company Name lajax Manufacturing
City Sydney
Departments Department Mame - | Budget Code ~ Mail Stop -
| Accounting A-100 MS-100
| Production P-100 MS-400
Information Systems 1S-200 MS-417
Sales 5-1400 MS-500
Record: M 1of4 B kich % Mo Filter | [Search

Record: M 1of5 LI < Mo Filter | Search

172 Part 2 Database Design

COMPANY
CompanyName
City

+

|
|
l
|
O
A
DEPARTMENT

Figure : 5-18 DepartmentName

BudgetCode
MailStop

Data Model for the 1:N
Relationship in Figure 5-17

Figure 5-20 shows a data model that extends the data model in Figure 5-18 to include this
new relationship. A supplier is a company, so we show the supplier entity as a COMPANY.
Because not all companies are suppliers, the relationship from COMPANY to PART must
be optional. However, every part must be supplied from somewhere, so the relationship from
PART to COMPANY is mandatory.
Figure : 5-19 In summary, the three types of strong entity relationships are 1:1, 1:N, and N:M. You can
infer the maximum cardinality in one direction from a form or report. You must examine a

Form and Report Indicating second form or report to determine the maximum cardinality in the other direction. If no form

an N:M Relationship
(a) SUPPLIERS Form

= mnﬁm\\ *
F Company Name
City [Denver
Country lus
Volume (USD)] $177,990.00
Parts PartNumber - PartName ~ | SalesPrice - | ReOrderQuantity - |QuantityOnHand -
1000|Cedar Shakes $22.00 100 200
2000| Garage Heater $1,750.00 3 4
3000/ Utility Cabinet | $55.00 7 3
Record: M 10f3 [S % Mo Filter | Scarch
Record: 4 4 4of 5 » ¥ b | % No Filter | |Search
(b) PART Report
PART
Part Number Part Mame Sales Price ROQ QOH Company Name City Country
1000 Cedar Shakes $22.00 100 200
Bristol Systems Manchester England
ERS Systems Vancouver Canada
Forrest Supplies Denver us
2000 Garage Heater $1,750.00] 4
Bristol Systems Manchester England
ERS Syslems Vancouver Canada
Forrest Supplies Nenver 1S
Kyoto Importers Kyoto Japan
3000 Utility Cabinet 555.00 7 3
Ajax Manufacturing Sydney Australia
Forrest Supplies Denver us

Figure - 5-20

Data Model for the N:M
Relationship in Figure 5-19

Figure : 5-21

Report Indicating an

Association Pattern

Chapter 5 Data Modeling with the Entity-Relationship Model 173

COMPANY DEPARTMENT

CompanyName DepartmentName

City LH----0-4 BudgetCode
Country MailStop
Volume

PART

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

or report that shows the relationship is available, you must ask the users. Generally, it is not
possible to determine minimum cardinality from forms and reports.

ID-Dependent Relationships

Three principle patterns use ID-dependent entities: multivalued attribute, archetype/instance
(also called version/instance), and association. Because the association pattern is often confused
with the N:M strong entity relationships just discussed, we will look at that pattern first.

The Association Pattern
An association pattern is subtly and confusingly similar to an N:M strong relationship. To see
why, examine the report in Figure 5-21 and compare it with the report in Figure 5-19(b).

What is the difference? If you look closely, you Il see that the only difference is that the report
in Figure 5-21 contains Price, which is the price quotation for a part from a particular supplier. The
first line of this report indicates that the part Cedar Shakes is supplied by Bristol Systems for $14.00.

Price is neither an attribute of COMPANY nor is it an attribute of PART. It is an attribute
of the combination of a COMPANY with a PART. Figure 5-22 shows the appropriate data
model for such a case.

Here, a third entity, QUOTATION, has been created to hold the Price attribute. The
identifier of QUOTATION is the combination of PartNumber and CompanyName. Note that
PartNumber is the identifier of PART, and CompanyName is the identifier of COMPANY.
Hence, QUOTATION is ID-dependent on both PART and COMPANY.

PART QUOTATIONS
PartNumber PartName SalesPrice ROQ QOH CompanyName City Country Price

1000 Cedar Shakes $22.00 100 200
Bristol Systems Manchester England 514.00
ERS Systems Vancouver Canada $12.50
Furresl Supplies Denver us $15.50

2000 Garage Heater $1,750.00 3 4
Dristol Systems Manchester Cngland $050.00
ERS Systems Vancouver Canada $875.00
Forrest Supplies Denver us $915.00
Kyoto Importers Kyoto Japan $1,100.00

3000 Utility Cabinet $55.00 7 3
Ajax Manutacturing Sydney Australia $37.50
Forrest Supplies Denver us $42.50

174

Figure - 5-22

Association Pattern Data
Model for the Report in
Figure 5-21

Figure - 5-23

Association Pattern Data
Model for the Ternary
Relationship in Figure 5-4

Part 2 Database Design

PART COMPANY
PartNumber CompanyName
PartName City
SalesPrice Country
ReOrderQuantity Volume
QuantityOnHand T

3

QUOTATION

PartNumber
CompanyName
Price

In Figure 5-22, then, the relationships between PART and QUOTATION and between
COMPANY and QUOTATION are both identifying. This fact is shown in Figure 5-22 by the
solid, nondashed line that represents these relationships.

As with all identifying relationships, the parent entities are required. Thus, the minimum
cardinality from QUOTATION to PART is one, and the minimum cardinality from QUOTATION
to COMPANY also is one. The minimum cardinality in the opposite direction is determined by
business requirements. Here, a PART must have a QUOTATION, but a COMPANY need not
have a QUOTATION.

THE WAy Consider the differences between the data models in Figure 5-20 and

Figure 5-22. The only difference between the two is that in the latter the
relationship between COMPANY and PART has an attribute, Price. Remember this
example whenever you model an N:M relationship. Is there a missing attribute that
pertains to the combination and not just to one of the entities? If so, you are dealing
with an association, ID-dependent pattern and not an N:M, strong entity pattern.

Associations can occur among more than two entity types. Figure 5-23, for example, shows a
data model for the assignment of a particular client to a particular architect for a particular

CLIENT ARCHITECT
ClientName ArchitectName
Email Office
Phone ASSIGNMENT Email

ClientName
ArchitectName
ProjectName

PROJECT

ProjectName

StartDate
Budget

Figure : 5-24

Data Entry Form with a
Multivalued Attribute

Figure - 5-25

Data Model for the Form
in Figure 5-24

Chapter 5 Data Modeling with the Entity-Relationship Model 175

5| Company ' 2
Company Name \jax Manufacturing
City Sydney
Country Australia
Volume (USD) $187,500.00
Phone PhoneMumber -

11.100.334.8000

| 1.100.444 9988

800-123-4455
*

Record: M 1of3 L

Record: W 1of5 L3 1 I % Mo Filter [Search

project. The attribute of the assignment is HoursWorked. This data model shows how the ternary
relationship in Figure 5-4(b) can be modeled as a combination of three binary relationships.

The Multivalued Attribute Pattern

In the E-R model as used today,® attributes must have a single value. If the COMPANY entity
has PhoneNumber and Contact attributes, then a company can have at most one value for
phone number and at most one value for contact.

In practice, however, companies can have more than one phone number and one contact.
Consider, for example, the data entry form in Figure 5-24. This particular company has three
phone numbers; other companies might have one or two or four, or whatever. We need to
create a data model that allows companies to have multiple phones, and placing the attribute
PhoneNumber in COMPANY will not do it.

Figure 5-25 shows the solution. Instead of including PhoneNumber as an attribute of
COMPANY, we create an ID-dependent entity, PHONE, that contains the attribute
PhoneNumber. The relationship from COMPANY to PHONE is 1:N, so a company can have
multiple phone numbers. Because PHONE is an ID-dependent entity, its identifier includes
both CompanyName and PhoneNumber.

We can extend this strategy for as many multivalued attributes as necessary. The
COMPANY data entry form in Figure 5-26 has multivalued Phone and multivalued Contact
attributes. In this case, we just create a separate ID-dependent entity for each multivalued
attribute, as shown in Figure 5-27.

In Figure 5-27, PhoneNumber and Contact are independent. PhoneNumber is the phone
number of the company and not necessarily the phone number of a contact. If PhoneNumber

COMPANY

CompanyName

City
Country
Volume

CompanyName

PhoneNumber

5The original E-R model allowed for multivalued attributes. Over time, that feature has been ignored, and today
most people assume that the E-R model requires single-valued attributes. We will do so in this text.

176

Figure - 5-26

Data Entry Form with
Separate Multivalued
Attributes

Figure - 5-27

Data Model for the Form
in Figure 5-26

Part 2 Database Design

==| Company '
4 Company Name lajax Manufacturing
City |Sydney
Country Australia
Volume (USD) $187,500.00
Phone PhoneMumber -

11.100.334.8000
11.100.444.9988
800-123-4455
#*

Record: M 1of3 LI

Contact Contact -
| Alfred
| Jackson
Lynda
Swee
*. 1
Record: M 1of4 LI

Record: M 10of5 POH K § Mo Filter | Search

is not a general company phone number, but rather the phone number of a particular person at
that company, then the data entry form would appear as in Figure 5-28. Here, for example,
Alfred has one phone number and Jackson has another.

In this case, the attributes PhoneNumber and Contact belong together. Accordingly, we
place them into a single ID-dependent entity, as shown in Figure 5-29. Notice that the identi-
fier of PHONE_CONTACT is Contact and CompanyName. This arrangement means that a
given Contact name can appear only once per company. Contacts can share phone numbers,
however, as shown for employees Lynda and Swee. If the identifier of PHONE_CONTACT was
PhoneNumber and CompanyName, then a phone number could occur only once per company,
but contacts could have multiple numbers. Work through these examples to ensure that you
understand them.

In all of these examples, the child requires a parent, which is always the case for
ID-dependent entities. The parent may or may not require a child, depending on the
application. A COMPANY may or may not require a PHONE or a CONTACT. You must ask the
users to determine whether the ID-dependent entity is required.

Multivalued attributes are common, and you need to be able to model them effectively.
Review the models in Figures 5-25, 5-27, and 5-29 and be certain that you understand their
differences and what those differences imply.

COMPANY

CompanyName

City
Country
Volume

X

CONTACT

CompanyName
PhoneNumber

CompanyName
Contact

Figure - 5-28

Data Entry Form with
Composite Multivalued
Attributes

Figure : 5-29

Data Model for the Form
in Figure 5-28

Chapter 5 Data Modeling with the Entity-Relationship Model 177

=] Company x
4 Company Name \jax Manufacturing
City Sydney
Country Australia
Volume (USD) $187,500.00
Contact Phone PhoneMumber - Contact 5
11.100.334.8000 Alfred
11.100.444 9988 Jackson
B00-123-4455 Lynda
B00-123-4455 | Swee
Record: M 1 of4 boM § Mo Filter | Search
Record: 1 of 5 bbb { Mo Filter [Search

The Archetype/Instance Pattern

The archetype/instance pattern (also called version/instance) occurs when one entity
represents a manifestation or an instance of another entity. You have already seen one
example of archetype/instance in the example of PAINTING and PRINT in Figure 5-10.
The painting is the archetype, and the prints made from the painting are the instances of
that archetype.

Other examples of archetype/instances are shown in Figure 5-30. One familiar example
concerns classes and sections of classes. The class is the archetype, and the sections of
the class are instances of that archetype. Other examples involve designs and instances
of designs. A yacht manufacturer has various yacht designs, and each yacht is an instance
of a particular design archetype. In a housing development, a contractor offers several
different house models, and a particular house is an instance of that house model
archetype.

As with all ID-dependent entities, the parent entity is required. The child entities (here
SECTION, YACHT, and HOUSE) may or may not be required, depending on application
requirements.

Logically, the child entity of every archetype/instance pattern is an ID-dependent entity.
All three of the examples in Figure 5-30 are accurate representations of the logical structure of
the underlying data. However, sometimes users will add additional identifiers to the instance
entity and in the process change the ID-dependent entity to a weak entity that is not
ID-dependent.

For example, although you can identify a SECTION by class name and section, colleges
and universities often will add a unique identifier to SECTION, such as ReferenceNumber.

COMPANY

CompanyName

City
Country
Volume

PHONE_CONTACT

CompanyName
Contact

PhoneNumber

178

Figure - 5-30

Three Archetype/Instance

Pattern Examples

Figure : 5-31

Three Weak But Not

ID-Dependent Relationships

Part 2 Database Design

CLASS YACHT_DESIGN HOUSE_MODEL
ClassName DesignName ModelName
NumberHours Description Description
Description Length NumberBedrooms

Beam SquareFootage
NumberStateRooms GarageSize
NumberHeads

SECTION YACHT HOUSE

ClassName DesignName ModelName

SectionNumber HullNumber HouseNumber

ClassDays LicenseNumber Street

Time State City

Professor DateManufactured State

DateSold Zip
SalesPrice

In that case, SECTION is no longer an ID-dependent entity, but it is still existence dependent
on CLASS. Hence, as shown in Figure 5-31, SECTION is weak, but not ID-dependent.

A similar change may occur to the YACHT entity. Although the manufacturer of a yacht
may refer to it by specifying the hull number of a given design, the local tax authority may refer
to it by State and LicenseNumber. If we change the identifier of YACHT from (HullNumber,
DesignName) to (LicenseNumber, State), then YACHT is no longer ID-dependent; it becomes
a weak, non-1D-dependent entity.

Similarly, although the home builder may think of a home as the third house constructed
according to the Cape Codd design, everyone else will refer to it by its address. When we
change the identifier of HOUSE from (HouseNumber, ModelName) to (Street, City, State, Zip),
then HOUSE becomes a weak, non-1D-dependent entity. All of these changes are shown in
Figure 5-31.

CLASS YACHT_DESIGN HOUSE_MODEL
ClassName DesignName ModelName
NumberHours Description Description
Description Length NumberBedrooms

:|: Beam SquareFootage
NumberStateRooms GarageSize
NumberHeads i

SECTION, YACHT,
and HOUSE are
: weak, but not

:l: I
|
|
i
X X X ID-dependent,
entities.

SECTION YACHT HOUSE
ReferenceNumber LicenseNumber Street
State City
C_IassDays State
Time HullNumber Zip
Professor DateManufactured
SectionNumber DateSold HouseNumber
SalesPrice

Chapter 5 Data Modeling with the Entity-Relationship Model 179

THE WAy Data modelers continue to debate the importance of weak, non-ID-dependent
entities. Everyone agrees that they exist, but not everyone agrees that they
are important.

First, understand that existence dependence influences the way we write database
applications. For the CLASS/SECTION example in Figure 5-31, we must insert a new
CLASS before we can add a SECTION for that class. Additionally, when we delete a
CLASS, we must delete all of the SECTIONSs for that CLASS as well. This is one reason
that some data modelers believe that weak, non-ID-dependent entities are important.

Skeptics say that although weak, non-ID-dependent entities may exist, they are not
necessary. They say that we can obtain the same result by calling SECTION strong and
making CLASS required. Because CLASS is required, the application will need to insert
a CLASS before a SECTION is created and delete dependent SECTIONs when deleting
a CLASS. So, according to that viewpoint, there is no practical difference between a
weak, non-ID-dependent entity and a strong entity with a required relationship.

Others disagree. Their argument goes something like this: The requirement that a
SECTION must have a CLASS comes from a logical necessity. It has to be that way it
comes from the nature of reality. The requirement that a strong entity must have a
relationship to another strong entity arises from a business rule. Initially, we say that an
ORDER must have a CUSTOMER (both strong entities), and then the application
requirements change and we say that we can have cash sales, meaning that an ORDER
no longer has to have a CUSTOMER. Business rules frequently change, but logical
necessity never changes. We need to model weak, non-ID-dependent entities so that
we know the strength of the required parent rule.

And so it goes. You, with the assistance of your instructor, can make up your own
mind. Is there a difference between a weak, non-ID-dependent entity and a strong entity
with a required relationship? In Figure 5-31, should we call the entities SECTION, YACHT,
and HOUSE strong, as long as their relationships are required? We think not we think
there is a difference. Others think differently, however.

Mixed Identifying and Nonidentifying Patterns

Some patterns involve both identifying and nonidentifying relationships. The classic example is the
line-item pattern, but there are other instances of mixed patterns as well. We begin with line items.

The Line-Item Pattern

Figure 5-32 shows a typical sales order, or invoice. Such forms usually have data about the
order itself, such as the order number and order date, data about the customer, data about the
salesperson, and then data about the items on the order. A data model for a typical
SALES_ORDER is shown in Figure 5-33.

In Figure 5-33, CUSTOMER, SALESPERSON, and SALES_ORDER are all strong entities, and
they have the nonidentifying relationships you would expect. The relationship from CUSTOMER
to SALES_ORDER is 1:N, and the relationship from SALESPERSON to SALES_ORDER also is
1:N. According to this model, a SALES_ORDER must have a CUSTOMER and may or may not
have a SALESPERSON. All of this is readily understood.

The interesting relationships concern the line items on the order. Examine the data grid
in the form in Figure 5-32. Some of the data values belong to the order itself, but other data
values belong to items in general. In particular, Quantity and ExtendedPrice belong to the
SALES_ORDER, but ItemNumber, Description, and UnitPrice belong to ITEM. The lines on
an order do not have their own identifier. No one ever says, Give me the data for line 12.
Instead, they say, Give me the data for line 12 of order 12345. Hence, the identifier of a line
is a composite of the identifier of a particular line and the identifier of a particular order.
Thus, entries for line items are always ID-dependent on the order in which they appear. In
Figure 5-33, ORDER_LINE_ITEM is ID-dependent on SALES_ORDER. The identifier of the
ORDER_LINE_ITEM entity is (SalesOrderNumber, LineNumber).

Now, and this is the part that is sometimes confusing for some students, ORDER _
LINE_ITEM is not existence-dependent on ITEM. It can exist even if no item has yet been

180

Figure : 5-32

Data Entry Form for a Sales

Order

Figure - 5-33

Data Model for the Sales

Order in Figure 5-32

Part 2 Database Design

=] Carbon River Fumniture Sales Order Form

Carbon River Furniture Sales Order Form

¥
m Anne Dodsworth
9/25/2011 Code [EN-01
istomer Name Kelly Welsch
Address 1145 Elm Street
City Carbon River State |IL 60662
Phone 733-357-8462
Sales Order Line ite ItemNumber - Description »| Quantity - UnitPrice - ExtendedPrice
92 Desk Chair 1 $650.00
81 Conference Table 1 $7,750.00
91 Side Chair 8 $485.00
78 Executive Desk 1 $3,500.00
*
Record: M 4+ Lof4 | b M ¥ | NoFilter | Search
Subtotal
Tax
Total
Record: M 4 1ofl44 » M b ¥ No Filter | Search

assigned to it. Further, if an ITEM is deleted, we do not want the line item to be deleted with it.
The deletion of an ITEM may make the value of ltemNumber and other data invalid, but it

should not cause the line item itself to disappear.

Now consider what happens to a line item when an order is deleted. Unlike with the dele-
tion of an item, which only causes data items to become invalid, the deletion of the order
removes the existence of the line item. Logically, a line item cannot exist if its order is deleted.

Hence, line items are existence-dependent on orders.

Work through each of the relationships in Figure 5-33 and ensure that you understand
their type and their maximum and minimum cardinalities. Also understand the implications

SALESPERSON

SalespersonID

SalespersonLastName
SalespersonFirstName
SalespersonCode

CUSTOMER
CustomerID
LastName
FirstName
Address _H______“: :____O+
City I !
State /?\ /?\
App SALES_ORDER
Phone
SalesOrderNumber
Date
Subtotal
Tax
Total

ORDER_LINE_ITEM

LineNumber

{SalesOrderNumber

Quantity

UnitPrice

ExtendedPrice

ITEM

ItemNumber

UnitPrice
Description

Figure - 5-34

Mixed Relationship Pattern
for Restaurant Recipe

Figure : 5-35

Mixed Relationship Pattern

for Employee Skills

Chapter 5 Data Modeling with the Entity-Relationship Model 181

RECIPE INGREDIENT
RecipeName IngredientName
Description Description
NumberServed AmountOnHand

T StoragelLocation
1
?

R

INGREDIENT_USE

RecipeName
IngredientNumber

Amount
Instructions

of this data model. For example, do you see why this sales order data model is unlikely to be
used by a company in which salespeople are on commission?

Other Mixed Patterns

Mixed identifying and nonidentifying relationships occur frequently. Learn to look for a mixed
pattern when a strong entity has a multivalued composite group and when one of the elements
in the composite group is an identifier of a second strong entity.

Consider, for example, baking recipes. Each recipe calls for a certain amount of a specific
ingredient, such as flour, sugar, or butter. The ingredient list is a multivalued composite group,
but one of the elements of that group, the name of the ingredient, is the identifier of a strong
entity. As shown in Figure 5-34, the recipe and the ingredients are strong entities, but the
amount and instructions for using each ingredient are ID-dependent on RECIPE.

Or, consider employees skill proficiencies. The name of the skill and the proficiency
level the employee has are a multivalued group, but the skill itself is a strong entity, as shown
in Figure 5-35. Dozens of other examples are possible.

Before continuing, compare the models in Figures 5-33, 5-34, and 5-35 with the associa-
tion pattern in Figure 5-22. Make sure that you understand the differences and why the model
in Figure 5-22 has two identifying relationships and the models in Figures 5-33, 5-34, and 5-35
have just one.

EMPLOYEE SKILL
EmployeeNumber Name
EmployeeName Description
Phone SalaryRange
Email
HireDate #
ReviewDate :
EmpCode |

|
|
|

EMPLOYEE_SKILL

EmployeeNumber
SkillNumber

ProficiencyLevel
CourseTaken

il

182

Figure : 5-36

Data Entry Form Suggesting
the Need for Subtypes

Figure : 5-37

Data Model for Form
in Figure 5-36

Part 2 Database Design

Resident Fishing License Lfearnes N
2011 Season 03-1123432
State of Washington
Name:
Street:
City: | State: | | Zip: |
For Use by Commercial Fishers Only For Use by Sport Fishers Only
Vessel Number: Number Years at
This Address:
Vessel Name: Prior Year License
Number:
Vessel Type:
Tax ID:

The For-Use-By Pattern

As stated earlier in this chapter, the major reason for using subtypes in a database design is
to avoid value-inappropriate nulls. Some forms suggest the possibility of such nulls when
they show blocks of data fields that are colored and labeled For Use by someone/something
Only. For example, Figure 5-36 shows two tan sections, one for commercial fishers and
another for sport fishers. The presence of these grayed-out sections indicates the need for
subtype entities.

The data model for this form is shown in Figure 5-37. Observe that each tan section has a
subtype. Notice that the subtypes differ not only in their attributes, but that one has a
relationship that the other does not have. Sometimes, the only differences between subtypes
are differences in the relationships they have.

The nonidentifying relationship from VESSEL to COMMERCIAL_LICENSE is shown as
1:N, mandatory to mandatory. In fact, this form does not have sufficient data for us to con-
clude that the maximum cardinality from VESSEL to COMMERCIAL_LICENSE is N. This fact
was determined by interviewing users and learning that one boat is sometimes used by more
than one commercial fisher. The minimum cardinalities indicate a commercial fisher must
have a vessel, and that only vessels that are used for licenses are to be stored in this database.

FISHING_LICENSE

LicenseNo

Name
Address
City
State
Zip

VESSEL COMMERCIAL_LICENSE SPORT_LICENSE

VesselNumber L 041 | |]
m———-

VesselName TaxID I NumberYearsAtAddress
VesselType PriorYearLicenseNumber

Figure - 5-38

Data Model for a 1:1
Recursive Relationship

Figure : 5-39

Sample Entities for the Data
Model in Figure 5-38

Chapter 5 Data Modeling with the Entity-Relationship Model 183

The point of this example is to illustrate how forms often suggest the need for subtypes.
Whenever you see a grayed out or otherwise distinguished section of a form with the words
Foruseby. .., think subtype.

Recursive Patterns

A recursive relationship occurs when an entity type has a relationship to itself. The classic
examples of recursive relationships occur in manufacturing applications, but there are many
other examples as well. As with strong entities, three types of recursive relationships are
possible: 1:1, 1:N, and N:M. Lets consider each.

1:1 Recursive Relationships

Suppose you are asked to construct a database for a railroad, and you need to make a
model of a freight train. You know that one of the entities is BOXCAR, but how are
BOXCARSs related? To answer that question, envision a train. Except for the first boxcar,
each has one boxcar in front, and, except for the last boxcar, each boxcar has one boxcar in
back. Thus, the relationship is 1:1 between boxcars, with an optional relationship for the
first and last cars.

Figure 5-38 shows a data model in which each BOXCAR has a 1:1 relationship to the
BOXCAR ahead. The BOXCAR entity at the head of the train has a 1.1 relationship to ENGINE.
(This model assumes a train has just one engine. To model trains with multiple engines, create
a second recursive relationship among engines. Construct that relationship just like the
Boxcar Ahead relationship.)

Figure 5-39 shows example entity instances that illustrate this data model. Not surprisingly,
this set of entity instances looks just like a train.

An alternative model is to use the relationship to represent the BOXCAR behind.
Either model works. Other examples of 1:1 recursive relationships are the succession of U.S.
presidents, the succession of deans in a college of business, and the order of passengers on
a waiting list.

ENGINE

EngineNumber

Type
HorsePower

L

o

|
: First Boxcar

e}

I

BOXCAR

BoxCarNumber

Capacity —-o-
Type

|

Boxcar Ahead

Engine Boxcar 10 ({—{ Boxcar 20 |{— Boxcar 15

U U

N/

First Boxcar Boxcar
Relationship Relationships

184

Figure : 5-40

Managerial Relationships

Figure : 5-41

Data Model for the
Management Structure in
Figure 5-40 as a 1:N
Recursive Relationship

Figure : 5-42

Bill of Materials

Part 2 Database Design

Sarah
John Robin Bob
Tae Arthur Jonathan Andie Kyle Alex Robyn

1:N Recursive Relationships

The classic example of a 1:N recursive relationship occurs in organizational charts, in which an
employee has a manager who may, in turn, manage several other employees. Figure 5-40 shows
an example managerial chart. Note that the relationship between employees is 1:N.

Figure 5-41 shows a data model for the managerial relationship. The crow s foot indicates
that a manager may manage more than one employee. The relationship is optional to optional
because one manager (the president) has no manager and because some employees manage
no one.

Another example of a 1:N recursive relationship concerns maps. For example, a world map
has a relationship to many continent maps, each continent map has a relationship to many
nation maps, and so forth. A third example concerns biological parents where the relationship
from PERSON to PERSON is shown by tracing either mother or father (but not both).

N:M Recursive Relationships
N:M recursive relationships occur frequently in manufacturing applications, where they are
used to represent bills of materials. Figure 5-42 shows an example.

EMPLOYEE

EmployeeName

Other Data . ..

Manages

Child s Red
Wagon

Handle Bod Wheel
Assembly OOy Assembly

7

Handle Bolt Washer Nut Wheel Axle

Figure : 5-43

Data Model for the Bill of
Materials in Figure 5-42 as
an N:M Recursive
Relationship

Chapter 5 Data Modeling with the Entity-Relationship Model 185

PART

PartName

Other Data . ..

The key idea of a bill of materials is that one part is composed of other parts. A childs red
wagon, for example, consists of a handle assembly, a body, and a wheel assembly, each of which
is a part. The handle assembly, in turn, consists of a handle, a bolt, a washer, and a nut. The
wheel assembly consists of wheels, axles, washers, and nuts. The relationship among the parts
is N:M, because a part can be made up of many parts and because a part (such as washers and
nuts) can be used in many parts.

The data model for a bill of materials is shown in Figure 5-43. Notice that each part has an
N:M relationship to other parts. Because a part need not have any component parts, and
because a part need not have any parts that contain it, the minimum cardinality is optional to
optional.

THE WAY What would happen to the data model if the diagram showed how many

of each part are used? Suppose, for example, that the wheel assembly
requires four washers and the handle assembly requires just one. The data model in
Figure 5-43 will not be correct for this circumstance. In fact, adding Quantity to this N:M
relationship is analogous to adding Price to the N:M relationship in Figure 5-22. See
Project Question 5.67.

N:M recursive relationships can be used to model directed networks, such as the flow of
documents through organizational departments or the flow of gas through a pipeline. They also
can be used to model the succession of parents, in which mothers, fathers, and stepparents are
included.

If recursive structures seem hard to comprehend, dont fret. They may seem strange at
first, but they are not difficult. Work through some data examples to gain confidence. Make up
a train and see how the model in Figure 5-38 applies or change the example in Figure 5-40 from
employees to departments and see how the model in Figure 5-41 needs to be adjusted. Once
you have learned to identify recursive patterns, you Il find it easy to create models for them.

The Data Modeling Process

During the data modeling process, the development team analyzes user requirements and
constructs a data model from forms, reports, data sources, and user interviews. The process is
always iterative; a model is constructed from one form or report and then supplemented and
adjusted as more forms and reports are analyzed. Periodically, users are asked for additional
information, such as that needed to assess minimum cardinality. Users also review and
validate the data model. During that review, prototypes evidencing data model constructs may
need to be constructed, as explained earlier.

To give you an idea of the iterative nature of data modeling, we will consider the development
of a simple data model for a university. As you read this example, strive to appreciate how the
model evolves as more and more requirements are analyzed.

For a more detailed version of this data modeling exercise, combined with an overview of
the systems analysis and design process, see Appendix B.

186

Figure - 5-44

Highline University Sample
College Report

Part 2 Database Design

THE WAy ©One of the authors worked on a large data model for the U.S. Army s

logistical system. The model contained over 500 different entity types, and
it took a team of seven people more than a year to develop, document, and validate it.
On some occasions, the analysis of a new requirement indicated that the model had
been conceived incorrectly, and days of work had to be redone. The most difficult aspect
of the project was managing complexity. Knowing which entities related to which;
whether an entity had already been defined; and whether a new entity was strong, weak,
a supertype, or a subtype required a global understanding of the model. Memory was
of poor help because an entity created in July could be a subtype of an entity created
hundreds of entities earlier in February. To manage the model, the team used many
different administrative tools. Keep this example in mind as you read through the
development of the Highline University data model.

Suppose the administration at a hypothetical university named Highline University wants
to create a database to track colleges, departments, faculty, and students. To do this, a data
modeling team has collected a series of reports as part of its requirements determination. In
the next sections, we will analyze these reports to produce a data model.

The College Report

Figure 5-44 shows an example report from Highline University about one college within the
university, specifically, the College of Business. This example is one instance of this report;
Highline University has similar reports about other colleges, such as the College of Engineering
and the College of Social Sciences. The data modeling team needs to gather enough examples
to form a representative sample of all the college reports. Here, assume that the report in
Figure 5-44 is representative.

Examining the report, we find data specific to the college such as the name, dean,
telephone number, and campus address and also facts about each department within the
college. These data suggest that the data model should have COLLEGE and DEPARTMENT
entities with a relationship between them, as shown in Figure 5-45.

The relationship in Figure 5-45 is nonidentifying. This relationship is used because DEPART-
MENT is not ID-dependent, and, logically, a DEPARTMENT is independent of a COLLEGE. We
cannot tell from the report in Figure 5-44 whether a department can belong to many colleges. To
answer this question, we need to ask the users or look at other forms and reports.

Assume that we know from the users that a department belongs to just one college, and
the relationship is thus 1:N from COLLEGE to DEPARTMENT. The report in Figure 5-44 does
not show us the minimum cardinalities. Again, we must ask the users. Assume we learn from
the users that a college must have at least one department, and a department must be
assigned to exactly one college.

College of Business
Mary B. Jefferson, Dean

Campus Address:

Phone: 232-1187 Business Building, Room 100
Department Chairperson Phone Total Majors
Accounting Jackson, Seymour P. 232-1841 318

Finance HeuTeng, Susan 232-1414 211
Info Systems Brammer, Nathaniel D. 236-0011 247
Management Tuttle, Christine A. 236-9988 184

Production Barnes, Jack T. 236-1184 212

Figure : 5-45

Data Model for the College
Report in Figure 5-44

Figure - 5-46

Highline University Sample
Department Report

Chapter 5 Data Modeling with the Entity-Relationship Model 187

COLLEGE DEPARTMENT
CollegeName DepartmentName
DeanName __ Chairperson
Phone AR Phone
Building TotalMajors
Room

The Department Report

The Department Report shown in Figure 5-46 contains departmental data along with a list
of the professors who are assigned to that department. This report contains data concerning
the departments campus address. Because these data do not appear in the DEPARTMENT
entity in Figure 5-45, we need to add them, as shown in Figure 5-47(a). This is typical of the
data modeling process. That is, entities and relationships are adjusted as additional forms,
reports, and other requirements are analyzed.

Figure 5-47(a) also adds the relationship between DEPARTMENT and PROFESSOR. We ini-
tially model this as an N:M relationship, because a professor might have a joint appointment.
The data modeling team must further investigate the requirements to determine whether joint
appointments are allowed. If not, the relationship can be redefined as a nonidentifying 1:N, as
shown in Figure 5-47(b).

Another possibility regarding the N:M relationship is that some attribute about
the combination of a professor and a department is missing. If so, then an association
pattern is more appropriate. At Highline, suppose the team finds a report that describes
the title and employment terms for each professor in each department. Figure 5-47(c)
shows an entity for such a report, named APPOINTMENT. As you would expect from
the association pattern, APPOINTMENT is ID-dependent on both DEPARTMENT and
PROFESSOR.

A chairperson is a professor, so another improvement on the model is to remove the
Chairperson data from DEPARTMENT and replace it with a chairperson relationship. This has
been done in Figure 5-47(d). In the Chairs/Chaired By relationship, the PROFESSOR is the
parent entity. A professor can be a chair of zero or one departments, and a department must
have exactly one professor as chair.

With the Chairs/Chaired By relationship, the attribute Chairperson is no longer needed in
DEPARTMENT, so it is removed. Normally, a chairperson has his or her office in the
department office; if this is the case, Phone, Building, and Room in DEPARTMENT duplicate
Phone, Building, and OfficeNumber in PROFESSOR. Consequently, it might be possible to
remove Phone, Building, and Room from DEPARTMENT. However, a professor may have a
different phone from the official department phone, and the professor may also have an office
outside of the departments office. Because of this possibility, we will leave Phone, Building,
and Room in DEPARTMENT.

Information Systems Department
College of Business
Chairperson: Brammer, Nathaniel D
Phone: 236-0011
Campus Address: Social Science Building, Room 213

Professor Office Phone
Jones, Paul D. Social Science, 219 232-7713
Parks, Mary B Social Science, 308 232-5791
Wau, Elizabeth Social Science, 207 232-9112

88T

COLLEGE DEPARTMENT PROFESSOR COLLEGE DEPARTMENT PROFESSOR
CollegeName DepartmentName ProfessorName CollegeName DepartmentName ProfessorName
DeanName Chairperson Building DeanName Chairperson INFRp Building
Phone Phone OfficeNumber Phone Phone OfficeNumber
Building TotalMajors Phone Building TotalMajors Phone
Room Building Room Building

Room Room

(a) Data Model Using an N:M Relationship

(b) Data Model Using a 1:N Relationship

COLLEGE DEPARTMENT PROFESSOR COLLEGE DEPARTMENT
CollegeName DepartmentName ProfessorName CollegeName DepartmentName
DeanName Chairperson Building DeanName Phone
Phone Phone OfficeNumber Phone TotalMajors
Building TotalMajors Phone Building Building
Room Building Room Room

Room

APPOINTMENT

Title
Terms

(c) Data Model Using an Association Pattern

Figure - 5-47

Alternate Data Models for the DEPARTMENT-to-PROFESSOR Relationship

Chairs/Chaired By

APPOINTMENT

Title
Terms

(d) Data Model Using an Association Pattern

and 1:1 Relationship

PROFESSOR

ProfessorName

Building
OfficeNumber
Phone

Figure - 5-48

Highline University Sample

Department Student Report

Chapter 5 Data Modeling with the Entity-Relationship Model 189

The Department/Major Report

Figure 5-48 shows a report of a department and the students who major in that department.
This report indicates the need for a new entity called STUDENT. Because students are not I1D-
dependent on departments, the relationship between DEPARTMENT and STUDENT is non-
identifying, as shown in Figure 5-49. We cannot determine the minimum cardinality from
Figure 5-48, but assume that interviews with users indicate that a STUDENT must have
MAJOR, but no MAJOR need have any students. Also, using the contents of this report as a
guide, attributes StudentNumber, StudentName, and Phone are placed in STUDENT.

There are two subtleties in this interpretation of the report in Figure 5-48. First, observe
that Majors Name was changed to StudentName when the attribute was placed in STUDENT.
This was done because StudentName is more generic. Majors Name has no meaning outside
the context of the Major relationship. Additionally, the report heading in Figure 5-48 has an
ambiguity. Is the phone number for the department a value of DEPARTMENT.Phone or a value
of PROFESSOR.Phone? The team needs to investigate this further with the users. Most likely, it
is a value of DEPARTMENT.Phone.

The Student Acceptance Letter

Figure 5-50 shows the acceptance letter that Highline sends to its incoming students. The data
items in this letter that need to be represented in the data model are shown in boldface. In
addition to data concerning the student, this letter also contains data regarding the students
major department as well as data about the students adviser.

We can use this letter to add an Advises/Advised By relationship to the data model.
However, which entity should be the parent of this relationship? Because an adviser is a
professor, it is tempting to make PROFESSOR the parent. However, a professor acts as an

Student Major List
Information Systems Department

Chairperson: Brammer, Nathaniel D Phone: 236-0011

Major’s Name Student Number Phone
Jackson, Robin R. 12345 237-8713
' Lincoln, Fred J. 48127 237-8713
Figure - 5-49 Madison, Janice A. 37512 237-8713
Data Model with STUDENT
Entity
COLLEGE DEPARTMENT PROFESSOR
CollegeName DepartmentName ProfessorName
DeanName Lt~ Phone E:Ea_air_s_/_CDz_aiis_B_y_ Building
Phone TotalMajors L y OfficeNumber
Building Building " ™1 Phone
Room Room
+
|
! APPOINTMENT
i | |
Major :
| Title
: Terms
STUDENT /}\
StudentNumber
StudentName
Phone

190

Figure : 5-50

Highline University Sample
Student Acceptance Letter

Figure - 5-51

Data Model with Advises
Relationship

Part 2 Database Design

Mr. Fred Parks

123 EIm Street

Los Angeles, CA 98002

Dear Mr. Parks:

You have been admitted as a major in the Accounting Department at Highline
University, starting in the Fall Semester, 2011. The office of the Accounting
Department is located in the Business Building, Room 210.

Your adviser is professor Elizabeth Johnson, whose telephone number is 232-
8740 and whose office is located in the Business Building, Room 227. Please
schedule an appointment with your adviser as soon as you arrive on campus.
Congratulations and welcome to Highline University!

Sincerely,

Jan P. Smathers
President

JPS/rkp

adviser within the context of a particular department. Therefore, Figure 5-51 shows APPOINT-
MENT as the parent of STUDENT. To produce the report in Figure 5-50, the professors data
can be retrieved by accessing the related APPOINTMENT entity and then accessing that
entity s PROFESSOR parent. This decision is not cut-and-dried, however. One can make a
strong argument that the parent of the relationship should be PROFESSOR.

According to this data model, a student has at most one adviser. Also, a student must have
an adviser, but no professor (via APPOINTMENT) need advise any students. These constraints
cannot be determined from any of the reports shown and will need to be verified with the users.

COLLEGE DEPARTMENT PROFESSOR
CollegeName DepartmentName ProfessorName
DeanName —H—---}< Phone _|_O(ih_a|_rs_/_(_:h_a_|r§(1?)i_'+ Building
Phone TotalMajors y y OfficeNumber

" "™ Phone

APPOINTMENT

Title
| Terms

Major

Building Building

Room Room
|
|
|
|
|
|
|
|

StudentNumber

O
STUDENT L T
|
|
|
Title !
StudentName :
HomeStreet > 0-———————— |

HomeCity Advises / Advised By
HomeState

HomeZip
Phone

Figure : 5-52

Final Data Model

Chapter 5

Data Modeling with the Entity-Relationship Model

191

COLLEGE DEPARTMENT PROFESSOR

CollegeName DepartmentName ProfessorFirstName
i i ProfessorLastName

DeanFirstName L4 Phone _CDa_II’_S_/_CDiII’_S_B_y_

DeanlLastName TotalMajors y ., | Building

Phone Building M " OfficeNumber

Building Room Phone

Room

APPOINTMENT

i

Major
Title
Terms
StudentNumber

Title
StudentFirstName
StudentLastName 50
HomeStreet
HomeCity
HomeState
HomeZip
Phone

STUDENT ,?\ :i:
|
|
|
|
|
|

Advises / Advised By

The acceptance letter uses the title Mr. in the salutation. Therefore, a new attribute called Title
is added to STUDENT. Observe that this Title is different from the one in APPOINTMENT. This
difference will need to be documented in the data model to avoid confusion. The acceptance
letter also shows the need to add new home address attributes to STUDENT.

The acceptance letter reveals a problem. The name of the student is Fred Parks, but we
have allocated only one attribute, StudentName, in STUDENT. It is difficult to reliably
disentangle first and last names from a single attribute, so a better model is to have two
attributes: StudentFirstName and StudentLastName. Similarly, note that the adviser in this let-
ter is Elizabeth Johnson. So far, all professor names have been in the format Johnson, Elizabeth.
To accommodate both forms of name, ProfessorName in PROFESSOR must be changed to the
two attributes ProfessorFirstName and ProfessorLastName. A similar change is necessary for
DeanName. These changes are shown in Figure 5-52, which is the final form of this data model.

This section should give you a feel for the nature of a data modeling project. Forms and
reports are examined in sequence, and the data model is adjusted as necessary to accommo-
date the knowledge gained from each new form or report. It is very typical to revise the data
model many, many times throughout the data modeling process. See Project Question 5.67 for
yet another possible revision.

ummary

When databases are developed as part of a new information
systems project, the database design is accomplished in two
phases. First, a data model is constructed from forms,
reports, data sources, and other requirements. The data
model is then transformed into a database design. A data
model is a blueprint for a database design. Like blueprints for
buildings, data models can be altered as necessary, with little
effort. Once the database is constructed, however, such
alterations are time consuming and very expensive.

The most prominent data model in use today is the entity-
relationship, or E-R, data model. It was invented by Peter Chen
and extended by others to include subtypes. An entity is some-
thing that users want to track. An entity class is a collection of
entities of the same type and is described by the structure of
the entities in the class. An entity instance is one entity of a
given class. Entities have attributes that describe their charac-
teristics. Identifiers are attributes that name entity instances.
Composite identifiers consist of two or more attributes.

192 Part 2 Database Design

The E-R model includes relationships, which are
associations among entities. Relationship classes are associ-
ations among entity classes, and relationship instances are
associations among entity instances. Today, relationships are
not allowed to have attributes. Relationships can be given
names so that they can be identified.

The degree of a relationship is the number of entity types
that participate in the relationship. Binary relationships have
only two entity types. In practice, relationships of degrees
greater than two are decomposed into multiple binary
relationships.

The difference between an entity and a table is that you
can express an entity relationship without specifying foreign
keys. Working with entities reduces complexity and makes it
easier to revise the data model as work progresses.

Relationships are classified according to their cardinality.
Maximum cardinality is the maximum number of instances
that can participate in a relationship instance. Minimum
cardinality is the least number of entities that must partici-
pate in a relationship.

Relationships commonly have one of three maximum
cardinalities: 1:1, 1:N, or N:M. In rare instances, a maximum
cardinality might be a specific number, such as 1:15.
Relationships commonly have one of four basic minimum
cardinalities: optional to optional, mandatory to optional,
optional to mandatory, or mandatory to mandatory. In rare
cases, the minimum cardinality is a specific number.

Unfortunately, many variations of the E-R model are in
use. The original version represented relationships with
diamonds. The Information Engineering version uses a line
with a crows foot, the IDEF1X version uses another set of
symbols, and UML uses yet another set. To add further
complication, many data modeling products have added their
own symbols. In this text, we will use the IE Crow s Foot model
with symbols, as summarized in Figure 5-14. Other models
and techniques are summarized in Appendices B, C, D, and H.

An ID-dependent entity is an entity whose identifier
includes the identifier of another entity. Such entities use an

‘Bey Terms

association pattern
attribute

binary relationship
cardinality

child

composite identifier
crow s foot symbol
data model

degree
discriminator
entity

entity class

entity instance

identifying relationship. In such relationships, the parent is
always required, but the child (the ID-dependent entity) may
or may not be required, depending on application require-
ments. Identifying relationships are shown with solid lines in
E-R diagrams.

A weak entity is an entity whose existence depends on
the presence of another entity. All ID-dependent entities are
weak. Additionally, some entities are weak, but not ID-
dependent. Some people believe such entities are not impor-
tant; others believe they are.

A subtype entity is a special case of another entity called
its supertype. Subtypes may be exclusive or inclusive.
Exclusive subtypes sometimes have discriminators, which
are attributes that specify a supertypes subtype. The most
important (and perhaps only) reason for creating subtypes in
a data model is to avoid value-inappropriate nulls.

Relationships among nonsubtype entities are called
HAS-A relationships. Relationships among supertype/subtype
entities are called IS-A relationships.

The elements of a data model are constructed by analy-
zing forms, reports, and data sources. Many forms and reports
fall into common patterns. In this text, we discussed the 1:1,
LN, and N:M strong entity patterns. We also discussed three
patterns that use ID-dependent relationships: association,
multivalue attribute, and version/instance. Some forms involve
mixed identifying and nonidentifying patterns. Line items are
the classic example of mixed forms, but there are other
examples as well.

The for-use-by pattern indicates the need for subtypes.
In some cases, subtypes differ because they have different
attributes, but they also can differ because they have different
relationships. A recursive relationship occurs when an entity
has a relationship to itself. The three types of recursive
relationship are 1:1, LN, and N:M.

The data modeling process is iterative. Forms and
reports are analyzed, and the data model is created, modified,
and adjusted as necessary. Sometimes, the analysis of a form
or report will require that earlier work be redone. C est la vie!

entity-relationship (E-R) diagrams
entity-relationship (E-R) model
exclusive subtype

extended E-R model

HAS-A relationship

ID-dependent entity

identifier

identifying relationship

IE Crows Foot model

inclusive subtype

Information Engineering (IE) model
Integrated Definition 1, Extended (IDEF1X)
IS-A relationship

Chapter 5 Data Modeling with the Entity-Relationship Model 193

mandatory optional-to-optional (O-O) relationship
mandatory-to-mandatory (M-M) relationship parent
mandatory-to-optional (M-O) relationship relationship
many-to-many (N:M) relationship relationship class
maximum cardinality relationship instance
minimum cardinality strong entity
nonidentifying relationship subtype
one-to-many (1:N) relationship supertype
one-to-one (1:1) relationship ternary relationship
optional Unified Modeling Language (UML)
optional-to-mandatory (O-M) relationship weak entity
@eview Questions

5.1 Describe the two phases in designing databases that arise from the development of
new information systems.

5.2 In general terms, explain how a data model could be used to design a database for a
small video rental store.

5.3 Explain how a data model is like a building blueprint. What is the advantage of making
changes during the data modeling stage?

5.4 Who is the author of the entity-relationship data model?
5.5 Define entity. Give an example of an entity (other than one presented in this chapter).
5.6 Explain the difference between an entity class and an entity instance.

5.7 Define attribute. Give an example attribute for the entity in your answer to Review
Question 5.5.

5.8 Define identifier. Give an example identifier for the entity in your answer to Review
Question 5.5.

5.9 Give an example of a composite identifier.

5.10 Define relationship. Give an example of a relationship (other than one presented in this
chapter). Name your relationship.

5.11 Explain the difference between a relationship class and a relationship instance.

5.12 What is the degree of relationship? Give an example of a relationship of degree three
(other than one presented in this chapter).

5.13 What is a binary relationship?

5.14 Explain the difference between an entity and a table. Why is this difference important?
5.15 What does cardinality mean?

5.16 Define the terms maximum cardinality and minimum cardinality.

5.17 Give examples of 1.1, 1:N, and N:M relationships (other than those presented in this
chapter). Use the traditional diamond notation to diagram your examples.

5.18 Give an example for which the maximum cardinality must be an exact number.

5.19 Give examples of M-M, M-0O, O-M, and O-O relationships (other than those presented
in this chapter). Use the circle and hash mark notation on the diamond portrayal of
relationships.

5.20 Explain, in general terms, how the traditional E-R model, the IE Crow s Foot version, the
IDEF1X version, and the UML version differ. Which version is used primarily in this text?

194

Part 2 Database Design

521
5.22
5.23

5.24

5.25

5.26
5.27

5.28
5.29

5.30

531

5.32
5.33
5.34
5.35
5.36
5.37

5.38

5.39
5.40

541
5.42
5.43

5.44
5.45

5.46

5.47
5.48

Explain how the notations shown in Figure 5-7 differ.
Explain how the notations shown in Figure 5-9 differ.

What is an ID-dependent entity? Give an example of an ID-dependent entity (other
than one presented in this chapter).

Explain how to determine the minimum cardinality of both sides of an ID-dependent
relationship.

What rules exist when creating an instance of an ID-dependent entity? What rules
exist when deleting the parent of an ID-dependent entity?

What is an identifying relationship? How is it used?

Explain why the relationship between PRODUCT and VERSION discussed on page 165
is an identifying relationship.

What is a weak entity? How do weak entities relate to ID-dependent entities?

What distinguishes a weak entity from a strong entity that has a required relationship
to another entity?

Define subtype and supertype. Give an example of a subtype supertype relationship
(other than one presented in this chapter).

Explain the difference between exclusive subtypes and inclusive subtypes. Give an
example of each.

What is a discriminator?

Explain the difference between IS-A and HAS-A relationships.

What is the most important reason for using subtypes in a data model?

Describe the relationship between the structure of forms and reports and the data model.
Explain two ways forms and reports are used for data modeling.

Explain why the form and report in Figure 5-15 indicate that the underlying relationship
is 1.1,

Why is it not possible to infer minimum cardinality from the form and report in
Figure 5-15?

Describe two tests for determining if an entity is a strong entity.

Why does the form in Figure 5-17 not indicate that the underlying relationship is 1:N?
What additional information is required to make that assertion?

Explain why two forms or reports are usually needed to infer maximum cardinality.
How can you assess minimum cardinality for the entities in the form in Figure 5-17?

Explain why the form and report in Figure 5-19 indicate that the underlying relationship
is N:M.

Name three patterns that use ID-dependent relationships.

Explain how the association pattern differs from the N:M strong entity pattern. What
characteristic of the report in Figure 5-21 indicates that an association pattern is needed?

In general terms, explain how to differentiate an N:M strong entity pattern from an
association pattern.

Explain why two entities are needed to model multivalued attributes.

How do the forms in Figures 5-26 and 5-28 differ? How does this difference affect the
data model?

Chapter 5 Data Modeling with the Entity-Relationship Model 195

5.49

5.50

5.51

5.52

5.53

5.54

5.55

Qroject Questions

Figure : 5-53

Subscription Form

5.56

5.57

Describe, in general terms, the archetype/instance pattern. Why is an ID-dependent
relationship needed for this pattern? Use the CLASS/SECTION example shown in
Figure 5-30 in your answer.

Explain what caused the entities in Figure 5-31 to change from ID-dependent entities.

Summarize the two sides in the argument about the importance of weak, but not ID-
dependent, entities.

Give an example of the line-item pattern as it could be used to describe the contents of a
shipment. Assume that the shipment includes the names and quantities of various items
as well as each items insured value. Place the insurance value per item in an ITEM entity.

What entity type should come to mind when you see the words For use by in aform?

Give examples of 1:1, 1:N, and N:M recursive relationships (other than those presented
in this chapter).

Explain why the data modeling process must be iterative. Use the Highline University
example.

This question is for Microsoft Visio users. Convert the data models in Figures 5-16,
5-20, 5-22, 5-23, 5-30, 5-33, 5-37, and 5-52 into Visio format. Use the Visio arrow nota-
tion. (Hint: See Appendix F, Getting Started with Microsoft Visio 2010.)

This question is for Visio users. Convert the data models in Figures 5-16, 5-20, 5-22,
5-23,5-30, 5-33, 5-37, and 5-52 into Visio format. Use the Visio version of IE Crow s Foot
notation. (Hint: See Appendix F.)

Answer the following questions using IE Crow s Foot notation.

5.58

Examine the subscription form shown in Figure 5-53. Using the structure of this form,
do the following:

A. Create a model with one entity. Specify the identifier and attributes.

B. Create a model with two entities, one for customer and a second for subscription.

Specify identifiers, attributes, relationship name, type, and cardinalities.

C. Under what conditions do you prefer the model in A to that in B?

D. Under what conditions do you prefer the model in B to that in A?

Fine To subscribe

A\-NrCApAgAWorking

1 year (6 issues) for just $18 20% off the newsstand price.
(Outside the U.S. $21/year U.S. funds, please)

2 years (12 issues) for just $34 save 24%
(Outside the U.S. $40/2 years U.S. funds, please)

Name

Address

City State Zip
[0 My payment is enclosed. [0 Please bill me.
Please start my subscription with [current issue [next issue .

196

Figure - 5-54

Traffic Citation

Part 2 Database Design

5.59 Consider the traffic citation shown in Figure 5-54. The rounded corners on this form
provide graphical hints about the boundaries of the entities represented.

A. Create a data model with five entities. Use the data items on the form to specify

WASHINGTON STATE PATROL CORRECTION NOTICE

(e Kroenke . David M

oeee D053 88 Ave SE
- Mecer Island ... Wa 2.98040

G000 WA 27746] 6 11658])

(TARAD00 | Wal [90| Sdab | 900)
REIGISTIEREIIJ Y I v | |

>ADDRESS <
o 1 T 200Lps, 935[°7 [T

(17, E . Enumckum ..SR410)
(“Writing text while driving

> %
(S25% § Seott e 850)
<

|X| This is a warning, no further action is required.

You are released to take this vehicle to a place of repair.
Continued operation on the roadway is not authorized.

CORRECT VIOLATION(S) IMMEDIATELY. Return this signed card
forpaaaatrmp snoe it 13630 ey, (T box ahiecked)
\ pal

DRIVERS
SIGNATUI

¥

identifiers and attributes for those entities.

B. Specify relationships among the entities. Name the relationship and give its type
and cardinalities. Indicate which cardinalities can be inferred from data on the form

and which need to be checked out with systems users.

5.60 Examine the list of e-mail messages in Figure 5-55. Using the structure and example

data items in this list, do the following:

A. Create a single-entity data model for this list. Specify the identifier and all entities.

B. Modify your answer to A to include entities SENDER and SUBJECT. Specify the
identifiers and attributes of entities and the type and cardinalities of the relation-
ships. Explain which cardinalities can be inferred from Figure 5-55 and which need

to be checked out with users.

C. The e-mail address in the From column in Figure 5-55 is in two different styles. One
style has the true e-mail address; the second style (e.g., Tom Cooper) is the name of
an entry in the users e-mail directory. Create two categories of SENDER based on

these two styles. Specify identifiers and attributes.

5.61 Examine the list of stock quotes in Figure 5-56. Using the structure and example data

items in this list, do the following:

A. Create a single-entity data model for this list. Specify the identifier and attributes.

B. Modify your answer to A to include the entities COMPANY and INDEX. Specify the
identifier and attributes of the entities and the type and cardinalities of the relation-
ships. Explain which cardinalities can be inferred from Figure 5-56 and which need

to be checked out with users.

Figure : 5-55

Email List

Figure - 5-56

Stock Quotations

Chapter 5

Data Modeling with the Entity-Relationship Model 197

5.62

& From Subject Date 4 .

i | WDAZ259@sailmail.com Big Wind 5/13/2011 3 KB

i | WhAZZ59@sailmail.com Update 5/12/2011 4 KB

i WDAZZ59@sailmail.com Re: Saturday Am 5/11/2011 4 KB

[WDAZ259@sailmail.corm Re! weather windaw! 5/10/2011 4 KB

i | WDAZ259@sailmail.com Re: Howdy! 5/10/2011 3 KB

] WDAZ259@sailmail.com still here 5/9/2011 3 KB

i WDAZZ59@sailmail.com Re: Turle Bay 5/8/2011 4 KB

.| WDAZ259@sailmail com Turle Bay 5/8/z2011 4 KB

o WDAZ259@sailmail.com Re: Hi 5/6/2011 3 KB

|| WDAZZ59@sailmail.com Sunday, Santa Maria 5/5/2011 3 KB

i Kigyu@aol.com Cabo, Thurs. Moon 5/2/2011 Z KB

{1 WDAZ259@sailmail.corm turbo 5/1/2011 3 KB

i | WDAZ259@sailmail.com on our way 4/28/2011 3 KB

]| Tom Cooper RE: Hala! 4/26/2011 3 KB

o Tormn Cooper RE: Holal 4/24/2011 Z KB

- Torn Cooper RE: Hala! 4/2352011 3 KB

C. The list in Figure 5-56 is for a quote on a particular day at a particular time of day.
Suppose that the list were changed to show closing daily prices for each of these
stocks and that it includes a new column: QuoteDate. Modify your model in B to
reflect this change.

D. Change your model in C to include the tracking of a portfolio. Assume the portfolio has
an owner name, a phone number, an e-mail address, and a list of stocks held. The list
includes the identity of the stock and the number of shares held. Specify all additional
entities, their identifiers and attributes, and the type and cardinality of all relationships.

E. Change your answer to part D to keep track of portfolio stock purchases and sales in

a portfolio. Specify entities, their identifiers and attributes, and the type and
cardinality of all relationships.

Figure 5-57 shows the specifications for single-stage air compressor products. Note that

there are two product categories that are based on Air Performance: The A models are at

125 pounds per square inch of pressure, and the E models are at 150 pounds per square

inch of pressure. Using the structure and example data items in this list, do the following:

A. Create a set of exclusive subtypes to represent these compressors. The supertype

will have attributes for all single-stage compressors, and the subtypes will have
Symbol Name Last Change %% Chg
FCOMPY Masdag Combined Composite Index 1,40074« -487 -0.35%
FINDU Dow Jones Industrial Average Index 9295107 1880 -0.21%
BN SEP 500 IMDEX 97114 * -584 -060%
ALTR Altera Corparation 13.45 7 -04580 -3.24%
AL Amazaon.caom, Inc. 15.62 « +0.630 +4.559%
CECo Cisco Systems, Inc. 13.39* -0.280 -2058%
DELL Dell Computer Corparation 24488 -0170 -0.69%
EMGCH Enterprize Growth C 1460 -0.210 -1.42%
INTC Intel Corpaoration 1812« -0.380 -2.05%
A Jaohnson & Johnson 53209 0280 -0.54%
0 Coca-Cola Company aE.T0* -0.4880 -1.01%
MSFT Micrasoft Carporation H3.86 « +1.040 +1.97%
MEE MIKE, Inc. 6734 &« +0580 +1.02%

198

Figure : 5-57

Air Compressor

Specifications

Figure - 5-58

Alternative Model for
Compressor Data

Part 2 Database Design

Single Stage

Set 85 to 150 PS1 alza available, substitute "E" far"A" in model nomber. e, K1558-20 make KASE-20

Limensions

| Ajr Performarnce |
ol esa [T _nems [eewo IR
2 oump |[cFw |[DELD |[Pump || GFM || DELD || Wreight || L B
RPM || Disp || air || RPM ([Disp || i
[12 || Fizaar | 17 |[so0 || 34 |[22 || 5m0 |

(2o] e | o [l

[34 || Fsantz | 17 |[1os0 | 53 | 21 | om0 | a7 || 23 || 140 |[= |

[2a || Faanzo [20 |[1o80 | 52 |[34 || om0

G 2 = = =]

I KA 430 || 30 || se0 || 62 || ao0 |[500 || 57][24 |[1o0 |z |

[112| wsasn |l 20 |[870 || a5 |[82 || =0

[o7 || 55 | 208 |[a0 |

[112| wsae0 | &0 |[e70 || 95 |[62 || seo |[o7 || 55 | 315 |[=8 |

[2 || weaso [=0 |[1140 || 134 || o || 1060 |[2o || 70]| 205 | 4o |
[2 || wemeo [6o |[1140 || 134 |[o || 1060 |[2o || 70 || 315 [[4s |
[2 || eczasn [=0 |[40 |[134 |[o1 || ag0 |[124 || 78 || 20 [[e |
[2 || eczaso [so |[490 || 134 |[o1 || ag0 |[1za || 78 || aro [[4o |
[3 || ecsaso [so |[770 || 210 |[140 || 7a0 |[159 || 125 || 2es [[=s |
[5 || ecsaso [so |[770 || 210 || 140 || 7a0 |[150 || 122 || =e= || 40 |
[5 || ecsaso || so |[1020 || 2re |[178 || o0 |[248 || 160 || 4w [40 |
[5 || ecsaso || so |[1020 ||27s || 178 || 210 |[246 || 160 || as0 |2 |
[5 || usaso | ga |[780 || 227 || 100 || 770 || 285 || 180 || s70 |[4o |
[5 || Jsazo || 20 || 720 || 227 || 190 || 770 || zee || 180 || 8510 |[ez |
attributes for products having the two different types of Air Performance. Assume
that there might be additional products with different types of Air Performance.
Specify the entities, identifiers, attributes, relationships, type of category cluster,
and possible determinant.

B. Figure 5-58 shows a different model for the compressor data. Explain the entities,
their type, the relationship, its type, and its cardinality. How well do you think this
model fits the data shown in Figure 5-57?

C. Compare your answer in part A with the model in Figure 5-58. What are the
essential differences between the two models? Which do you think is better?

D. Suppose you had the job of explaining the differences in these two models to a

highly motivated, intelligent end user. How would you accomplish this?

5.63 Figure 5-59 shows a listing of movie times at theaters in Seattle. Using the data in this
figure as an example, do the following:

A. Create a model to represent this report using the entities MOVIE, THEATER, and

SHOW_TIME. Assume that theaters may show multiple movies. Although this
report is for a particular day, your data model should allow for movie times on
different days as well. Specify the identifier of the entities and their attributes. Name
the relationships and the type and cardinality of all relationships. Explain which
cardinalities you can logically deduce from Figure 5-59 and which need to be
checked out with users. Assume that distance is an attribute of THEATER.

SS_COMPRESSOR

Model AIR_PERFORMANCE_TYPE
HP AirPerformance |
Tank Gal
ApproxShipWeight [H PumpRPM
2 | CFMDisp
ek Del dAir
Width
Height

Chapter 5 Data Modeling with the Entity-Relationship Model 199

The King's Speech
Coalin Firth, Geoffrey Rush, and Helena Bonham Carter lead a
stand-out cast in this historical drama.

Local Theaters and Showtimes

40 miles from the center of Seattle, WA Change Area
Tue, Jul @ wed Thu Fri Sat

Displaying 1 - 32 results, sorted by distance,

AMC Pacific Place 11 (0.5 miles)

600 Pine St, Seattle (206) 652-2404

Showtirmes: 11:00 am, 12:00 prm, 12:45 pr, 1:30 prm, 2:30 prm, 3:15 pm, 4:00
prn, 5:00 prn, 5:45 prn, 6:30 pr, 7030 pmy 8:30 prg 9200 prn, 10000 prn, 10045
pm

Neptune Theatre (3.9 miles)
1303 ME 45th, Seattle (206) 633-5545
Showtirmes: 11:20 am, 1:30 pr, 3:40 pr, 5:50 pr, 5:00 pr, 10:10 pm

Regal Bellevue Galleria 11 (6.2 miles)

500 106th Ave ME, Bellewue (425) 451-7161

Showtirmes: 11:00 am, 11:30 am, 1:00 prm, 1:30 pr, 3:00 pro, 3:30 pro, 5:05
prn, 535 prn, 7010 prong 7040 prog 9020 poog 9050 pm

LCE Dak Tree Cinema (6.6 miles)
10006 Aurora Ave M., Seattle (206) 527-1748
Showtimmes: 11:45 am, 2:15 pm, ¢:45 pm, 7:15 prn, 9:45 pm

LCE Factoria Cinemas 8 (7.5 miles)

3505 Factoria Blvd SE, Bellevue (425) 641-9206

Showtirnes: 12:00 pr, 1:00 pra, 2:15 pra, 3015 pro, 430 pro, 5045 pro, 7030
prn, 5:15 prn, 9:45 prm, 10030 pm

. Kirkland Parkplace Cinema (5 miles)
Figure : 5-59 404 Parkplace Ctr, Kirkland {425} §27-2000
Showtirmes: 12:15 pr, 2:30 pro, ¢:45 pm, 7:20 prn, 9:35 pm

Movie Time Listing

B. This report was prepared for a user who is located near downtown Seattle. Suppose
that it is necessary to produce this same report for these theaters, but for a user
located in a Seattle suburb, such as Bellevue, Renton, Redmond, or Tacoma. In this
case, distance cannot be an attribute of THEATER. Change your answer in A for
this situation. Specify the entity identifiers and attributes. Name the relationships
and identify the type and cardinality of all relationships.

C. Suppose that you want to make this data model national. Change your answer to B
so that it can be used for other metropolitan areas. Change your answer in A for this
situation. Specify the entity identifiers and attributes. Name the relationships and
identify the type and cardinality of all relationships.

D. Modify your answer to C to include the leading cast members. Assume that the role of a
cast member is not to be modeled. Specify the identifier of new entities and their attrib-
utes. Name the relationships and identify the type and cardinality of all relationships.

E. Modify your answer to C to include the leading cast members. Assume that the role
of a cast member is specified. Specify the identifier of new entities and their attrib-
utes. Name the relationships and identify the type and cardinality of all relationships.

5.64 Consider the three reports in Figure 5-60. The data are samples of data that would
appear in the reports like these.

200

Figure - 5-60

Part 2 Database Design

KELLY'S

FDA REPORT #6272
Date: June 30. 2011

Issuer: Kelly's Corporation
Report Title: Product Summary by Ingredient

RICE

Cereal

Hutrition Infarmation

Kelly's Corn Cereal
Kelly's Multigrain Cereal
Kelly's Crunchy Cereal
Corn syrup Kelly's Corn Cereal
Kelly's Rice Cereal
Kelly's Crunchy Cereal

Corn

Malt Kelly's Corn Cereal
Kelly's Crunchy Cereal
Wheat Kelly's Multigrain Cereal

Kelly's Crunchy Cereal

SERVING SIZE: 102, (28.4 g ABOUT 1 CLW)
SERVINGS PER PACKAGE 13
WITH & D
VITKME A &
CEREML S e
CALORIES 110 150"
FROTEIN 2g
CARBOHYDRATE /g Mg
FAT bg 09
CHOLESTEROL Gmg Omg
SO0 290 mg A%0mg
POTASSILM 35 my 240mg
PEIOAILY ALLOWANCES (0.5, ROA) ~
PROTEIN ﬂé‘ 10
VITAMIN A 25 30
VITAMIN C F 25
THIAKIN as &0
RIBOFLAWIY 15 45
MIACIN as 3
CALCILIM L 15
IRON 0 10
WITAMIN O W0 =
WITAMIN By a5 s
FOLIC ACID a5 as
PHOSFHORUS 4 15
MAGHNESIUW 2 B
ZINC 2 B
COPPER 2 4

“WHOLE MWILK SUPPLIES AN ADDITIONAL 30
CALORIES, 4 g FAT. AND 18 qutHcl.Esm

*"DOMTAING LESS THAN s OF THE U5 ADW OF
THIS WUTREENT

INGREDMENTS: RICE, SUGAR. SALT,
CORN SYRUP

YITAMIMS AND IRON: VITAMIN C (SODILIM
ASCORBATE AND ASCORBIC ACID),
HIACINAMEDE, |RON. VITAMIN B, (PY.
RIDOXIME HYDROCHLORIDE), WITAMIN &
(PALMITATE]. VITAMIN B, (RIBOFLAVIN,
VITAMIN B, (THIAMIN HYDROCHLORIDE),
FOLIC ACID, AND VITAMIN D

Cereal Product Reports

(a)
SUPPLIERS LIST
Date: June 30 2011
Ingredient | Supplier Price
Corn Wilson 2.80
J. Perkins | 2.72
Pollack 2.83
McKay 2.80
Wheat Adams 1.19
Kroner 1.19
Schmidt 1.22
Barley Wilson 0.85
Pollack 0.84
(b)

A. Make a list of as many potential entities as these reports suggest.

B. Examine your list to determine whether any entities are synonyms. If so, consolidate

your list.

C. Construct an IE Crow s Foot model showing relationships among your entities. Name
each relationship and specify cardinalities. Indicate which cardinalities you can justify
on the basis of these reports and which you will need to check out with the users.

5.65

B. Construct a crow s foot model showing relationships among these four entities.
Name each relationship and specify cardinalities. Indicate which cardinalities you
can justify on the basis of the CD cover and which you will need to check out with

the users.

Consider the CD cover in Figure 5-61.
A. Specify identifiers and attributes for the entities CD, ARTIST, ROLE, and SONG.

Chapter 5 Data Modeling with the Entity-Relationship Model 201

West Side Story 36t Song 513
Based on a conception of Jerome Robbins (Riff, Action, Baby John, A-rab, Chorus)
Something’s Coming [2’33]
2
Book by ARTHUR LAURENTS &0”}’) s
Music by LEONARD BERNSTEIN el [eet
Lyrics by STEPHEN SONDHEIM Tonight [527]
o . . " (Maria, Tony)
Entire Original Production Directed America [447]
and Choreographed by JEROME ROBBINS (Anitalm, Rosalia, Chorus) wa
Coo 4’37
Originally produced on Broadway by Robert E. Griffith and Harold S. Prince El (Riff, Chorus)
by arrangement with Roger L. Stevens One Hand, One Heart [5738]
Orchestration by Leonard Bernstein with Sid Ramin and Irwin Kostal (Tony, Maria)
HIGHLIGHTS FROM THE COMPLETE RECORDING gt Snsemble) Fe
| Feel Pretty [3°22]
Maria................. KIRI TE KANAWA El (Maria, Chorus)
Tony JOSE CARRERAS (iog’ngwhere [2'34]
i Ir]
A!’llta TATIANA TROYANOS Gee Officer Krupke [4'18]
R0 000000000000000000c KURT OLLMAN (Action, Snowboy, Diesel, A-rab, Baby John, Chorus)
an singin omewnere A Boy Like That [2°05]
d MARILYN HORNE singing S h
(Anita, Maria)
; i ; ; | Have a Love [3’30]
Rosalia Louise Edelkgn Diesel Marty Nelson (Maria, Anita)
Consuela. Stella Zambalis Baby John. Stephen Bogardus Taunting Scene [1'21]
Fancisca......... Angelina Reaux Arab............... Peter Thom (Orchestra)
Action.......... David Livingston ~ Snowboy............ Todd Lester Fina_le [2°40]
Bernardo. .. .Richard Harrell (Maniaiony)
Figure - 5-61

C. Consider a CD that does not involve a musical, so there is no need for ROLE. How-
ever, the entity SONG_WRITER is needed. Create a crows foot model for CD,
ARTIST, SONG, and SONG_WRITER. Assume that an ARTIST can either be a group
or an individual. Assume that some artists record individually and as part of a group.

CD Cover

D. Combine the models you developed in your answers to B and C. Create new entities if
necessary, but strive to keep your model as simple as possible. Specify identifiers and
attributes of new entities, name new relationships, and indicate their cardinalities.

5.66 Consider the data model in Figure 5-43. How should this model be altered if the users
want to keep track of how many of each part are used? Suppose, for example, that the
wheel assembly requires four washers and the handle assembly requires just one, and
the database must store these quantities. (Hint: Adding Quantity to this N:M relation-
ship is analogous to adding Price to the N:M relationship in Figure 5-22.)

5.67 The data model in Figure 5-52 uses the attribute Room in COLLEGE and DEPART-
MENT, but uses OfficeNumber in PROFESSOR. These attributes have the same kind of
data, even though they have different names. Examine Figure 5-46 and explain how
this situation came to be. Do you think having different names for the same attribute
types is rare? Do you think it is a problem? Why or why not?

0 Suppose that you have been hired by Marcia s Dry Cleaning to create a database
MarCIa S = application to track customers, orders, and items. Marcia also wants to start a
Dry Frequent Cleaner s Club, whereby she will offer a 50 percent discount on every 10th
Cleaning " customer order.

A. Using your knowledge, create a data model for Marcias business. Name each entity,
describe its type, and indicate all attributes and identifiers. Name each relationship,
describe its type, and specify minimum and maximum cardinalities.

B. List any item in your answer to A that you believe should be checked out with Marcia
and/or her employees.

202

Morgan

Importing

Part 2 Database Design

Suppose that you have been hired by Morgan Importing to create a database application
to track stores, purchases, shipments, and shippers. Sometimes several items

are purchased from a store on a single visit, but do not assume that all of the items are
placed on the same shipment. You want to track each item in a shipment and assign an
insurance value to each item.

A. Using your knowledge, create a data model for Morgan Importing. Name each entity,
describe its type, and indicate all attributes and identifiers. Name each relationship,
describe its type, and specify minimum and maximum cardinalities.

B. List any item in your answer to A that you believe should be checked out with Phillip
Morgan and/or his employees.

Chapter Objectives

Transforming
Data Models into
Database Designs

To understand how to transform data models into To be able to represent weak entities as tables
database designs To be able to represent supertype/subtypes as tables
To be able to identify primary keys and understand To be able to represent recursive relationships as tables
when to use a surrogate key To be able to represent ternary relationships as tables
To understand the use of referential integrity constraints To be able to implement referential integrity actions

To understand the use of referential integrity actions required by minimum cardinalities

To be able to represent ID-dependent, 1:1, 1:N, and

N:M relationships as tables

This chapter explains the transformation of entity-relationship data models
into relational database designs. A database design is a set of database
specifications that can actually be implemented as a database in a DBMS. This
transformation consists of three primary tasks: (1) replacing entities and
attributes with tables and columns; (2) representing relationships and maximum
cardinalities by placing foreign keys; and (3) representing minimum cardinality
by defining actions to constrain activities on values of primary and foreign keys.
Steps 1 and 2 are relatively easy to understand and accomplish; step 3 may be
easy or difficult, depending on the minimum cardinality type. In this chapter, we
will create database designs, and then we will implement a database design in
Chapter 7 when we build a database using SQL DDL and DML.

203

204

Part 2 Database Design

Create a Table for Each Entity

Figure: 6-1

Steps for Transforming a
Data Model into a Database
Design

Figure : 6-2

Transforming an Entity
to a Table

We begin the database design by creating a table for each entity using the steps shown in
Figure 6-1. In most cases, the table is assigned the same name as the entity. Each attribute of
the entity becomes a column of the table. The identifier of the entity becomes the primary key
of the table. The example in Figure 6-2 shows the creation of the EMPLOYEE table from the
EMPLOYEE entity. In this text, to differentiate entities from tables, we will show entities with
shadowed boxes and tables with nonshadowed boxes. This notation will help clarify our
discussion, but be aware that it is not standard notation across the industry.

Be certain that you understand the difference between these similar-looking graphics.
The shadowed rectangle in Figure 6-2(a) represents a logical structure that has no physical
existence. It is a blueprint. The nonshadowed rectangle in Figure 6-2(b) represents a database
table. It is the same as the following notation that we used in Chapters 3 and 4.

EMPLOYEE (EmployeeNumber, EmployeeName, Phone, Email, HireDate,
ReviewDate, EmpCode)

Note, too, the key symbol next to EmployeeNumber. It documents the fact that EmployeeNumber
is the table key, just as the underline does in the notation used in Chapters 3 and 4.

Selecting the Primary Key

The selection of the primary key is important. The DBMS will use the primary key to facili-
tate searching and sorting of table rows, and some DBMS products use it to organize table

1. Create a table for each entity:
Specify primary key (consider surrogate keys, as appropriate)
Specify candidate keys
Specify properties for each column:
Null status
Data type
Default value (if any)
Specify data constraints (if any)
Verify normalization
2. Create relationships by placing foreign keys
Relationships between strong entities (1:1, 1:N, N:M)
Identifying relationships with ID-dependent entities (intersection tables,
association patterns, multivalued attributes, archetype/instance patterns)
Relationships between a strong entity and a weak but non-ID-dependent entity
(1:1, 1:N, N:M)
Mixed relationships
Relationships between supertype/subtype entities
Recursive relationships (1:1, 1:N, N:M)
3. Specify logic for enforcing minimum cardinality:
M-O relationships
O-M relationships
M-M relationships

EMPLOYEE EMPLOYEE
EmployeeNumber EmployeeNumber
EmployeeName EmployeeName
Phone Phone
Email Email
HireDate HireDate
ReviewDate ReviewDate
EmpCode EmpCode

(a) EMPLOYEE Entity (b) EMPLOYEE Table

Chapter 6 Transforming Data Models into Database Designs 205

storage. DBMS products almost always create indexes and other data structures using the
values of the primary key.

The ideal primary key is short, numeric, and fixed. EmployeeNumber in Figure 6-2 meets
all of these conditions and is acceptable. Beware of primary keys such as EmployeeName,
Email, (AreaCode, PhoneNumber), (Street, City, State, Zip), and other long character columns.
In cases like these, when the identifier is not short, numeric, or fixed, consider using another
candidate key as the primary key. If there are no additional candidate keys, or if none of them
is any better, consider using a surrogate key.

A surrogate key is a DBMS-supplied identifier of each row of a table. Surrogate key values
are unique within the table, and they never change. They are assigned when the row is created,
and they are destroyed when the row is deleted. Surrogate key values are the best possible
primary keys because they are designed to be short, numeric, and fixed. Because of these
advantages, some organizations have gone so far as to require that surrogates be used for the
primary key of every table.

Before endorsing such a policy, however, consider two disadvantages of surrogate keys.
First, their values have no meaning to a user. Suppose you want to determine the department
to which an employee is assigned. If DepartmentName is a foreign key in EMPLOYEE, then
when you retrieve an employee row, you obtain a value such as Accounting or Finance. That
value may be all that you need to know about department.

Alternatively, if you define the surrogate key DepartmentlD as the primary key
of DEPARTMENT, then DepartmentID will also be the foreign key in EMPLOYEE. When
you retrieve a row of EMPLOYEE, you will get back a number such as 123499788 for the
DepartmentID, a value that has no meaning to you at all. You have to perform a second query
on DEPARTMENT to obtain DepartmentName.

The second disadvantage of surrogate keys arises when data are shared among different
databases. Suppose, for example, that a company maintains three different SALES databases,
one for each of three different product lines. Assume that each of these databases has a table
called SALES_ORDER that has a surrogate key called ID. The DBMS assigns values to IDs so
that they are unique within a particular database. It does not, however, assign ID values so that
they are unique across the three different databases. Thus, it is possible for two different
SALES_ORDER rows, in two different databases, to have the same ID value.

This duplication is not a problem until data from the different databases are merged.
When that happens, to prevent duplicates, ID values will need to be changed. However, if ID
values are changed, then foreign key values may need to be changed as well, and the resultis a
mess, or at least much work to prevent a mess.

It is, of course, possible to construct a scheme using different starting values for surrogate
keys in different databases. Such a policy ensures that each database has its own range of surrogate
key values. This requires careful management and procedures, however; and if the starting values
are too close to one another, the ranges will overlap and duplicate surrogate key values will result.

THE WAY Some database designers take the position that, for consistency, if one

table has a surrogate key, all of the tables in the database should have a
surrogate key. Others think that such a policy is too rigid; after all, there are good data
keys, such as ProductSKU (which would use SKU codes as discussed in Chapter 2). If
such a key exists, it should be used instead of a surrogate key. Your organization may
have standards on this issue that you should follow.

Be aware that DBMS products vary in their support for surrogate keys. Microsoft
Access, Microsoft SQL Server, and Oracle MySQL provide them. Microsoft SQL Server
allows the designer to pick the starting value and increment of the key, and Oracle
MySQL allows the designer to pick the starting value. Oracle s Oracle Database 114,
however, does not provide direct support for surrogate keys, but you can obtain the
essence of them in a rather backhanded way, as discussed in Chapter 10A.

We use surrogate keys unless there is some strong reason not to. In addition to the
advantages described here, the fact that they are fixed simplifies the enforcement of
minimum cardinality, as you will learn in the last section of this chapter.

206

Figure : 6-3

Representing Candidate
(Alternative) Keys

Part 2 Database Design

EMPLOYEE CUSTOMER
EmployeeNumber CustomerNumber
EmployeeName Name (AK1.1)

Phone City (AK1.2)
Email (AK1.1) Phone
HireDate Email (AK2.1)
ReviewDate

EmpCode

(@) (b)

Specifying Candidate (Alternate) Keys

The next step in creating a table is to specify candidate keys. As discussed in Chapter 3,
candidate keys are alternative identifiers of unique rows in a table. Some products use
the term alternate key (AK) rather than candidate key, but the two terms are synonymous.
Figure 6-3 illustrates the use of alternate keys.

Figure 6-3(a) shows EMPLOYEE with a primary key of EmployeeNumber and a candidate,
or alternate, key of Email. In Figure 6-3(b), CustomerNumber is the primary key of
CUSTOMER, and both the composite (Name, City) and Email are candidate keys. In these
diagrams, the symbol AKn.m means the nth alternate key and the mth column of that alter-
nate key. In the EMPLOYEE table, Email is labeled AK1.1 because it is the first alternate key
and the first column of that key. CUSTOMER has two alternate keys. The first is a composite of
two columns, which are labeled AK1.1 and AK1.2. The nomenclature Name (AK1.1) means
that Name is the first column of the first alternate key, and City (AK1.2) means that City is the
second column of the first alternate key. In CUSTOMER, Email is marked as AK2.1 because it
is the first (and only) column of the second alternate key.

Specify Column Properties

The next step in the creation of a relation is to specify the column properties. Four properties
are shown in Figure 6-1: null status, data type, default value, and data constraints.

Null Status

Null status refers to whether the column can have a null value. Typically, null status is
specified by using the phrase NULL if nulls are allowed and NOT NULL if not. Thus, NULL
does not mean that the column is always null; it means that null values are allowed. Because of
this possible confusion, some people prefer the term NULL ALLOWED rather than NULL.
Figure 6-4 shows the null status of each of the columns in the EMPLOYEE table.

THE WAY The EMPLOYEE table in Figure 6-4 contains a subtlety. EmployeeNumber,
the primary key, is marked NOT NULL, but Email, the alternate key, is
marked NULL. It makes sense that EmployeeNumber should not be allowed to be null.
If it were, and if more than one row had a null value, then EmployeeNumber would not
identify a unique row. Why, however, should Email be allowed to have null values?

The answer is that alternate keys often are used just to ensure uniqueness. Marking
Email as a (possibly null) alternate key means that Email need not have a value, but, if it
has one, that value will be different from all other values of Email in the EMPLOYEE table.
This answer is dissatisfying because it means that alternate keys are not truly alternate
primary keys. Alas, that s the way it is. Just know that primary keys can never be null but
that alternate keys can be.

Data Type

The next step is to define the data type for each column. Unfortunately, each DBMS provides a
different set of data types. For example, to record currency values Microsoft Access has a data
type called Currency and SQL Server has a data type called Money, but Oracle Database has no

Figure : 6-4

Table Display Showing Null
Status

Figure : 6-5

Table Display Showing Data
Types

Figure : 6-6

Table Display Showing Null
Status and Data Types

Chapter 6 Transforming Data Models into Database Designs 207

EMPLOYEE
EmployeeNumber: NOT NULL

EmployeeName: NOT NULL
Phone: NULL

Email: NULL (AK1.1)
HireDate: NOT NULL
ReviewDate: NULL
EmpCode: NULL

data type for currency. Instead, with Oracle, you use the numeric data type for currency values.
A summary of data types for Oracle Database 11g, SQL Server 2008 R2, and MySQL 5.5 appears
in Chapter 7 as Figure 7-4.

If you know which DBMS you will be using to create the database, you can use that
products data types in your design. Figure 6-5 illustrates the display of data types in a table
using the data types for SQL Server (e.g., datetime is an SQL Server data type).

In fact, with many da